
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

600 | P a g e

www.ijacsa.thesai.org

Improving Computational Thinking in Nursing

Students through Learning Computer Programming

Leticia Laura-Ochoa, Norka Bedregal-Alpaca, Elizabeth Vidal

Universidad Nacional de San Agustin de Arequipa

Arequipa, Peru

Abstract—Computational thinking is a fundamental skill for

problem-solving, it uses computational concepts and other types

of thinking such as algorithmic. The experience of improving

computational thinking in nursing students using block-based

programming environments such as Code.org, Lightbot, and the

Python textual programming language is described. The results

obtained are analyzed by applying a pre-and post-test of

computational thinking to the students. The methodological

design is quasi-experimental since it did not work with a control

group. The study group was made up of 30 students from the

Professional School of Nursing of the National University of San

Agustin de Arequipa. The results show that teaching

programming allows the understanding of computational

concepts and improves computational thinking. It is concluded

that block-based programming environments and the Python

language facilitate the development of algorithmic thinking and

computational thinking.

Keywords—Computational thinking; computational thinking

assessment; computational thinking test; programming;

programming environments

I. INTRODUCTION

Computational Thinking (CT) is a fundamental skill that
influences different disciplines and professions, not only those
related to science and engineering [1][2]. It is considered a
transversal competence that goes beyond the use of computers
and coding [3] since it includes algorithmic and parallel
thinking, which involve different types of thought processes,
such as compositional reasoning, pattern matching, procedural
thinking, and recursive thinking. [2], which are required by
new generations of students in different areas of knowledge.

According to Román-González et al. [4], programming is
the main demonstration of the ability of the CT through the use
of the computer, because it allows the development of
algorithmic thinking, problem-solving, logic, and debugging
skills [5]. In this context, textual programming is considered
the final educational goal at the end of the K-12 level in most
countries [4], because students in adolescence value the higher
cognitive load of textual languages. However, text-based
programming can make learning difficult for beginning
students, overwhelming their cognitive ability [6].
Furthermore, it is considered a difficult task due to the lack of
complete development of computational thinking in students
[7]. Therefore, it is necessary to select the appropriate didactic
tools and strategies that facilitate the teaching of programming
with an approach oriented to the development of computational
thinking. For [8], block-based programming environments are
a good way to introduce beginning students to programming.

In addition, in [9] they consider that these environments
facilitate the understanding of programming concepts; but both
block-based and text-based programming environments allow
the development of skills related to computational thinking.

In addition, Tikva and Tambouris [10] have found that
teachers face challenges in incorporating TC practices, so more
capacity building frameworks and interventions that support
teachers for successful integration of TC into their teaching
practices are required. They believe that the relationship
between tools and TC development should be explored as
future work to provide information on which tools support
which TC learning strategies.

Consequently, the aim of this work is to show the
programming tools that were used in the experience and how
they favor the acquisition of computational concepts and the
development of computational thinking practices and skills,
which can be of help and reference for teachers who need to
incorporate computational thinking in their teaching work. This
experience was carried out in an online learning environment
with higher education students from the professional school of
nursing, a career different from science and engineering, where
the majority of students are usually women.

In this work, the experience of the use of programming
environments based on blocks and text is described, to improve
the development of computational thinking skills for beginning
students in programming a Basic Computer course, which
includes as a learning unit the Introduction to programming.
An analysis of the pre- and post-test results of computational
thinking applied to students is carried out to verify the
improvement of computational thinking. In the experience,
Code.org and Lightbot block programming environments were
used prior to the Python textual programming language to
facilitate the understanding of computational concepts and the
acquisition of computational thinking practices.

II. RELATED WORK

In the work of Brackmann et. al. [11], a quasi-experiment
was presented in two primary schools in Spain, to develop the
computational thinking skills of students through disconnected
activities, students' ages are between 10 and 12 years old. Their
results show that the students of the experimental group, who
participated in the disconnected activities, significantly
increased their computational thinking skills, compared to
those who did not participate in the disconnected activities,
evidencing the effectiveness of the disconnected approach for
the development of computational thinking skills. However,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

601 | P a g e

www.ijacsa.thesai.org

they consider that this approach has limitations, and there may
come a point where it loses its effectiveness and the use of
computing devices is required to further develop these skills.

Vasquez and Luján [12] carried out an evaluation of
aptitude level on the development of computational thinking in
students of the basic level of secondary school. They identified
the need to strengthen skills related to computational thinking
such as analysis, algorithm design, and data abstraction,
because their average scores did not exceed 50% of the total
number of questions evaluated. Likewise, they found that the
maturity of the students and the cognitive development
according to the academic degree do not establish the level of
development of computational thinking skills. Since their
cultural environment must also be considered. The authors
considered that the results of the computational thinking test
can be used to design and develop a computational thinking
course that allows strengthening skills that require it. Montes-
León et al. [7] describe their experience of the application of
computational thinking activities that positively influences the
improvement of learning in a course of fundamentals of
programming. They carried out an analysis of the results of a
pre and post test of computational thinking applied to
secondary students divided into control and experimental
groups, to evaluate the improvement of computational
thinking. The ages of the participating students were between
15 and 16 years old. They also analyzed the results of the
evaluation applied in the course. The activities that were
carried out in the experimental group were some exercises
from the international Bebras contest, mathematical problems,
exercises from a university entrance test and mental games.

Laura-Ochoa and Bedregal-Alpaca [13] found that the
incorporation of computational thinking practices allowed
students to improve their performance on the first Python
programming course, where they used support tools such as
PSeInt, CodingBat and the turtle graphic library for the
development of skills related to computational thinking,
conducted an analysis of the grades obtained by the students of
the control and experimental group in the midterms and final
average of the programming course, where the students of the
experimental group showed an improvement in their learning
results. As future work, they suggest the application of
computational thinking measurement assessments by following
a practice-oriented programming teaching approach to
computational thinking.

III. METHODOLOGY

The methodological design used was quasi-experimental,
since it did not work with a control group. In the study group,
there were 30 students enrolled in the Basic Computer course
(groups B and F) of the academic semester 2020-B of the
Professional School of Nursing of the National University of
San Agustin de Arequipa (Peru).

The Basic Computer Science course at the Professional
School of Nursing of the National University of San Agustin
de Arequipa - Peru, is given in the second academic semester.
It is developed for 17 weeks. It has 4 practice hours a week,
lasting 50 minutes each, equivalent to 2 credits.

The students of the experiment were 30 women (100%),
who participated in the pre- and post-test of computational
thinking, as well as in the development of the third learning
unit: Introduction to Programming. This unit is developed
during five weeks, with two weekly sessions of 2 hours each.

In the practice hours, the students experimented with the
use of visual programming environments: Code.org, Lightbot
and Python textual programming language. The method used
in the class sessions was expository-participatory.

The computational thinking test developed by Román-
González et al. [14] was used to measure the level of
development of computational thinking in students. Its test is
consistent with other computational thinking tests aimed at
middle/high school students [15], it is mainly aimed at Spanish
students between 12 and 14 years old (7th and 8th grade of
primary school), but it can be used in lower and higher grades.
It is aligned with some CT computational concepts defined by
Brennan and Resnick [16] and partially aligned with some
computational practices.

The students who participated in the experience completed
the computational thinking test [14] in the first week of classes
on the subject and at the end of the third learning unit:
Introduction to programming, accessing an online test through
a Google Apps form.

To measure the improvement of computational thinking, a
comparison of the scores obtained by the students in the pre-
test and post-test of computational thinking was made, to check
if the activities carried out in the third learning unit:
Introduction to Programming allowed the acquisition of
computational concepts and development of skills related to
computational thinking.

IV. DESCRIPTION OF THE EXPERIENCE

Block-based visual programming environments (Code.org,
Lightbot) and Python programming language were selected for
teaching the introduction to programming and development of
skills related to computational thinking in the third learning
unit of the Basic Computer course taught to students of the
nursing professional career in the period 2020-B.

Table I shows the programming topics that were developed
using the selected programming environments, where the
students learned computational thinking concepts considered in
the work of Luo, Antonenko and Davis [17], such as sequential
instructions, conditionals, and loops.

Students began learning the block-based visual
programming language using Code.org by completing
exercises in the "hour of code" tutorials that enabled them to
understand concepts of sequential statements, loops, and
functions. An example of block programming on Code.org is
shown in Fig. 1, where students understood the utility of
iterative statements by replacing repetitive blocks of code (left)
with loops (right) to draw the geometric figure of the square, in
which the students acquired some computational thinking
practices such as iteration and abstraction through the
identification of repetitive patterns, which allowed them to
acquire the ability to reduce unnecessary details and propose
new solutions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

602 | P a g e

www.ijacsa.thesai.org

TABLE I. PROGRAMMING TOPICS

Tools
Sequential

Instructions

Conditional

Instructions

Repetitive

Instructions
Functions

Code.org X X X

Lightbot X X X

Python X X X

Fig. 1. Replacing Repetitive Blocks of Code with Loops at Code.org.

Fig. 2. Sequential Instructions with Repeating Patterns.

The Lightbot video game was used to reinforce algorithmic
thinking skills in students by thinking in sequence of
instructions for problem solving. Fig. 2 shows an example of
the Lightbot third level solution using only sequential
instructions (move, jump, turn left) in the MAIN METHOD for
the robot to move and turn on all blue blocks, which is the
objective of the video game, where repetitive patterns such as
moving forward and turning on are identified.

In Fig. 3, a second solution for the third level of Lightbot is
shown, where students, through generalization (identification
of repetitive patterns go forward and turn on), abstraction
(reduction of unnecessary details) and decomposition of the
program using one of the functions (FUNCT. 1), acquire the
ability to find better solutions to the problem and make use of
code reuse.

In addition, the students practiced the Lightbot video game
from Code.org, where they used recursion to create loops in the
PROC1 procedure (Fig. 4).

After experience with the block-based programming
environments, the students learned the syntax and semantics of
the Python textual programming language using the Google
Collaboratory environment for the creation and execution of
code, with which they reinforced their understanding of
computational concepts, such as sequential statements,
conditionals, and loops. Fig. 5 shows some examples of
codification of single and double selection structures; but there
was also done double selection instructions (nested).

Fig. 3. Program Decomposition and Code Reuse with Functions.

Fig. 4. Looping using Recursive Calls in Lightbot from Code.org.

Fig. 5. Coding with Single and Double Select Structures using Python.

With the programming environments used in the
experience, computational thinking skills are used, such as
automation and debugging for the execution of programs and
logical analysis for the verification of the results.

Therefore, students acquired computational thinking
practices such as abstraction, decomposition, iteration, and
debugging.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

603 | P a g e

www.ijacsa.thesai.org

V. RESULT AND DISCUSSION

The computational thinking test [14] was applied at the
beginning of the Basic Computer Science course before taking
Unit 3 of Introduction to programming, serving as a pre-test for
the evaluation of said unit.

Fig. 6 shows the percentage of correct answers per question
in the pre-test. The regression line shows the progressive
difficulty of the test. The average correct percentage of the 28
questions was 64.64%.

At the end of the third learning unit, the computational
thinking test was applied again [14].

Fig. 7 shows the percentage of correct answers per question
in the post-test. The regression line shows an improvement in
terms of the progressive difficulty of the pre-test. The average
correct percentage of the 28 questions was 80.6%.

Table II shows some descriptive statistical data related to
the total scores obtained by the students in the pre and post-
test. The total scores are evaluated from 0 to 28.

Fig. 8 and 9 show histograms with the distribution of said
total scores, where the improvement in the total, mean, median
and mode scores of the post-test are evidenced. In the post-test,
the median and mode have the same value of 23.

Fig. 10 shows box plots for the scores obtained through
computational thinking pre- and post-test. In the post-test, an
atypical value is observed that corresponds to a student who
obtained a total score of 15 points. The median, maximum
value, minimum value, quartiles are higher in the post-test.

Table III shows the averages of the percentages of correct
answers of the questions for the computational concepts that
are addressed in the computational thinking test, obtained by
the students in the pre and post-test.

Fig. 6. Success Percentage per Question in the Pre-test.

Fig. 7. Success Percentage per Question in the Post-test.

TABLE II. DESCRIPTIVE STATISTICAL DATA OF THE TOTAL SCORES

 Pre-Test Post-Test

Minimum 11 15

Maximum 26 27

Mean 18.1 22.567

Median 17.5 23.0

Mode 16 23

Standard deviation 3.791 2.885

Fig. 8. Histogram with the Distribution of Total Scores (Pre-test).

Fig. 9. Histogram with the Distribution of Total Scores (Post-test).

Fig. 10. Box Plots of the Scores Obtained in the Pre and Post Test.

TABLE III. SUCCESS PERCENTAGES FOR COMPUTATIONAL CONCEPTS

 Pre-Test (%) Post-Test (%)

Basic directions and sequences 91 94

Loops „Repeat Times‟ 78 91

Loops „Repeat Until‟ 63 83

Simple Conditional „if‟ 59 73

Complex conditional „if/else‟ 60 83

While conditional 36 53

Simple functions 66 88

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

604 | P a g e

www.ijacsa.thesai.org

Fig. 11. Success Percentage for Computational Concepts.

Fig. 11 shows that the percentages of success in the post
test are higher for each of the computational concepts
addressed in the test.

Therefore, it can be affirmed that the performance of the
students has improved in the post-test, evidencing an
improvement in computational thinking, after the development
of the third learning unit, in which the introduction to
programming was made using visual programming
environments based on Code.org blocks, Lightbot and the
Python textual programming language.

According to the experience described, the programming
environments used allowed the acquisition of computational
practices such as abstraction, decomposition, iteration and
debugging, which correspond to the computational thinking
practices defined by Brennan and Resnick [16] and adapted in
the work of Luo, Antonenko and Davis [17]. In addition,
students developed skills such as algorithmic thinking,
generalization, automation, and debugging, which are part of
the computational thinking skills identified in five featured
articles in the work of [18]. It was achieved that students had a
means to acquire methodological tools, deepen knowledge, and
cultivate skills [19].

We agree with a previous work [20] that learning text-
based programming is important for the development and
professional performance of students, because in addition to
reinforcing concepts and practices of computational thinking,
they can expand their learning for the creation of applications,
analysis or visualization of data.

In programming courses aimed at beginners, we consider it
important to carry out activities related to computational
thinking at the beginning of the course to improve their
learning, where visual programming environments based on
blocks can be used. Likewise, in [8] they consider block-based
programming environments a good way to introduce beginning
students to programming.

Likewise, we agree with Zapata-Cáceres et al. [21], in that
computational thinking is not limited only to the activities of
computer scientists; it is applied in daily life and in different
areas of knowledge, so it is a necessary skill to adapt to the
future.

VI. CONCLUSION

This article has presented the experience of developing
computational thinking skills through a block and text-based

programming activities to improve students' computational
thinking. We examined the total scores obtained by the
students in the pre-test and post-test, there is evidence of an
improvement in the scores in the post-test with the
programming environments used in the learning unit of
introductory programming, which indicates the effectiveness of
programming for understanding computational concepts
addressed in the test. We concluded that the visual
programming environments based on blocks in combination
with the textual programming language using Python allow the
student to acquire computational concepts and computational
thinking practices such as abstraction, decomposition, iteration,
and debugging in introductory programming courses directed
mainly to beginning students of non-computer related careers.

ACKNOWLEDGMENT

The authors' thanks are expressed to the National
University of San Agustin de Arequipa for the support received
in the realization of the proposal and the results are expected to
benefit the institution.

REFERENCES

[1] J. M. Wing, “Computational thinking,” Communications of the ACM,
vol. 49, no. 3, pp. 33-35, 2006.

[2] J. M. Wing, “Computational thinking: What and why. The Link,” News
from the School of Computer Science at Carnegie Mellon University,
2011.

[3] J. Acevedo-Borrega, J. Valverde-Berrocoso and M. D. C. Garrido-
Arroyo, “Computational Thinking and Educational Technology: A
Scoping Review of the Literature,” Education Sciences, vol. 12, no. 1,
pp. 39, 2022.

[4] M. Román-González, J. C. Pérez-González, J. Moreno-León and G.
Robles, “Can computational talent be detected? Predictive validity of the
Computational Thinking Test,” International Journal of Child-Computer
Interaction, vol. 18, pp. 47-58, 2018.

[5] F. Buitrago Flórez, R. Casallas, M. Hernández, A. Reyes, S. Restrepo
and G. Danies, “Changing a generation‟s way of thinking: Teaching
computational thinking through programming,” Review of Educational
Research, vol. 87, no. 4, pp. 834-860, 2017.

[6] C. Chen, P. Haduong, K. Brennan, G. Sonnert and P. Sadler, “The
effects of first programming language on college students‟ computing
attitude and achievement: a comparison of graphical and textual
languages,” Computer Science Education, vol. 29, no. 1, pp. 23-48,
2019.

[7] H. Montes-León, R. Hijón-Neira, D. Pérez-Marín and S. R. Montes-
León, “Mejora del Pensamiento Computacional en Estudiantes de
Secundaria con Tareas Unplugged,” Education in the knowledge society
(EKS), no. 21, pp. 24, 2020.

[8] Z. Xu, A. D. Ritzhaupt, F. Tian and K. Umapathy, “Block-based versus
text-based programming environments on novice student learning
outcomes: a meta-analysis study,” Computer Science Education, vol. 29,
no. 2-3, pp. 177-204, 2019.

[9] L. Laura-Ochoa and N. Bedregal-Alpaca, “Análisis de entornos de
programación para el desarrollo de habilidades del pensamiento
computacional y enseñanza de programación a principiantes,” Revista
Ibérica de Sistemas e Tecnologias de Informaçao, no. E43, pp. 533-548,
2021.

[10] C. Tikva and E. Tambouris, “Mapping computational thinking through
programming in K-12 education: A conceptual model based on a
systematic literature Review,” Computers & Education, vol. 162, pp.
104083, 2021.

[11] C. P. Brackmann, M. Román-González, G. Robles, J. Moreno-León, A.
Casali and D. Barone, “Development of computational thinking skills
through unplugged activities in primary school,” in Proceedings of the
12th workshop on primary and secondary computing education, pp. 65-
72, 2017.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

605 | P a g e

www.ijacsa.thesai.org

[12] A. J. O. Vasquez and B. I. S. Luján, “Evaluación del nivel de aptitud
desarrollo de pensamiento computacional en jóvenes de nivel básico
secundaria,” RECIE. Revista Electrónica Científica de Investigación
Educativa, vol. 4, no. 2, pp. 1151-1163, 2019.

[13] L. Laura-Ochoa and N. Bedregal-Alpaca, “Incorporation of
Computational Thinking Practices to Enhance Learning in a
Programming Course,” International Journal of Advanced Computer
Science and Applications(IJACSA), vol. 13, no. 2, 2022, DOI:
10.14569/IJACSA.2022.0130224.

[14] M. Román-González, J. C. Pérez-González and C. Jiménez-Fernández,
“Test de Pensamiento Computacional: diseño y psicometría general,” in
III congreso internacional sobre aprendizaje, innovación y
competitividad (CINAIC 2015), pp. 1-6, 2015.

[15] M. Román-González, J. C. Pérez-González and C. Jiménez-Fernández,
“Which cognitive abilities underlie computational thinking? Criterion
validity of the Computational Thinking Test,” Computers in human
behavior, vol. 72, pp. 678-691, 2017.

[16] K. Brennan and M. Resnick, “New frameworks for studying and
assessing the development of computational thinking,” in Proceedings of
the 2012 annual meeting of the American Educational Research
Association, 2012.

[17] F. Luo, P. D. Antonenko and E. C. Davis, “Exploring the evolution of
two girls‟ conceptions and practices in computational thinking in
science,” Computers & Education, vol. 146, pp. 103759, 2020.

[18] S. Bocconi, A. Chioccariello, G. Dettori, A. Ferrari and K. Engelhardt,
“Developing computational thinking in compulsory education -
Implications for policy and practice,” in JRC Science for Policy Report,
2016.

[19] N. Bedregal-Alpaca, “Virtual tutoring and blended-learning in the
postgraduate course: Orientations and results of an experience,”
Proceedings of the 17 LACCEI international Multi-conference for
Engineering, Education and Technology, 2019, DOI
10.18687/LACCEI2019.1.1.220.

[20] L. Laura-Ochoa and N. Bedregal-Alpaca, “Development of
Computational Thinking Skills: An Experience With Undergraduate
Students,” in 2021 XVI Latin American Conference on Learning
Technologies (LACLO), IEEE, pp. 112-117, 2021, DOI
10.1109/LACLO54177.2021.00070.

[21] M. Zapata-Cáceres, E. Martín-Barroso and M. Román-González,
“Computational thinking test for beginners: Design and content
validation,” in 2020 IEEE Global Engineering Education Conference
(EDUCON), IEEE, pp. 1905-1914, 2020.

