
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

692 | P a g e

www.ijacsa.thesai.org

A Penetration Testing on Malaysia Popular e-Wallets

and m-Banking Apps

Md Arif Hassan*, Zarina Shukur, Masnizah Mohd

Center for Cyber Security, Faculty of Information Technology

National University Malaysia (UKM), 43600 UKM, Bangi, Selangor, Malaysia

Abstract—e-Wallets and m-banking apps became more and

more popular in the developed world, approaching a point of

tipping. This can be due to the global use of big and small

merchants of paying equipment and the ubiquity of e-wallet and

m-banking apps adoption. Many consumers are using e-wallets

and m-banking apps that can be an effective cybercrime option.

e-Wallets and m-banking apps allow financial transactions via

smartphones that give cybercriminals a lucrative opportunity.

Mobile technology has become increasingly mainstream and

continually strengthening, with the focus on mobile apps

protection and forensic analysis developing. In this paper, the

security aspect of five popular e-wallets in Malaysia were

analyzed. This paper also provides a security analysis of another

five leading m-banking apps. The security analysis is based on a

security principle that is recommended by Open Web

Application Security (OWASP) under Mobile Security Testing

Guide (MSTG) and Mobile Security Threats (MST). The static

analysis has been done by using three mobile application-testing

tools. This study included a variation of vulnerability scanning,

code review and, most significantly, penetration testing. Each

app complied with the security requirement, but their security

features and characteristics, such as encryption, security

protocols, and app services, are different to each other. This

study was carried out using a DELL computer with Intel Core i7

CPU, 3.40 GHz CPU, 6 GB RAM. Finally, the results revealed

the secure e-wallet and m-banking apps among the selected apps.

Keywords—Electronic payments; e-wallet; m-banking; android;

static analysis; security analysis

I. INTRODUCTION

Nowadays, the development of technology advances has
brought one of the pioneers of innovation in financial
institutions. With the development of Fintech worldwide, there
will still be enough challenges for those interested in adopting
the technology. As part of their everyday transaction payment
choice, several countries have already introduced the use of
electronic payments. The payment methods used by consumers
have great impacts on the future of the financial system and the
business model of a country. Mobile payment services are
increasingly popular in the banking world and are capable of
replacing cash and becoming the most popular platform in the
coming years. Fintech developments have changed payment
systems in Malaysia. Malaysia has taken seriously the
development of cashless societies in particular. The Central
Bank of Malaysia intends to migrate towards a new cashless
sector, in alignment with its financial plan 2020, with the
intention of increasing efficiency in the financial sector [1].
For current stage, the most commonly used cashless payment
methods are credit cards/debit cards, internet banking and

cheques [2]. e-Wallet appears to be a new trend of mobile
payment in recent years. In effort to enhance the use of e-wallet
in Malaysia, the e-wallet users included in the Malaysia Budget
2020 are granted an RM30 reward [3]. e-Wallet is a modern
age of technologies that easily recognizes consumer interest,
making our transactions very convenient and efficient [4-5].
Security is among the most crucial factors influencing
consumers' determination to use e-wallet apps [6-7].
Cybercrime is a challenge to mobile payment systems, and is
obviously not the only concern, although many consider that it
is the greatest challenge in the field of mobile privacy. Many e-
wallet application developers are financially motivated, and as
a result, it is common to overcome challenges quickly in order
to save time and money. Cybercrime possibilities are becoming
more challenging, hence humans want to share their
understanding of certain ways hackers could interfere with e-
wallet apps. Those who hope this point of view will help
people realize how cyber criminals think, because if everyone
know that, then users will continue to defend ourselves by
securing certain points of attack.

In addition to the design of the e-wallet apps
implementation, it is necessary to preserve the protection and
privacy of user data in general [8]. A safety intelligence survey
found [9] that 400 leading companies, 40% of them don't even
scan their code for security flaws. Besides all these apps,
mobile money applications effectively cover high-level private
financial and sensitive information, where protection needs to
be of the extreme significance as vulnerabilities or risks cannot
be tolerated, as absolute protection is necessary. This paper
studies e-wallet products associated with e-money issuers listed
in National Bank of Malaysia websites, by focusing on its
mobile payment feature. There are 42 e-money certificates has
issued by Central Bank of Malaysia, including 5 banks and 37
non-banks [10] and [11]. Security in general has become an
increasing concern currently, particularly with the evolution of
mobile payments, and the almost daily vulnerabilities found in
operating systems and applications are what makes it more
challenging [12]. This study conduct a penetrating testing using
three static analysis tools which is recommended by Open
Web Application Security (OWASP). The recommendation of
OWSAP related to three static tools are show in Table I.

TABLE I. STATIC TOOLS SECURITY PRINCIPLE

Tools Security principle Suggested by

MobSF OWSAP Mobile Testing Guide

MARA OWSAP Mobile Security Threats

AndroBugs OWSAP Mobile Testing Guide

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

693 | P a g e

www.ijacsa.thesai.org

In this study, our main contributions are as follows:

 We perform a static analysis among five e-wallet and
m-banking apps, specifically on security issues targeted
for Android applications.

 In order to detect repackaging threats, we evaluate
successful solutions and recognize the vulnerabilities.

 We discover the most secure bank and non-banks
mobile application among selected application using
static analysis tools.

This paper is bifurcated into four sections. Introducing the
payments and its related study, which is already discussed
above. The second section presented the five bank and non-
bank issuers in Malaysia and its association with e-wallet
products. Section 3 discussed the proposed methodology of the
analysis. Section 4 presented the experimental result of the
methods and Section 5, provides the discussion of the findings
and finally, the conclusion b presented in Section 6.

II. LITERATURE REVIEW

Electronic payment systems have risen in popularity in the
last 20 years because of their significant contribution in
modern electronic transactions. Electronic transactions are a
financial exchange between buyers and sellers available on the
internet [13]. The payment system electronically originally
referred to as a payment process through an electronic network
[14] which a user may use to make online payments for
products and services [15]. Among electronic payment system
nowadays, e-wallet and m banking is one of the most famous
payment system. The definition and their functionality is
described in the next subsection.

A. e-Wallet and m-Banking

e-Wallet is the new invention of finance technology that
make our transaction and payment easy and fast. e-Wallet is a
virtual storage system [16] that can capture your identity and
digital credentials and offer to an electronic gadget or online
service that pro-vides a person to commit electronic purchase
[17-18]. The e-wallet includes two elements, namely software
and information. The software holds all the information
contained in a wallet that encrypts confidential personal data.
In comparison, the data are all information, such as customer
ID, card information and shopping addresses, provided by the
customer. There are quite variety of e-wallet services
established worldwide.

For the past several years, mobile banking has grown in
popularity across many segments of society. M banking is a
subcategory of electronic banking that combines both the
basics of banking and the distinct features of mobile payment
[19]. M banking refers to the delivery and use of banking and
financial services using mobile communications de-vices [20].
The range of services available might include the ability to
conduct bank and stock market transactions, manage accounts,
and obtain personalized data. Mobile banking, often known as
m banking, is a terminology for using a mobile device such as
a phone to perform balance checks, account transactions,
payments, and credit applications. It is the convenient, simple,
secure, anytime and everywhere in the world. The functionality

of the apps for each bank and non-bank issuers is listed in
Table II and Table III.

 App based system: Application settings are also
important since they allow user to personalize the
program to his own needs. This will feature profile,
payment, and security options, among other things.

 Fingerprint: Fingerprint identification is one of the most
well-known and used bio-metric technologies. The
fingerprint biometrics is useful and cost effective.
Moreover, it can be quickly installed and used under
any environmental conditions.

 Bills: This is an important e-wallet function because
today's consumers like to pay all of their bills online,
including utilities, mortgages, loans, rent, and tuition, to
mention a few. e-Wallets are becoming a vital aspect of
daily life as digital cash becomes more prevalent, and
they should be able to give an easy bill payment option,
whether it is a prepaid or postpaid payment service.

 Transfer of money: Transfer money between the payer
and payee wallets in seconds rather than hours or days.
This function has many advantages, including the
ability to make payments at any time and from any
location, the ability to make funds available
immediately, and the ability to manage personal and
business funds.

 Payment history: Any registered member will be able to
view all the transaction de-tails in these features. After a
successful login, the customer will be able to check or-
der history.

 User account: To carry out a transaction from e-wallet
to another e-wallet, the customer must be a user
account. The user has been using a registration form. In
order to register, the user must fill out all the fields
required in the form. The user can access a variety of
services using their user account.

 Pin Code: A personal identification number (PIN) is an
unique code that must be in-put in order to complete
certain banking transactions with a mode of payment.
The purpose of a personal identification number (PIN)
is to increase the level of security in electronic
transactions.

 Top-up: By using these features, users could access the
multiple bank list for top-up money. In these features,
users need to choose how much they want to update.
User chose their favorite bank account whenever. The
payment gateway is submitted to the recipient of the
application directly. The features help to users to add
their balance into their e-wallet.

 QR code: In-store payments can be made using e-
wallets using contactless methods such as near-field
communication and Quick Response (QR) codes. QR
Code is a form of 2D bar codes [21]. The QR code may
be readily scanned with a smartphone camera [22]. The
barcode is read by the smartphone, which then launches
an associated apps or website.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

694 | P a g e

www.ijacsa.thesai.org

 Open loop: Open loop mobile payment systems allow
customers to pay from a centralized e-wallet at many
different places. It is easy to comprehend closed
payments as a gift card and open payments as a credit
card [23].

 Add Money: Add money is used only for the logged-in
users. It is connected to a payment gateway. The user
can add or choose their bank account before transaction.
User can add money with their registered bank account
details or debit/credit cards using this function.

 Request money: Anyone may send his or her friend or
family member a message to ask him or her to pay his
or her money.

 Withdraw money: Users can transfer cash from their
account to their connected bank account through the
withdraw money functionality. Users may digitally
withdraw money from the wallet into any bank account
without the inconvenience of paper bills or currency,
such as receiving money from sources, collecting
money from distributors, in-store or online payments
from consumers, or collecting money from sources.

 Voucher: Marketers and merchants are fully aware of
the value of coupons and re-wards. e-Wallets are a great
platform for providing these benefits to value customers
in a timely manner. As a result, features that make it
simple to create and manage coupons, discounts,
tickets, and loyalty points are essential for an e-wallet
solution and may help e-wallet software stand out in the
market.

In the following Table, II and III means- the apps have the
properties, whether 0 means the apps do not have the
properties. 0 means the apps do not have the properties whether
1 means the apps have the properties.

Table II and Table III revealed e-wallet apps functionality
by bank and non-bank issuer where, most of them have same
features except Non-Bank5. It shows that there are common
and additional properties of e-wallet apps. There are 10
common e-wallet apps functionality by bank and non-bank
issuer. They are pin code, fingerprint, bills, transfer of money,
top-up, and payment history, add money, and voucher, Request
money, and Withdraw money. Each e-wallet playing its own
role and position in electronic payment system, several e-
wallets such as Non-Bank1, Non-Bank3, and Non-Bank4
focusing on withdraw money from ATM booth, while others
focus on online transaction.

B. The Open Web Application Security Project

The OWASP is a non-profit organization that works to
improve software security. OWASP relies on an ‗open
community' concept, that enables anyone to participate in and
assist to projects, events, online forums, and other services.
Every three years, OWASP identifies the 10 most critical web
application security risk types. This "top ten" list shows an
agreement on the most serious security problems. The
following were the top ten vulnerabilities as reported in
OWASP 2017 are:

1) A1—Injection (SQL, OS, and LDAP).

2) A2—Broken Authentication.

3) A3—Cross-Site Scripting (XSS).

4) A4— Sensitive Data Exposure.

5) A5—Security Misconfigurations.

6) A6—Sensitive Data Exposure.

7) A7— Broken Access Control.

8) A8— Using Components with Known Vulnerabilities.

9) A9— Insufficient Logging and Monitoring.

10) A10— Insecure Deserialization.

The Open Web Application Security Project guide must be
followed in some circumstances while developing web
applications. The details of each vulnerability report can be
found in [24].

TABLE II. THE FUNCTIONALITY OF BANK ISSUER M-BANKING APPS

Properties Bank1 Bank2 Bank3 Bank4 Bank5

App based system 1 1 1 1 1

Fingerprint 1 1 1 1 1

Bills 1 1 1 1 1

Transfer of money 1 1 1 1 1

Payment history 1 1 1 1 1

PIN code 1 1 1 1 1

User account needed 1 1 1 1 1

top-up 1 1 1 1 1

QR code 1 1 1 1 1

Open loop 1 1 1 1 1

Voucher 1 1 1 1 1

Request money 1 1 1 1 1

Add money 1 1 1 1 1

Withdraw money 1 1 1 1 1

TABLE III. THE FUNCTIONALITY OF NON-BANK ISSUER E-WALLET

APPS

Properties
Non-
Bank1

Non-
Bank2

Non-
Bank3

Non-
Bank4

Non-
Bank5

App based system 1 1 1 1 1

Fingerprint 1 0 1 1 0

Bills 1 1 1 1 1

Transfer of money 1 1 1 1 0

Payment history 1 1 1 1 1

PIN code 1 1 1 1 0

User account needed 1 1 1 1 1

top-up 1 1 1 1 0

QR code 1 1 1 1 1

Open loop 1 1 1 1 1

Voucher 1 1 1 1 1

Request money 1 1 1 1 0

Add money 1 1 1 1 1

Withdraw money 0 1 1 1 1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

695 | P a g e

www.ijacsa.thesai.org

C. Android Platform

Android is an open source smartphone operating system
that was originally developed by Android Inc. and then
acquired by Google with financial support. The first beta
edition of Android was launched in November 2007 and the
first stable version 1.0 followed in September 2008. Android is
the world's most used mobile operating system, dominating the
smartphone industry with an 82.8 percent share in 2015 [11].
That is good reason for this paper to perform the study on
Android by itself. With the rising number of providers, each
with its own Android OS version, the Android environment has
been massively decentralized in recent years, ensuring that
each has possible different vulnerabilities on top of some
android platform problems, which is the total contrast on the
IOS side where Apple maintains that a more compact closed
ecosystem is accessible. IOS, though, is still suffering from
smartphone protection concerns, and the android suffering is
even higher. In comparison, being an open source based on
Linux, Android makes it even easier to deal with, because it is
much easy and popular for Android to remove the source code,
scan the files, and include vulnerable code in applications.

D. Static Analysis

We chose static analysis as our vulnerability measurement
technique despite reported vulnerabilities for several reasons.
Unlike human code review or penetration testing, which results
in reported vulnerabilities, static analysis is a purpose,
repeatable, and scalable method for evaluating vulnerabilities.
Static analysis tools employ a certain algorithms and rule sets
every time and may scan a project in hours rather than days or
weeks. Vulnerabilities can remain latent in code for years
before a researcher discovers and re-ports them, thus the
number of reported vulnerabilities is likely to be
underestimated by an unspecified amount. Using static
analysis, we could investigate the evolution of an application's
vulnerabilities details. The number of vulnerabilities we
uncovered with our static analysis technique far exceeded the
number disclosed for the group of applications. Vulnerabilities
of the same type in the same application version must be
combined into a single item because of the Common
Vulnerabilities and Exposures (CVE) criteria, which explain
some differences in performance. Fig. 1 depicts the
vulnerability static analysis process.

 Basic Static Analysis

Report

 MobSF

Static Analysis

 Reverse Engineering

MARA

 Automated Security

Testing

 AndroBugs

Fig. 1. Static Analysis Process.

1) MobSF basic static analysis tools: Mobile Security

Framework that is an automated pen-testing framework

capable of per-forming static and dynamic analysis. The

framework also includes REST APIs that enable developers to

use continuous integration and continuous delivery (CI/CD)

pipelines to test their apps automatically with each build.

MobSF v2.0 is open-source and written in Python 3.7. It is

released under the GNU Public License v3.0. The study's

installed version was a Docker container provided and

maintained by the authors of MobSF. This simplified the

installation process and allowed the service to be dismantled

or rebuilt on demand. Users can interact with MobSF's

graphical user interface by navigating to localhost: 8000 when

the Docker container has successfully started up. The security

analysis of MobSF is depends on the following properties:

 Signer Certificate: A signing certificate encrypts an app,
ensuring that the code underlying it is protected and that
no one is defrauded.

 Application Permission: In Mobile application, several
permissions that are classified as dangerous or
acceptable. Understanding which permissions can lead
to further damage is critical from the perspective of a
security analyst. For example, if an application has
access to external media and stores essential
information on the external media, the files stored on
the external media are globally accessible and writable,
which might be harmful. Android app permissions can
give apps control of users phone.

 Network Security: Details on network security issues
relating to the application can be found in the network
security section. These flaws might lead to critical
attacks like man in the middle attack.

 Android API: The Android operating system gives a
framework API for apps to interface with the Android
underlying system.

 Browsable Activities: Browsable Activities can control
how the device should react when the user clicks on a
link in the web browser.

 Security Analysis: Details about security issues relating
to the application can be found in security. These
problems can lead to critical attacks. The security
analysis is including Network Security, Manifest
Analysis, Code Analysis, Binary Analysis, NIAP
Analysis and File Analysis.

 Manifest Analysis: Manifest Analysis may extract a
variety of data from an Android manifest file, such as
which activities are exported, if the app is debug gable,
data schemas.

 Code analysis: The code analysis part of the MobSF
tool is one of the more interesting aspects. MobSF has
analyses, evaluated parts of the application‘s behavior
using industry security standard practices such as
OWASP Mobile Security Testing Guide (MSTG), and
mapped the vulnerabilities using OWASP Top 10.
Furthermore, Common Weakness Enumeration and
Common Vulnerability Scoring System scores (CVSS)
are stated, which might be helpful in different analyst
scenarios and make the development of reports a bit
more straightforward for developers and analysts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

696 | P a g e

www.ijacsa.thesai.org

 Malware Analysis: Malware analysis is the domain
malware check. MobSF extracts the hard-coding or
application-using URLs/IP addresses, presents the
malware status, and uses the ip2location to indicate its
Geo location. APKiD is used to identify different
packers, compilers, and hypocrites.

 Reconnaissance: Reconnaissance is used to identify the
applications URLs, firebase DB, emails, trackers, and
string and hard-coded secrets. This is all done using the
decompiled source code.

 Components: Components are used to identify the
details information regarding activities services. This
summarizes the android APK skeleton. The components
are including Activities, Services, Receivers, Providers,
Libraries and Files.

In contrast to traditional desktop and web apps, mobile
applications have unique security challenges. With mobile app
security, the MobSF tool is widely employed. According to
MobSFs, security score, CVSS and trackers‘ detection
determine the outcome.

 Security Score: Security scoring is one of the important
features to calculate the overall result. This security
scoring is based on, if it introduced an issue to an app
that al-ready has higher average CVSS than that issue,
app would actually have higher score than before even
though it now has more issues. The developer improves
the tool‘s security score. Since the average CVSS score
is used, an app with one major issue and several minor
ones may score higher than one with only one major
issue [25]. Currently, app score is calculated as:

avg_cvss = round(sum(cvss_scores) / len(cvss_scores), 1)

app_score = int((10 - avg_cvss) * 10)

 CVSS: The CVSS score can be utilized to determine the
severity of vulnerabilities found in apps. The CVSS
Calculator can be used to calculate the CVSS score. The
formulas given in the CVSS specification are used in
the calculation [26]. The CVSS Metric Values are
shown in Table IV. The details CVSS scores provided
by MobSF can be seen in supplementary file (Table I-
III) [26-27].

 Tracker Detection: Each app may make use of third-
party trackers. MobSF analyses the detected tracker in
the system's APK using the open source Exodus-
Privacy web tool. Tracker analysis can be found in two
ways, such as crash reporters and analytics. Crash
reporters are those that look into crashes that happen
when the program is running normally. Alongside,
analytics tracker collects information on how users
interact with the app, such as how much time they
spend in it, which features they utilize [28].

2) Reverse engineering: The method of extracting

technology or design information from something man-made

is known as reverse engineering [29-30]. The theory behind, it

has for centuries been understood that destroying something

would help you understand it, evaluate it and even twist it to

achieve another task. In the computer security industry,

reverse engineering is commonly used to analyze and exploit

viruses and malware, vulnerability detection, binary code

auditing, and development [30-31]. In this paper, reverse

engineering was introduced after automated security tested as

a second part of the static vulnerability analysis.

Reverse engineering is in particular used to see how
engineers have constructed this specific system and how they
perform essential protective activities and specifications [32].
These are some examples of what we can look for in Android
security tests while using reverse engineering: database link,
DB name, or DB password, certain hard-coded usernames or
passwords that is used to accessing the database [33]. The
application's APIs to see whether any of them are
compromised, or the API key, and to check for a known
vulnerable method after downloading the source code. This
section will discuss the tools used in Reverse Engineering, and
then the procedure followed to identify vulnerabilities in the
selected applications, and will finally go over the results
obtained from reverse engineering. During the reverse
engineering, the method was initially focused exclusively on
the Mobile Reverse Engineering & Analysis framework
(MARA) which takes an APK file and delivers the source code
in a language that is easily understood in Smali. Fig. 2
indicates the process that follows an application for reverse
engineering.

TABLE IV. CVSS METRIC VALUES

No Metric
Metric
Value

Description

1
Attack
Vector

Network
Adjacent
Network
Local
Physical

The attack vector defines the
circumstance in which a vulnerability
can be exposed.

2
Attack
Complexity

Low
High

This metric specifies the conditions
that must exist outside the attacker's
control in order to exploit the
vulnerability. Depends on the situation,
unique conditions that need a
measurable amount of preparation or
execution are necessary for the
exploitation of the vulnerability, the
metric's score might be low (L) or high
(H).

3
Privilege
Required

None
Low
High

The level of privilege necessary to
exploit the vulnerability is defined by
this metric. Its value is None (N) if the
attacker does not need any permission;
Low (L) if the attacker just needs basic
privileges to change user-owned
settings and files; or High (H) if the
attacker needs major privileges to
affect component-wide configurations
and files.

4
User
Interaction

None
Required

This metric can have the values None
(N) or Required (R) depending on
whether the vulnerability is exploited
with or without user participation.

5
ImpactConf,
ImpactInteg,
ImpactAvail

High
Low
None

This metric are refer to the
Confidentiality Impact, integrity and
availability impact.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

697 | P a g e

www.ijacsa.thesai.org

Apk Extractor

APKSmali
MARA

.Dex

unzip

.Jar
dex2jarp

.Java

JD-GUI

N-B 1

N-B 2

N-B 4 N-B 5

N-B 3 B 1

B 2

B 3

B 4 B 5

Fig. 2. Reverse Engineering Process [29].

The Mobile Application Reverse Engineering and Analysis
(MARA) framework was the technology utilized to execute
penetration testing. MARA brings together commonly used
reverse engineering and analysis tools for mobile applications
to test mobile apps against OWASP mobile security threats and
vulnerabilities. MARA is a bash script that combines several
prominent android reverse engineering and vulnerability
analysis tools everything into solution. The goal was to make
the workflow easy to utilize for security researchers and
developers. MARA can do dynamic and static analysis
requiring no additional post-installation configuration. MARA
does not have a graphical user interface; it was created only for
terminals. Most of the sub-tools are developed in various
Python versions. MARA is evaluated based on six security
attributes, which are APK Reverse Engineering, APK
Deobfuscation, APK Analysis, APK Manifest Analysis,
Domain Analysis, and Security Analysis. Each of the following
six security attributes can be found in details [34].

Critical, High, Medium, Low, Info, and Detection issue are
the different levels of se-verity [35]. MARA reversed all the
chosen applications and retrieved the complete source code.
The reverse results obtained by checking the source code
individually are provided in Section 4.

3) Automotive testing: This segment would present the

automated security checks carried out in the chosen banking

and non-bank payment methods, processes and outcomes.

Automated protection testing is an essential part of the paper's

static vulnerability review, which is valuable since it provides

a summary of where vulnerabilities can be found in the

application. This chapter starts with a summary on chosen

tools, and then explains how they are used then shows the

results of automatic safety monitoring. All the apps checked

for AndroBugs security have received an initial description of

where to check for vulnerabilities, while the findings

presented by AndroBugs seemed to provide a clear

understanding of the system build and possible vulnerabilities

in most instances.

In November 2015, Yu-Cheng Lin released the AndroBugs
framework, an open source vulnerability scanner for Android
apps. AndroBugs is a Python-based static analysis tool that
analyzes for common vulnerabilities in Android apps, it also
checks the code is missing best practices and checks dangerous
shell commands [29]. AndroBugs seemed to provide a clear
understanding of the system build and possible vulnerabilities
in most instances. The details of calculated CVSS for
AndroBugs can be seen in supplementary file (Table IV) [26].
The possible vulnerabilities can be found in all apps were the
following:

 Runtime Command: This is because AndroBugs
establish in the code a serious function
―Runtime.getRuntime ().exec (―…‖)‖. This feature
allows a user to enter the shell and then modify the
commands within it.

 Fragment Vulnerability: Since AndroBugs found a
'Fragment' or 'ActionbarSherlock Fragment' in the
software, which was vulnerable to Android before 4.4
on phones. Any intruder who runs a code capable of
eroding the Android Sandbox, which means access to
confidential information not accessible by the
application, is vulnerable to using this application on an
old Android device.

 SSL Certificate Verification: However, this application
does not validate the SSL certificate validation, so it
causes the self-signed Common Name (CN) certificates
for Secure Sockets Layer (SSL) to be expired or to be
unacceptable. This is undoubtedly a vital weakness,
since it enables attackers to carry out Man in the middle
(MITM) attacks.

 SSL Implementation: That ensures that such a self-
defined application will accept all common names as
"HOSTNAME VERIFIER." This allows any attacker
with a valid certificate to carry out MITM attacks.

 Implicit Service: In other words, this application uses an
implicit decision to conduct a service, which is
dangerous, since the answering service is not
identifiable and the user cannot see which service.

 Web View Vulnerability: This implies that AndroBugs
find the "addJavaScriptInter-face" method in an
application code, which a weakness that JavaScript may
use in devices is running android before 4.2 to manage
the application.

 Android Manifest: This shows that this app has high
privileges for AndroBugs. An-droBugs find that the
"Mount Unmount FileSystems" android permission is
included in this program, which has not been justified
as the permission authorization permits removable
mounting and mounting of file systems and the Android
developer website notes that the application is not used
by third party applications. The application is not
mounted.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

698 | P a g e

www.ijacsa.thesai.org

 Key Store Protection: AndroBugs therefore find that
this application does not adequately secure its Key
Store because it appears that it uses byte array and SSL
pinning using a hard-coded certificate information. The
details of the reverse engineering process are mentioned
in Section 2.4, respectively. The existing work and their
finding is shown in Table V.

TABLE V. THE EXISTING WORK AND THEIR FINDING

Authors Method Country Finding

Reaves et
al. 2015
[39]

Manual
analysis

USA

This article completed manual
analysis on 7 Android m-banking
apps. These apps were tested for
SSL/TLS bugs, cryptography,
and identity leakage and access
control. The findings confirm
that the majority of these apps
fail to provide the protections
needed by financial services.

Filiol and
Irolla,
2015
[37]

Static and
Dynamic
analysis

France
This study executed static and
dynamic analysis on 50 Android
m-banking apps

Zheng et
al. 2017
[38]

Repackaging
Attack

Australia

This article examine common
security attacks on mobile apps,
whether they are performing
preliminary tests to determine
the effectiveness and complexity
of mobile device security attacks
using repackaging attacks to
obtain victim information.

Chothia et
al. 2017
[36]

TLS testing
methods

UK

This article presents a security
analysis of the 15 m-banking
apps issued by leading UK
banks. The primary goal was to
find the bugs in these apps' TLS
implementations.

Chanajitt
et al. 2018

Forensic
analysis

Thailand

This articles focus on seven
Android m-banking apps in
Thailand. Several of the
applications examined do not
perform root device
identification, do not encrypted
user data, or may be modified
and installed as repackaged apps.

Bassolé et
al. 2019
[40]

Vulnerability
assessments

Africa

This article analyzed the
vulnerability of mobile banking
and payment applications on
Android platforms. This article
undertakes vulnerability
assessments, allowing for a more
informed analysis of the
information security and privacy
threats that African mobile
banking and payment
applications face. They specially
evaluate login credentials and
code vulnerability of these apps
in particular to assess the risks of
attacks connected to privacy and
data confidentiality.

Yang et al.
2019
[41]

Comprehensive
analysis

China

This article examines the
existing third-party mobile
payment ecosystem and
identifies possible security
concerns by doing an in-depth
assessment against China, the
world's largest mobile payment
market. Aside from that, this

article also uncovers seven
incidences of security rule
violations on the Android and
IOS platforms.

Verderame
et al. 2020
[45]

Static and
Dynamic

Analysis
Italy

This article describes a unique
methodology based on a
successful mix of static analysis,
dynamic analysis, and machine
learning techniques for
determining whether a particular
app either) has a Google Play
privacy policy and ii) accesses
privacy. This article also
involves examining the
compliance of third-party
libraries that are incorporated in
existing applications.

Majeti et
al. 2021
[46]

Cryptographic
primitives

India

This article looks at how
cryptographic primitives are used
in Indian mobile finance apps.
They chose 36 apps from three
distinct categories and evaluated
the flaws separately.

Our study Static analysis Malaysia

To perform static analysis of 5
m-banking and non-bank e-
wallet apps. The static analysis
has been done by using three
mobile application-testing tools
that is recommended by
OWASP.

III. METHODOLOGY OF PROPOSED STUDY

This section presents the methods, processes and results of
the automated security tests on the applications pre-selected.
The automated safety testing is part of the research paper static
vulnerability analysis, with an overview of where
vulnerabilities can be found. The analysis is important. This
chapter starts with a briefing on selected the analysis tools, and
then demonstrates the method and results of the automated
security testing. Some of the previous study conducted static or
dynamic analyzes among various country leading m-banking
apps. The focus of this study is to analyze popular Malaysian
e-wallet apps and m-banking apps to identify the security.

A. Information Gathering and Setup

Mobile testing tools can assist organizations in automating
Android and iOS testing. The software for mobile application
testing can minimize the time required for the test and the
probability of human mistakes during testing. Varieties of
technologies are available for testers to automate their test
scripts nowadays. For the success of the objective, it is
essential to choose the right path for particular apps. Various
systems may have various risks. The key problem, for
example, would be diversion of funds in a bank application.

For object testing, authors utilized a DELL machine with
an Intel Core i7 CPU, 3.40 GHz CPU, and 6 GB RAM. The
operating system is Windows 10 professional. A virtual
machine has been installed name as VMware to create dual
boot in the computer. The testing involved the process of first
installing Kali Linux, Operating System (OS).

B. Analysis Process and Testing Object

Intruders do the test to evaluate if there are any flaws or
weaknesses that can allow the penetration and exploitations
during its operation [41]. The e-wallet applications for Android

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

699 | P a g e

www.ijacsa.thesai.org

Redmi 8 are executed to start research, to check if they are
running without any error. The study included a variation of
vulnerability scanning, code review and, most significantly,
penetration testing. AndroBugs is used to automate security-
testing tool, where MobSF, used for basic static analysis report.
Finally, MARA tools used for reverse engineering checking. In
checking mobile apps against the OWASP, MARA builds
widely used reverse engineering and research techniques to test
mobile applications [42].

The object contains e-wallet applications from leading and
growing banks in Malaysia. The platform of Google Play
Store, the official site for Android-based smartphone apps
downloaded e-wallet applications on the mobile phone. The
applications were then transmitted via a universal serial bus
serial interface to the computer. A folder was then created with
Malaysia e-wallet name, which was then dumped in the e-
wallet APK for-mat. APK extension dumped on the desktop.
All the selected applications have been security tested by
Mobile Security Framework (MobSF), MARA and AndroBugs
tool an immediate idea of where weaknesses might be found.
The tools findings seem to provide a clear understanding of
how the programs are designed and where it could lead to
potential vulnerabilities. It was beneficial as a guide for static
vulnerability analysis and to know where the weakness
available. Fig. 3 shows the selected dataset of e-wallet
programs with the analysis process.

Select Dataset

Bank issuer

B

Non-Bank issuer

N-B

Analysis type

Static

N-B 3

N-B 4

N-B 2

N-B 1

MobSF

Comparison

Results

N-B 5

B 2

B 5

B 1

B 3

B 4

MARAAndroBug

Fig. 3. Selected Testing Object for Analysis.

IV. ANALYSIS RESULT

After installation of the OS, updates and patches for the
operating system were then installed from the Linux public
repository to update the libraries that used as prerequisites for
its installation and operation. The applications were then
transferred to the computer via a universal serial bus data
cable. The applications were then analyzed one by one tools
and reports created and dumped in their respective application
folders. The result of non-banks e-wallet apps using MobSF is
showing Table VI.

Table VI shows the comparison result of select non-bank e-
wallet apps. The analysis report is divided into three categories,
such as security score, average Common Vulnerability Scoring
System (CVSS) and tracker detection. The security score refers
to the overall security results where the CVSS is an open
framework for interactive the characteristics and severity of
software vulnerabilities. Finally, tracker detection vulnerability
checks and evaluates IT network and any device linked to it
against thousands of Network Vulnerability Tests (NVTs) [43].
The most active security score in the analysis report is N-B4,
which was observed 45 percent of the time, with an average
CVSS of 7.0 and 8-tracker detection, which was the top
security score APK. The second highest positions security
score obtain from N-B3 with 40%, which CVSS rate average
6.4 with 6-tracker detection. From N-B1, N-B2 and N-B5, the
same security score has been identified which 10%
respectively. Nevertheless, in point of view their CVSS and
tracker detection are not similar to their security score. The
average CVSS of N-B1 and N-B2 are similar to 6.5 whether N-
B5 is 6.9. The tracker detection rates are 6/323, 7/323, 3/323
and 2/323.

Table VII shows the comparison result of select bank issuer
mobile apps. The most active security score in analysis report
is, B2 with 85%, which average 7.5 CVSS with 0-tracker
detection, which was the top security score APK. The second
highest positions security score obtain from B1, B3, and B4,
with same security score which 10% respectively.
Nevertheless, in point of view their CVSS and tracker
detection are not similar like their security score. The average
CVSS of B1 with 6.7, B3 is 6.6, and B4 is 6.1. Whether the
tracker detection rates are 2/319, 3/323, and 3/319. From B5
authors could not find the security score but except Average
CVSS 6.8 and Trackers Detection 8/319, respectively. The
result of banking apps using MobSF is shown in Table VII.
The analysis report of non-banking e-wallet apps is shown in
Table VIII.

TABLE VI. RESULT OF NON-BANKS E-WALLET APPS USING MOBSF

Wallet name Security Score Average CVSS Trackers Detection

N-B1 10/100 6.5 6/323

N-B2 10/100 6.5 7/323

N-B3 40/100 6.4 6/323

N-B4 45/100 7.0 8/323

N-B5 10/100 6.9 2/323

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

700 | P a g e

www.ijacsa.thesai.org

TABLE VII. RESULT OF BANKS APPS USING MOBSF

Wallet name Security Score Average CVSS Trackers Detection

B1 10/100 6.7 2/319

B2 85/100 7.5 0/319

B3 10/100 6.6 3/323

B4 10/100 6.1 3/319

B5 - 6.8 8/319

TABLE VIII. REPORT OF NON-BANKS APPS USING MARA

Wallet
name

Critical High Medium Low Info
Detection
Issue

N-B1 0 - 1 - - -

N-B2 0 - 1 - - -

N-B3 0 4 2 2 11 19

N-B4 0 6 1 2 11 20

N-B5 0 2 1 2 10 15

Table VIII shows each of the e-wallet application has 0
critical issues. From N-B4 with total 20 detection issues 6 high,
1 medium, 2 low and 11 info analysis report. In N-B3 total 19
detection issues has been collected where 4 high, 2 medium, 2
low and 11 info analysis report which the second highest. The
third positions is N-B5 with total 15 detection issues where 2
high, 1 medium, 2 low and 10 info analysis report. N-B1 and
N-B2 there is no critical issue but due to system trouble-shoot
authors could not get the exact information of both wallet. The
result of banking apps using MARA tool is shown in Table IX.

Table IX shows the comparison result of select bank issuer
mobile Apps. Each of the banking application has 0 critical
issues. From B1 total 19 detection is-sues has been collected
where 4 high, 2 medium, 0 low and 11 info analysis report.
From B3 and B5 collected a similar value total 17 detection
issues where 3 high, 2 medium, 2 low and 10 info analysis
report which the second highest, respectively. The third
positions is B5 with a total 17 detection issues where 3 high, 2
medium, 2 low and 10 info analysis report. From B4 Apps
there is no critical issue but due to system troubleshoot authors
could not get the exact information. Finally, B1 has 0 critical
issues with high threats, 2 medium and low threats along with
10 info are the most secure application compared to others. The
result of banks and non-banks reports using MARA An-
droBugs are shown in Table X and Table XI.

TABLE IX. REPORT OF BANKS APPS USING MARA

Wallet
name

Critical High Medium Low Info
Detection
Issue

B1 0 4 2 0 11 19

B2 0 0 2 0 6 8

B3 0 3 2 2 10 17

B4 - - - - - -

B5 0 3 2 2 10 17

Table X and Table XI shows below, the comparison result
of select bank and non-issuer mobile apps using AndroBugs.
Each of the application has different kind of critical issue. The
analysis report has been categorized into two part parts. From
B4 with total 6 issues which is the most critical issue found in
the bank issuer analysis report. From B1 and B5 authors
collected similar value total 5 issues which the second highest,
respectively. The third position is B3 with 3 issues.

TABLE X. RESULT OF BANKS REPORT USING ANDROBUGS

S/n Properties B1 B2 B3 B4 B5

1
Runtime Command

Checking
No No No No Yes

2
Base64 String
Encryption

No No No No No

3 SSL Security No No No No No

4 Key Store No No No Yes Yes

5 Implicit Intent Yes No Yes Yes Yes

6
SSL Implementation

Checking
Yes No No Yes No

7
SSL Connection

Checking
Yes No Yes No Yes

8

SSL Certificate

Verification
Checking

No No No Yes No

9
<Web View>/Remote

Code Execution
Yes Yes Yes Yes Yes

10

Fragment

Vulnerability

Checking

Yes No No No No

11
Android Manifest
Critical Use

Permission Checking

No Yes No Yes No

From B2 only single issues have been collected, which is
the most secure using AndroBugs analysis. From non-bank,
issuer author‘s collected total 9 issues from N-B5 which is the
most critical issue found in the analysis report. The second
highest positions are N-B2, with total 7 issues. From N-B3 and
N-B1, similar value has been collected which are total 3 issues
respectively. From N-B4, only single issues have been
collected, which is the most secure using AndroBugs analysis.

V. DISCUSSION

Mobile apps are growing increasingly, with more
consumers being able to access different forms of Android
applications availability of a wide range of open Android
markets. However, mobile apps threats are developing
especially targeted towards mission critical mobile bank
applications [44]. This study first analyze five types of bank
and nonbank issuer e-wallet products, and then focus on the
vulnerabilities and security issues based on static analysis. We
evaluate the flaws in protection, critical security, Average
CVSS against Malaysian 5 banking and non-banking e-wallet
products publicly available. In this section, will present and
analyze the outcomes of a data set security evaluation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

701 | P a g e

www.ijacsa.thesai.org

TABLE XI. RESULT OF NON-BANKS REPORT USING ANDROBUGS

S/n Properties
N-
B1

N-
B2

N-
B3

N-
B4

N-
B5

1
Runtime Command
Checking

No Yes No No Yes

2 Base64 String Encryption No Yes No No Yes

3 SSL Security No No No No Yes

4 Key Store No No No No Yes

5 Implicit Intent Yes Yes Yes No Yes

6
SSL Implementation
Checking

No No No No Yes

7
SSL Connection
Checking

Yes Yes Yes No Yes

8
SSL Certificate
Verification Checking

No Yes No No Yes

9
<Web View>/Remote
Code Execution

Yes Yes Yes Yes Yes

10
Fragment Vulnerability
Checking

No No No No No

11
Android Manifest
Critical Use Permission
Checking

No Yes No No No

In Fig. 4 presents, the summary of MobSF results of the
security tests performed on bank and non-banks e-wallet apps.
The most active security score in the analysis report is N-B4, is
45%, which averages 7.0 Common Vulnerability Scoring
System (CVSS) with 8-tracker detection, which was the top
security score application.

It is clear from the results that N-B4 is quite secure related
to the other applications. Table VIII presented the result of
banks' apps using MobSF. The most active security score in the
analysis report is B2, from which noticed 85%, which average
7.5 CVSS with 0-tracker detection, which was the top security
score APK. After the analyzing of Table VIII, found that, N-B5
application have total 15 detection issues where 2 high, 1
medium, 2 low and 01 info analysis report which is quite
secure related to the other applications is shown in Fig. 5(a)
and Fig. 5(b) shown the high security banking where B3 and
B5 are same result, respectively.

On the other hand, the low security low security apps of
banking m-apps using MARA tool is B1, which is shown in
Fig. 5 (b). Table IX shows the true seeing a report of banks'
apps using MARA. Each of the banking application has 0
critical issues. However, the B3 and B5 have 0 critical issue
with 3 high threats, 2 medium and low threats along 10 info
and 27 detection issues which is the most secure application
com-pared to others. Fig. 5(c) and (d) shown the low security
bank and non-bank apps, respectively.

(a)

(b)

(c)

(d)

Fig. 4. (a) Average CVSS of Non-banks e-wallet Apps using MobSF Tool

and (b) Non-bank e-wallet Apps Security Score using MobSF Tool and
(c) Average CVSS of Banks m-banking Apps using MobSF Tool and (d) Bank

m-Banking Apps Security Score using MobSF Tool.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

702 | P a g e

www.ijacsa.thesai.org

(a)

(b)

(c)

(d)

Fig. 5. (a) High security e-wallet apps using MARA tool and (b) High

security banking apps using MARA tool and (c) Low security e-wallet apps

using MARA tool and (d) Low security apps of m-apps using MARA tool.

VI. CONCLUSION

Mobile payment applications are very convenient, but the
problem is that most mobile payment apps are not exactly
appropriate. Companies and developers would need to limit the
addition of features and services demand and continue
protecting the apps. However, as explained in this paper, it is
quite an impossible task to protect the apps, although nothing is
100% secured, but developers at least might make it much
more difficult for hackers. This paper covers a security
assessment of five non-bank e-wallet apps and five leading
banks apps in Malaysian market. The Authors performed a
static analysis on three pen-extraction mobile application-
testing tools and compared with the Android application
among them. The analysis notice that every apps have followed
the security standard, but their security features and properties
are different in point of view of how their customer demand.
Finally, the most secure e-wallet and m-banking apps
according to the three different tools, based on their security
metrics, have been identified which is not our opinion. This
study aims to increase research efforts on the progress of e-
wallets and m-banking in Malaysia.

ACKNOWLEDGMENT

This research was funded by the Malaysia Ministry of
Education, Universiti Kebangsaan Malaysia, under grants,
KKP 2020/UKM-UKM/4/3 and FRGS/1/2021/ICT02/UKM/
02/1.

REFERENCES

[1] F. Nizam, H. J. Hwang, and N. Valaei, Measuring the Effectiveness of
E-Wallet in Malaysia, vol. 786. Springer International Publishing, 2019.

[2] H. H. Bin Kadar, S. S. B. Sameon, M. B. M. Din, and P. ‗Amirah B. A.
Rafee, ―Malaysia Towards Cashless Society,‖ Lect. Notes Electr. Eng.,
vol. 565, pp. 34–42, 2019.

[3] L. T. H. Teoh Teng Tenk, Melissa, Hoo Chin Yew, ―E-wallet Adoption:
A Case in Malaysia,‖ Int. J. Res. Commer. It Manag., vol. 2, no. 4, pp.
135–3, 2020.

[4] A. Hassan, Z. Shukur, and M. K. and A. S. A.-K. Hasan, ―A Review on
Electronic Payments Security,‖ Symmetry (Basel)., vol. 12, no. 8, p. 24,
2020.

[5] M. Salah Uddin and A. Yesmin Akhi, ―E-Wallet System for Bangladesh
an Electronic Payment System,‖ Int. J. Model. Optim., vol. 4, no. 3, pp.
216–219, 2014.

[6] S. Z. Jesús Téllez Isaac, ―Secure Mobile Payment Systems,‖ J. Enterp.
Inf. Manag., vol. 22, no. 3, pp. 317–345, 2014.

[7] M. A. Hassan and Z. Shukur, ―Review of Digital Wallet Requirements,‖
2019 Int. Conf. Cybersecurity, ICoCSec 2019, pp. 43–48, 2019.

[8] R. Kaur, Y. Li, J. Iqbal, H. Gonzalez, and N. Stakhanova, ―A Security
Assessment of HCE-NFC Enabled E-Wallet Banking Android Apps,‖
Proc. - Int. Comput. Softw. Appl. Conf., vol. 2, pp. 492–497, 2018.

[9] IBM, ―IBM Sponsored Study Finds Mobile App Developers Not
Investing in Security.‖ [Online]. Available: https://www-
03.ibm.com/press/us/en/pressrelease/46360.wss. [Accessed: 15-Nov-
2020].

[10] EcInsider, ―The e-wallet infinity war in Malaysia - Everything you need
to know about e-wallet starts here.‖ [Online]. Available:
https://www.ecinsider.my/2018/12/malaysia-ewallet-battle-landscape-
analysis.html. [Accessed: 01-Nov-2019].

[11] A. Hassan, Z. Shukur, and M. K. Hasan, ―Electronic Wallet Payment
System in Malaysia,‖ Data Anal. Manag., vol. 54, pp. 711–736, 2021.

[12] Y. Wang et al., ―Identifying vulnerabilities of SSL/TLS certificate
verification in Android apps with static and dynamic analysis,‖ J. Syst.
Softw., vol. 167, 2020.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 5, 2022

703 | P a g e

www.ijacsa.thesai.org

[13] P. Aigbe and J. Akpojaro, ―Analysis of Security Issues in Electronic
Payment Systems,‖ Int. J. Comput. Appl., vol. 108, no. 10, pp. 10–14,
2014.

[14] M. A. Kabir, S. Z. Saidin, and A. Ahmi, ―Adoption of e-payment
systems : a review of literature,‖ Proc. Int. Conf. E-Commerce, no. May
2016, pp. 112–120, 2015.

[15] Rancha and P. Singh, ―Issues and Challenges of Electronic Payment
Systems,‖ Int. J. Res. Manag. Pharmacy(IJRMP), vol. 2, no. 9, pp. 25–
30, 2013.

[16] R. Batra and N. Kalra, ―Are Digital Wallets the New Currency?,‖ 2016.

[17] M. Olsen, J. Hedman, and R. Vatrapu, ―E-wallet properties,‖ Proc. -
2011 10th Int. Conf. Mob. Business, ICMB 2011, pp. 158–165, 2011.

[18] M. A. Hassan Z. Shukur, M. K. Hasan ―An efficient secure electronic
payment system for e-commerce,‖ Computers., 9(3), 66, 2020.

[19] R. Safeena, H. Date, A. Kammani, and N. Hundewale, ―Technology
Adoption and Indian Consumers: Study on Mobile Banking,‖ Int. J.
Comput. Theory Eng., no. December, pp. 1020–1024, 2012.

[20] S. Shaju and V. Panchami, ―BISC authentication algorithm: An efficient
new authentication algorithm using three factor authentication for
mobile banking,‖ Proc. 2016 Online Int. Conf. Green Eng. Technol. IC-
GET 2016, pp. 1–5, 2017.

[21] J. Juremi, ―A Secure Integrated E-Wallet Mobile Application For
Education Institution,‖ Int. Conf. cyber Relig., 2021.

[22] J. Zhang and Y. Luximon, ―A quantitative diary study of perceptions of
security in mobile payment transactions,‖ Behav. Inf. Technol., vol. 0,
no. 0, pp. 1–24, 2020.

[23] M. H. Sherif, Protocols for Electronic Commerce, vol. 53, no. 9. 2016.

[24] OWASP, ―Owasp-Asvs,‖ no. October, 2015.

[25] A. Abraham, ―Improve security scoring of apps.‖ 2020.

[26] A. Maharjan, ―Ranking of android apps based on security evidences,‖
no. December, 2020.

[27] A. Abraham and S. Dominik, ―Mobile Security Framework.‖ 2019.

[28] V. Kouliaridis, G. Kambourakis, E. Chatzoglou, D. Geneiatakis, and H.
Wang, ―Dissecting contact tracing apps in the Android platform,‖ PLoS
One, vol. 16, no. 5 May, pp. 1–28, 2021.

[29] H. Darvish and M. Husain, ―Security Analysis of Mobile Money
Applications on Android,‖ Proc. - 2018 IEEE Int. Conf. Big Data, Big
Data 2018, pp. 3072–3078, 2019.

[30] PCI Security Standards Council LLC., ―PCI Mobile Payment
Acceptance Security Guidelines for developers,‖ Pci Dss Inf. Suppl., no.
February, pp. 0–27, 2013.

[31] Enisa, Security of Mobile Payments and Digital Wallets, no. December.
European Union Agency for Network and Information Security
(ENISA), 2016.

[32] T. McDonnell, B. Ray, and M. Kim, ―An empirical study of API
stability and adoption in the android ecosystem,‖ IEEE Int. Conf. Softw.
Maintenance, ICSM, pp. 70–79, 2013.

[33] R. Chanajitt, W. Viriyasitavat, and K. K. R. Choo, ―Forensic analysis
and security assessment of Android m-banking apps,‖ Aust. J. Forensic
Sci., vol. 50, no. 1, pp. 3–19, 2018.

[34] J. Due, ―MARA - A Mobile Application Reverse Engineering And
Analysis Framework.‖ hacking.reviews, 2017.

[35] D. G. N. Benitez-Mejia, G. Sanchez-Perez, and L. K. Toscano-Medina,
―Android applications and security breach,‖ 2016 3rd International
Conference on Digital Information Processing, Data Mining, and
Wireless Communications, DIPDMWC 2016. pp. 164–169, 2016.

[36] T. Chothia, F. D. Garcia, C. Heppel, and C. M. M. Stone, ―Why banker
bob (Still) Can‘t Get TLS right: A security analysis of TLS in leading
UK banking apps,‖ Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 10322 LNCS. pp. 579–597, 2017.

[37] E. Filiol and P. Irolla, ―(In)Security of Mobile Banking and of Other
Mobile Apps,‖ Black Hat Asia, pp. 1–22, 2015.

[38] X. Zheng, L. Pan, and E. Yilmaz, ―Security analysis of modern mission
critical android mobile applications,‖ ACM Int. Conf. Proceeding Ser.,
no. October, 2017.

[39] B. Reaves, N. Scaife, A. Bates, P. Traynor, and K. R. B. Butler,
―Mo(bile) Money, Mo(bile) Problems: Analysis of branchless banking
applications in the developing world,‖ Proceedings of the 24th USENIX
Security Symposium. pp. 17–32, 2015.

[40] D. Bassolé, G. Koala, Y. Traoré, and O. Sié, ―Vulnerability Analysis in
Mobile Banking and Payment Applications on Android in African
Countries,‖ Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, LNICST, vol.
321 LNICST. pp. 164–175, 2020.

[41] S. A. Chaudhry, M. S. Farash, H. Naqvi, and M. Sher, ―A secure and
efficient authenticated encryption for electronic payment systems using
elliptic curve cryptography,‖ Electron. Commer. Res., vol. 16, no. 1, pp.
113–139, 2016.

[42] M. G. Manoti, ―Enhancing Security of Mobile Banking and Payments in
Kenya,‖ no. November, 2016.

[43] G2, ―NNT Vulnerability Tracker,‖ 2020. [Online]. Available:
https://www.g2.com/products/nnt-vulnerability-tracker/reviews.
[Accessed: 17-Nov-2020].

[44] M. A. Hassan and Z. Shukur, ―Device Identity-Based User
Authentication on Electronic Payment System for Secure E-Wallet
Apps,‖ Electronics., vol. 11, no. 1, pp. 1–29, 2022.

[45] L. Verderame, D. Caputo, A. Romdhana, and A. Merlo, ―On the
(Un)Reliability of Privacy Policies in Android Apps,‖ Proc. Int. Jt. Conf.
Neural Networks, 2020.

[46] S. S. Majeti, B. Janet, and N. P. Dhavale, ―Analysis of Inappropriate
Usage of Cryptographic Primitives in Indian Mobile Financial
Applications,‖ Lecture Notes on Data Engineering and Communications
Technologies, vol. 56. pp. 211–220, 2021.

