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Abstract—This paper proposes a new optimized method that 

is fast in rendering for 4D reconstruction from 2D medical 

images of human anatomy permitting their real–time refined 

visualization. This method uses the 3D reconstruction algorithm 

based on contour matching of medical image sequences and on 

the tessellation of recent GPU. In our framework, the 

construction of the low-resolution mesh that is based on contour 

extraction allows to create a 3D mesh without any ambiguity and 

exactly matches the real shape of the human anatomy. Such 

preliminary result is of great interest, since it permits to lead to 

other valuable realizations such as reducing the computation 

burden of basic meshes and displacement vectors. Moreover, one 

can achieve a very low storage memory, as well as one can ease 

the fast real-time 4D visualization with a high desired resolution. 

Hence, it is then straight forward that this study can contribute 

to easing the diagnosis and detection in real-time of human 

organs in motion damage and deterioration. Especially, 4D 

visualization technology that is still under development is highly 

important and needed for assessing some dangerously evaluative 

diseases, as in the case of lung diseases. 
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I. INTRODUCTION 

From health and care perspectives, 4D visualization is the 
most effective method for assessing and preventing deadly 
diseases of human organs in motion. For instance, 4D 
visualization technology of lungs damaged can shed new light 
on the real possible dangers and eventual damage and 
complications on the patient health. As a real practical 
consequence, the use of computational methods in lung 
analysis may allow us to better understand and visualize what 
we cannot obtain from static 2D images, such as the 
respiratory behavior of muscles. To achieve this, the 4D 
reconstruction is an important and critical requirement. 

More importantly, not to say that 4D reconstruction of the 
human organs in motion would be useful for visualization the 
correspondent mechanism, especially before surgery. For 
example, in patients suspected of having pulmonary diseases, 
the ability to visualize in 4D and observe the oxygen uptake 
capacity of the lungs would be useful for clinical diagnosis. 
So, a complete 4D reconstruction of the lungs may allow 
physicians to better understand the respiratory process 
(inspiration and expiration). Other disease states in which 4D 
modeling can potentially be useful for clinical decision 
making include pulmonary nodules, pneumothorax, and 
chronic diseases [1] characterized by irreversible decrease in 
bronchial caliber. 

Unfortunately, the 4D reconstruction is a computationally 
intensive job, and therefore doctors use specific workstations 
[2]. 

In this paper, we propose a powerful and optimized 
algorithm to reconstruct a 4D image from segmented contours 
of 2D MRI images, to be able to do the 4D reconstruction in 
home computers. 

Our proposed framework has the following advantages: 

 Topological changes in 2D contours are automatically 
processed in both spatial and temporal dimensions. 

 The result is a distortion-free mesh that corresponds to 
a good approximation that matches exactly the real 
human organs anatomy. 

 The use of the tessellation of recent graphics cards 
makes the real-time display very fast. 

 Memory usage is highly optimized by considering the 
large number of details in the 2D images. 

The remainder of this paper is organized as follows. In 
section 2, an overview on the state of the art is presented and 
the limitations of some reported works are discussed. In 
section 3, our methodology is clearly exposed regarding to the 
previously reported studies. Section 4 presents some technical 
explanations and discussions on the proposed method and its 
obtained results. Finally, some necessary concluding remarks 
are provided in section 5. 

II. RELATED WORK 

Research studies on 4D reconstruction algorithms often 
focuses on both, improving the quality of 4D visualization 
from standard acquisition data and its fast execution. Among 
these algorithms is the Feldkamp-Davis-Kress (FDK) 
algorithm [3], which is a filtered back-projection algorithm 
widely used for 3D and 4D image reconstructions from cone-
beam projections measured with a circular orbit of the x-ray 
source. There is also the Mc Kinnon-Bates (MKB) algorithm 
[4] in which a time-averaged 3D prior image is first 
reconstructed. It is then projected at the same angles as the 
original projection data, creating time-averaged re-projection 
that are next subtracted from the original (non-blurred) 
projections to create the well-known motion-coded differential 
projections. Such differential projections are reconstructed 
into PC differential images that are added to the well-sampled 
3D image before creating a much higher quality 4D image. 
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Other distinguished algorithm is the ROOSTER algorithm 
[5] that iteratively computes volumes that minimize the sum 
of the least squares difference between simulated volume 
projections, real measured projections, and a spatiotemporal 
"total variation" term that favors distinct homogeneous 
regions with sharp edges. In addition, we also mention the 
Motion Compensated [6] FDK (MCFDK) algorithm [7] in 
which motion was estimated from 4DCT planning volumes by 
Deformable Image Registration (DIR) [8] between respiratory 
phase volumes using a B-spline method from the Elastix 
toolkit [9] . In addition, the 4DCT DIR produces Deformation 
Vector Fields (DVFs) that are used as inputs to the MCFDK 
reconstruction. Note that the MCFDK algorithm can be 
interpreted as a variant of the FDK method where back-
projection is performed along curved trajectories to account 
for motion. And lastly the Motion Compensated (MCMKB) 
algorithm which is an extension of [10], where 4DFDK 
reconstructions are used for DVF estimation. This study 
considers a much more under sampled acquisition than [10], 
which may explain why we were not able to produce 
convergent DVF estimates from the 4DFDK reconstructions. 

Note that for the algorithms that use surface rendering, 
there is the classical method that uses interpolation between 
3D images of to give a 4D result. These algorithms are 
effective alternatives for 4D reconstruction of medical images 
without the need for powerful machines, but they produce 
ghost artifacts that do not represent the exact anatomy of 
human organs and not achieve the determination of accurate 
motion trajectories. Another negative fact of using mentioned 
algorithms, is that it cannot lead to an instantaneous precise 
information on a particular organ and even to precise 
measurements on the organ to be reconstructed. In contrast, 
our proposed approach is based on the 4D surface rendering 
that allows a good visualization of the geometry and a precise 
topological shape associated to the three-dimensional 
structures of human organs and their spatial-temporal 
relationships. Moreover, such adapted procedure makes it 
possible for comparing the reconstructed data with the original 
data. For these reasons, it is stressed out that the surface 
rendering method eases the achievement of a fast real-time 4D 
visualization, thanks to the use of certain units of the graphic 
card originally conceived for 3D video games. 

To recap, the main goal of this paper is mainly to propose 
a new algorithmic solution that is faster to compute based on 
accelerating rendering method and other efficient 
computational techniques. Moreover, the proposed 
methodology can achieve a high visual resolution by avoiding 
heavy drawbacks on memory storage and acquisition. Indeed, 
such improvement handles efficiently the limitations of the 
previously discussed algorithms that have been reported and 
recognized in the literature. 

III. METHODOLOGY 

This section describes the new method developed in this 
paper for an optimized and fast 4D visualization from standard 
2D medical images. This method consists first of the 3D 

reconstruction of a basic mesh from the 2D images of the    
slices at time    and the extraction of the lost data, in the form 
of displacement vectors, which will be stored in a 
displacement map. Thus, we perform the extraction of the 
displacement vectors of the 2D slices of each sequence from 
time    to time      based on the mesh at time   , i.e., 
without constructing the base mesh of times    to     . In 
special cases, it is found that the number of contours at time    
changes in time     , which makes it necessary to add 
additional parts in the base mesh. As a result, a high-resolution 
visualization can be achieved at the GPU map level by 
combining the different parts of the base mesh and the set of 
displacement maps. 

The reminder of our contribution is as follows. In the first 
part given by section 3.1, we determine the input of our 
algorithm and explain the basic idea behind its conception. 
Next, the second and third and fourth parts considered in 
section 3.2 and 3.3 and 3.4 describe in more details the first 
steps of the proposed algorithm consisting of contours 
extraction and displacement maps. Some technical details are 
provided in section 3.5 to show how one can map the 
computed mesh at time    to the other at time     . Finally, it 
is shown how a high resolution 4D visualization can be 
handled in the last Section 3.6. 

A. Overview 

Our algorithm is based on a sequence of 2D medical 
images identified at successive time periods from time    to 
time      . These images are subjected to a segmentation 
process to extract the target organ to be reconstructed and 
visualized in real-time. For this purpose, we apply the contour 
extraction algorithm on each slice    of each sequence   at 
each time   . In this way, we build the base mesh of the 
sequence at time    and perform the extraction design of the 
corresponding displacement map, as well as for the other 
sequences (see Fig. 1). It is stressed out that, in the general, 
one may have a base mesh composed of other several bases 
mesh. The 4D reconstruction is then done with a single base 
mesh and N+1 displacement maps, which speeds up the 
rendering and optimizes memory usage. 

In what follows, the illustration in Fig. 2 depicts the 
necessary steps to be executed to get the desired results for a 
fast and clear 4D visualization. 

B. Extraction Des Contours 

Based on the segmented slices, we need to extract the 
contours of the object to be reconstructed. For the detection of 
its contours, several methods can be possibly used. Such 
methods are grouped into several distinct classes. For instance, 
one can use those based on nonlinear filtering such as the 
median filter, or more recently the one in [11]. Other methods 
of interest are high-pass filtering, such as Prewitt, Sobel, and 
Canny detectors [12], or such that the multi-scale analysis 
developed with the wavelet theory [13] [14] ; or the one based 
on the rare redundant dictionary approximation [15]. 
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Fig. 1. Construction of Base Mesh and Displacement Map from a 2D Segmented Image Sequence. 

 

Fig. 2. Diagram Representing the Different Steps of our Algorithm

Note that the key role of the previously mentioned 
methods of contour traversal consists in defining the abrupt 
changes of pixel intensity. In fact, the real rising issue to 
overcome is that we should obtain a chained list of contour 
points, respecting a fixed order. So, the strategy we used is to 
extract a point from this contour, and then we must extract the 
other points in an ordered way following the path of these 
contours as it has been performed in [16]. 

To construct the displacement map, it is emphasized that 
the extraction of the contours shall be carried out for all the 
slices of all the sequences at the time periods    (see Fig. 3). 

 

Fig. 3. Two Contours    and    of Two Successive Slices: the N Slice and 

the N+1 Slice at Time t. 
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C. Construction of the basic Mesh 

The basic mesh is the first structure to be reconstructed 
without refined details. Note that in our design approach, the 
mesh construction consists in mapping the contours 
represented by triangles of each contour of each slice n with 
those of the slice n+1. As a matter of fact, drawing faces from 
the contours is not at all an easy task because this depends on 
the resolution of the following three hard problems [17]: 

 Matching problem: How to connect the contours in 
slice n with a contour in slice n+1? 

 Tiling problem: How to connect the points of contour 
   in slice n with the points of contour      in slice 
n+1? 

 Connection problem: How to divide the contour    in 
slice n that corresponds to the contours       and 
      in slice n+1? 

The illustration shown in Fig. 4 highlights the possibilities 
for solving the matching problem associated to the case when 
the number of contours in adjacent slices is not the same (the 
contours can be split or merged). 

It is worth mentioning that for the determination of the 
relationship between the contours of two consecutive slices 
(see Fig. 5), we have used the correspondence factor method, 
see for instance [16]. 

D. Displacement Vectors 

As it has been revealed in previous illustrations, the first 
constructed mesh is a basic mesh which does not reflect the 
true shape of the anatomy in question. It is then necessary to 
add to it the lost details in the construction of the base mesh 
during the real-time visualization. For this task, we shall then 
extract the displacement vectors using the available contour 
data and the edges of the quadrilaterals obtained after joining 
the triangles that represent the contours [18]. 

The strategy used to extract the displacement vectors is 
based on the discretization of the concerned contours (see Fig. 
6). This approach has a great interest for two essential issues. 
On one hand, the generation of such discretized displacement 
vectors allows more precision for the construction of the real 
shape of the organ anatomy (see Fig. 7). On the second hand, 
through the discretization of the anatomy contour with a fixed 
point, this makes it easy to incorporate the suitable level of 
details in all polygons of the base mesh. 

 

Fig. 4. Three Possible Solutions to the Topology Change Matching Problem. 

 

Fig. 5. Base Mesh Construction for Two Contours of Two Consecutive Slices. 

 

Fig. 6. Extraction of Contours with Displacement Vectors. 
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Fig. 7. Rendering with Hardware Tessellation to Generate the High-

resolution Mesh. 

Indeed, the key role of these constructed displacement 
vectors is that they can automatically generate the 
displacement map representing an image determined by its 
moving distances and directions from the points on the 
contour surface during the real-time display. 

E. Reconstruction of the 4D Mesh 

 Creation of sub-meshes and displacement vectors 

Here, we are now able to characterize the 4D construction 
of the mesh. At the beginning of such construction, we start 
then from an already defined set of n sequences of slices from 
an initial time    to a final time     . For each sequence we 
have m slices from    to     . These slices are already 
segmented to extract only the object to be reconstructed (see 
Fig. 8). 

This set of slices will be divided into m-2 sub-assemblies, 
each sub-assembly is represented by 2 consecutive slices of 
the n sequences. In particular, the first sub-assembly 0 will be 
represented by slice 0 and slice 1 of all the sequences. 

Next, each subset must undergo some additional 
treatments as described in what follows: 

For each sequence i we need to determine the different 
correspondences existing between the contours of 2 
consecutive slices [16]. Contours that do not have a 
correspondent in the other slice will be neglected. 

In Fig. 9, we have a correspondence between contour 1 
and 2 of slice 1 and contour 1 and 2 of slice 2 respectively; 
contour 3 of slice 1 does not correspond to any contour in slice 
2, so it will be deleted (see Fig. 10). Each correspondence 
gives us a base sub-mesh and displacement vectors that will be 
added to this mesh at time   . 

The next step is to find for each sub-mesh its 
correspondent in the following defined sequences, for which 
we say that the correspondence of a sub-mesh of the sequence 
i to the sub-mesh of the sequence i+1 is satisfied if the 
contours of these two sub-meshes correspond to each other at 
each slice and with the same number (see Fig. 11). 

 

Fig. 8. The Input to this Algorithm is in the Form of a Sequence of 2D Slices for each Instant. 
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Fig. 9. Correspondence between the Contours of a Sequence. 

 

Fig. 10. Representation of the Sub-meshes which Represent the Correspondences between the Contours of the same Sequence. 

 

Fig. 11. The Sub-mesh of Sequence i Corresponds to the Sub-mesh of 

Sequence i+1. 

If we fail to find the correspondence of a sub-mesh of a 
sequence i in the following sequence, the appearance of a new 
sub-mesh is obligatory, and it will be from the instant      
(see Fig. 12). 

Note that we can also have a new sub-mesh in a sequence i 
if we fail to find a correspondence between its contours and 
the contours of the sequence of the instant      (see Fig. 13). 

 

Fig. 12. No Correspondence between These Two Sub-meshes (the Number of 

Contours in Sequence i is different from the Number of Contours in Sequence 

i+1). 
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Fig. 13. This Sub-mesh does not have a Correspondent in the following 
Sequence. 

Finally, after applying this additional treatment to all the 
subassemblies, we obtained series of sub-meshes, each sub-
mesh has the following information: 

 Start sequence number (Sd). 

 End sequence number (Sf). 

 Displacement vectors for each edge in the different 
sequences from the first sequence to the final sequence. 

Note that each sequence has its own displacement vectors 
that refine the corresponding base sub-mesh. Another fact 
shown the above table in Fig. 14, that sequences from 0 to i, 
sequences from i+1 to j, sequences from j+1 to k, as well as 
sequences from k+1 to n-1 do not share the same basic sub-
mesh in a sub-assembly. 

 Construction of the 4D mesh and interpolation 

Following the previous development for the obtained 
results from N given sequences, we have by now all the 
necessary ingredients to form 3D meshes for all sequences in 
the form of a single compound base mesh and N displacement 
maps. Thus, the next treatment is the visualization of the 
dynamic 3D mesh using all the available data and the gathered 

information. However, the success of this crucial procedure 
results from the number of given sequences and the required 
quality of the visualization in terms of display smoothness. In 
fact, if the number of sequences is not sufficient or the 
required quality is very high; an extra interpolation is then 
obligated to perform for additional renderings to maintain the 
desired display quality between each consecutive sequences. 
Especially, the interpolation will be applied to the 
displacement vectors. In the normal case, where there is a 
correspondence between the meshes of sequence i and those 
of sequence i+1, the position of these interpolated meshes 
between the two sequences is deduced by creating 
intermediate displacement maps based on the already 
computed displacement maps in sequence i and sequence i+1. 
In the opposite case of no existing correspondence between 
the meshes associated to consecutive sequences (see Fig. 15) ; 
then, the calculation of the intermediate mesh can be carried 
out after finding the suitable correspondence between the 
contours. 

In this case, for example, where there is no correspondence 
between the mesh of sequence i and the mesh of sequence i+1, 
we must create a new sub-mesh at time i. 

This sub-mesh will have the sequence i as the starting 
sequence. Thus, its elements must correspond to the elements 
of the sub-mesh of sequence i+1. To do so, we will use the 
correspondence factor between the contours of slice j of time i 
and the contours of slice j of time i+1 [16], to create a 
correspondence between the contours of the same slice, the 
correspondence direction, and the correspondence percentage. 

According to the calculated correspondence factor of the 
contour    with the contours    and    of the sequence i+1, 
we find that the green part of the contour    corresponds to 
the contour    (see Fig. 16), and the orange part corresponds 
to the contour   . Thus, we can build the sub-mesh below 
which will be the sub-mesh used from the instant i+1: 

 

Fig. 14. This Table shows that each Sub-mesh has a Start and an end Number. 

 

Fig. 15. No Correspondence between the Meshes of Two Consecutive Sequences. 
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Fig. 16. Create a Correspondence between the Contour    of the Cut j of the Sequence i and the Contours    and    of the Same Cut of the Sequence i+1. 

 

Fig. 17. Construction of the Sub-mesh which will be the Sub-mesh used from Time i+1. 

After this operation, we can easily see that we have 
obtained a complete mesh associated to all the sequences (see 
Fig. 17). Based on such computed mesh, we can determine for 
each vertex at time    its corresponding in the next time     . 
As it can be deduced, this procedure allows the possibility to 
interpolate the meshes between any consecutive times. 

IV. RESULTS AND DISCUSSION 

The implementation of the proposed method of 4D mesh 
reconstruction from 2D medical images is based on the 
following steps: 

 Detection and extraction of contours from a 2D 
medical image sequence. 

 Construction of the basic 3D mesh of the    sequence 
and of all the sequences that do not have some 
correspondence with the previous sequences. 

 Extraction of displacement vectors for any sequence 
from the 2D images based on the corresponding 3D 
mesh. 

 Interpolation of the 3D mesh between sequences based 
on the interpolation of the displacement vectors to have 
a smooth visualization. 

 Construction of the high resolution 4D mesh from the 
obtained base mesh and the displacement vectors. 
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The first numerical result concerns the testing of our 4D 
reconstruction method in terms of the quality of the obtained 
4D mesh. Effectively, the construction of the 4D mesh used by 
some classical methods is often based on the Marching Cubes 
algorithm combined with the interpolation method. It is worth 
mentioning that this approach causes ambiguity cases in some 
configurations [19]. In other negative situation, one may be 
confronted with complex areas causing an unexpected 
deformation during the mesh reconstruction [19]. In contrast, 
our new method leads to a low-resolution mesh based on 
contour extraction that makes it possible to create a 3D mesh 
without any ambiguity, matching exactly the actual shape of 
the anatomy. It is also noticed that the computed 4D mesh 
incorporate easily all the gathered anatomy information. 
Indeed, this shows that our method can overcome the staircase 
problem obtained with the classical method (see Fig. 18) 
(Marching Cubes with very small elementary cubes). 

The second testified numerical result is related to the low 
storage level. For this purpose, we have compared the amount 
of information stored using the new adopted structure with the 
structure used in the conventional storage method (see 
Table I). As a result, by simplifying the calculations, we have 
applied both methods to a medical data volume of 512 x 512 x 
38. This gives a size of the high-resolution mesh with the 
conventional method of about 2.48MB, which must be 

multiplied by m (the number of given sequences). This 
represents a volume of about 50MB, while if we store the base 
mesh with the displacement vectors, we reach only 150KB. 
This is then a good storage reduction that is very important in 
practice. 

The last important numerical result achieved by our 
algorithm is witnessed by the rendering speed. In the related 
numerical test, we have considered a set of 10 medical image 
sequences (   to   ), and in each sequence we have 38 slices. 
As a result, the table below shows the necessary rendering 
execution time for both methods (see Table II). 

It is noticed that in the classical method we sent the high-
resolution mesh of each time    directly to the GPU, while in 
our method we only sent to the GPU a set of basic sub-meshes 
with the displacement maps at each time   . 

In another additional test, the same display is considered in 
both methods, by disabling in our method the interpolation 
between   time periods. The obtained comparison shows that 
the rendering time with the classical method is about 120 MS 
(8 frames per second) which is very slow about our method 
that achieved a rendering time equal to 19 MS only (52 frames 
per second). Roughly speaking, the obtained enhancement in 
speeding up the rendering is at least 6 times more. 

 

Fig. 18. Our Method Allows to Overcome the Staircase Problem Obtained with the Classical Method. 

TABLE I. COMPARISON BETWEEN THE AMOUNT OF INFORMATION STORED USING THE NEW STRUCTURE AND THE CONVENTIONAL STORAGE METHOD 

 Basic mesh (bytes) Number of sequences Displacement vectors Total (bytes): 

The original method (MC) 2,480,892 20 0 =49,617,840 

The new method 

126,148 (T0) 
1,009 (T5) 

1,129 (T12) 

1,276 (T16) 

The other sequences are 

based on these 4 basics 
meshes already sent 

500*20 vectors 

*2 char (x,y) 
*1 octet 

=149,562 

TABLE II. COMPARISON BETWEEN THE RENDERING SPEED USING THE NEW METHOD AND THE CONVENTIONAL METHOD 

 Data sent to the GPU Size of the sent data Average rendering time 
Number of images 

displayed per second 

The original method (MC) 
High resolution meshes 10 of 

size 50 MB 
50 Mo 120 ms 8,33 

The new method 
Basic sub-mesh set and 10 

displacement cards 
150 Ko  19 ms 52,63 
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V. CONCLUSION 

In this paper, we have provided an enhanced algorithm that 
allows the reconstruction of a 4D mesh from a set of medical 
image sequences, using a base mesh and displacement vectors 
for each sequence. The use of displacement vectors to add 
extra details to the basic mesh has been shown to reduce the 
amount of information stored in the final 4D mesh. Another 
established fact is that the use of the tessellation unit of the 
graphics card allows speeding up the rendering time; since, the 
proposed method create the 4D mesh, based on the 3D 
reconstruction method that uses the GPU tessellation unit in 
the rendering. This modification aims to eliminate the cases of 
ambiguity, especially, in certain types of objects that cannot 
be treated easily with the reported conventional Marching 
Cubes method. This is also helpful for obtaining a low-
resolution mesh that can be directly used in the rendering 
without going through a correction step. 

Another particularity of the proposed method is that one 
can extract the contour of the anatomy to be reconstructed 
from the 2D images, and then build a basic mesh within a low 
computational time and with a reduced storage memory. By 
doing so, this basic mesh construction step is done for each 
sequence that does not have the same contours as the previous 
sequence, which leads to a very small number of basic 
meshes. Moreover, we generate displacement vectors for each 
sequence by discretizing the contours according to the desired 
level of details. 

As a result, our framework has been proven to be 
efficiently suitable and adaptable for the following main 
technical issues: 

 The construction of a low-resolution base mesh using 
the contour extraction and matching method overcomes 
the staircase problem as well as the ambiguity 
problems and generates a mesh that exactly matches 
the real anatomy. 

 The computation of basic meshes and displacement 
vectors has a very low storage burden. 

 The transmission of the information to the GPU allows 
accelerating the rendering time. 

Given the important advantages of this 4D reconstruction 
method, it will be very useful to apply it to the vital organ that 
is the heart. Thus, we intend to do detailed research and 
analysis to treat all its particularities. 
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