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Abstract—In this paper, we improve the performance of Deep 

Learning (DL) by creating a robust and efficient Convolutional 

Neural Network (CNN) model. This CNN model will be subjected 

to detecting and recognizing traffic signs in real-time. We apply 

several techniques; the first is pre-processing, which includes 

conversion of color space RGB, then equalization and 

normalization histogram of the image dataset according to 

Computer Vision (CV) tools. The second is devoted to Artificial 

Intelligence (AI), which needs the right choice of a neural layer 

such convolution layer, or dropout layer, with powerful 

optimizer as Adam and activation functions such as ReLU and 

SoftMax. Also, we use the technique of augmentation dataset 

which characterizes by the function of batch size for each epoch. 

The results obtained is very satisfactory, the prediction at the 

average is equal to 98%, which encourages this approach to the 

integration in Intelligent Transportation Systems (ITS) in the 

automotive sector. 
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I. INTRODUCTION 

The detection and recognition of traffic road signs are done 
in different ways, depending on the methodology or strategy 
followed by the researcher. In general, the detection and 
recognition methods can be summarized in three classes. The 
first method can be based on color segmentation (red, blue, 
yellow) [1]. In the second method, we can use the geometry of 
objects (Triangular, Square, Rectangle)[2]. Finally, methods 
that use artificial intelligence (AI), specifically DL of CNN 
architecture [3]. For road safety, we use ITS systems [4]. This 
system is devoted to detecting and recognizing all traffic road 
signs by identifying them from other objects that existed in 
environments (a passage, animals, cars, trucks, buildings……) 
in real-time[5]. These systems are used in Advanced Driving 
Assistance Systems (ADAS) [6][7] and are based on a digital 
camera for perception road environment. 

There is a standard technique for detecting and recognizing 
traffic road signs. For example, the scale-invariant feature 
transform (SIFT) [8][9], the local binary patterns (LBP) [10], 
and the histogram of oriented gradients (HOG) [11]. Also, we 
find advanced techniques to classify a different object, in 
which the feature vectors are extracted normally from the 

training dataset, for example, the support vector machine SVM 
[12], VGG16 [13], and ImageNet [14]. In recent years, we 
have been using the CNN model for complex classification 
situations [15]. The CNN architectures are the best models; 
they have the same analysis vision as the human being. [16]. 

To guarantee a reliable and effective model in the decision, 
most of the research work in the field of AI often plays on the 
following parameters: optimizer [17], accuracy function [18], 
loss function [19], dataset [20], architectures [21]. 

In this paper, we play with several parameters to obtain a 
robust and efficient model for traffic sign detection and 
recognition. The first thing we will examine is the effect of 
normalizing and equalizing the images in the traffic sign 
dataset on model training. So according to the result of the first 
step, the second step is choosing an optimal fitting function 
(Simple, Generator) for deploying the best function between 
them. Finally, we will use the data augmentation technique by 
discussing the effect of batch size function during model 
training. All this is to ensure that the proposed ITS system 
detects and recognizes signs well in advance so the right 
decisions can be made as quickly as possible. 

In our work, we will test our approach based on Computer 
Vision (CV) and Artificial Intelligence (AI), for the detection 
and recognition of the different traffic road signs in real-time. 
The approach results can be exploited by Intelligent Transport 
System (ITS) to assist the driver. The paper is organized as 
follows: Section 1 introduces the most techniques used for the 
detection and recognition of road signs. Section 2 is dedicated 
to related work, and then Section 3 presents a general view of 
the approach proposed. Section 4 is for methodology. Section 5 
is devoted to experimentation and evaluation of the approach 
proposed. Section 6 with Section 7, is for the real-time 
implementation to recognize traffic road signs. The last section 
is devoted to the conclusion. 

II. RELATED WORK 

Most of the developed applications that have high accuracy 
in object detection and recognition are based on the RNN and 
CNN architecture [22]. Nevertheless, depending on the 
available data or the problem to be solved, one type of neural 
network may be more suitable and used than another for a 
different problem than the one it is used. Generally, a 
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Recurrent Neural Network (RNN) is used for text processing 
and speech recognition as illustrated in Table I. In this regard, 
convolution networks are applicable for object recognition in 
images and can specifically identify the shape of objects as 
illustrated in Table II. In this work, we will use the CNN 
architecture which is the most efficient neural network model 
concerning the available dataset. 

A. The Constraints of the Traffic Sign Detection and 

Recognition Algorithms 

Detection and recognition based on color segmentation are 
ranked as one of the fastest methods  [41], applied for example 
to the recognition of road lanes, traffic signs, and vehicle 
license plates. Most algorithms use this technique to extract 
regions of interest, by setting specific filters to recognize 
apparent objects [42]. But this method can meet several 
problems such as weather conditions (snow, rain...), time of 
day (morning, night...) which has a great effect on the 
appearance (light reflection on the signs), or object distance 
(between the camera and road sign), lead to a false object 
detection recognition. 

Some authors apply a more reliable method, it is the 
detection and recognition of the geometry of the road signs 
[43], that the detection is made on the basis of the objects 
contours in the image. To avoid any overlapping with the 
objects existing in the road environment by a structural 
analysis of the road signs [44]. 

TABLE I. MOST RNN ARCHITECTURE APPLICATIONS 

Applications RNN Architecture Reference 

Text processing 

Efficient RNN Text 

Classification   

J. Du [23] 
H.Chen [24] 

Z. Parcheta [25] 

Medical Text 
Classification Framework 

X. Li [26] 
M. Ibrahim [27]  

Speech recognition 

Anticipation-RNN to 

Interactive Music 

Generation 

F. Nielsen [28] 
D. Bisharad [29] 

Sentiment Analysis 
A. Onan [30] 
J. Huan [31] 

TABLE II. MOST CNN ARCHITECTURE APPLICATIONS 

Applications CNN Architecture Reference 

Image recognition 

Traffic sign 

recognition systems  

 Á. Arcos-García [32] 

Á. Arcos-García  [33] 

Lane Detection in 

Traffic Scene 

J. Li      [34] 
J. Kim  [35] 

J. Tang [36] 

Form recognition 

CNN Design for Real-
Time Traffic Sign 

Recognition  

A. Shustanov [37] 

F. Shao [38] 

CNN Network for 

Real-life Traffic Sign 

Detection  

T. Yang [39] 
Á. Arcos-García [40] 

B. Deep Learning and Neural Network 

The learning methods are among the techniques that use 
DL [45], this method has made a revolution in the industrial 
sector, especially in the embedded systems in the automotive 
sector [46]. This method is robust in object detection and 
recognition compared to the geometric and colorimetric 
methods, which are among the classic methods that suffer from 
many factors. 

The creation of CNN models was based on neural 
networks. Many hidden layers of the neural network serve to 
produce CNN. These neuron layers are grouped into a tree 
category of layers, input layers, hidden layers, and output 
layers. Firstly, the feature vectors dataset is accepted from the 
input layer and has a bias neuron. Secondly, the liaison 
between input and output is hidden layers that use the neuron 
bias. Finally, the output of neural networks is not used for the 
bias neuron. The output from a single neuron is calculated 
according to the following equation (1). 

 (   )   (∑ (       )              (1) 

 The input vector (x) represents the feature vector. 

 The vector θ represents the weights. 

 The ɸ is the transfer/activation function. 

III. THE APPROACH DESCRIPTION 

The approach that will be proposed to integrate it into an 
ITS system, is essentially based on the creation of a CNN 
architecture to guarantee road safety for both passengers and 
drivers of vehicles. Therefore, our approach is based on two 
processes, the detection process and the recognition of traffic 
signs as shown in Fig. 1. The detection process uses camera-
based CV techniques to receive images to ensure that traffic 
signs are detected. When the signs are detected, the recognition 
process is activated using AI techniques. We will use a CNN 
architecture to extract the characteristics of the road signs. To 
achieve our objective, the deep training will be done on the 
German Traffic Sign Recognition Benchmark (GTSRB) 
dataset. We arrive at the end to identify each detected by the 
classes that belong to the prediction probability. 

The strategy we will follow to have an efficient CNN 
architecture is summarized in the following points: 

 Transformation techniques (equalization and 
normalization histogram). 

 Creation of CNN architecture (convolution layers, and 
max-pooling layers) 

 DL of the CNN architecture with simple fit function and 
generator fit function. 

 Testing the performance of the CNN model in real-time 
detection and recognition of traffic road signs. 
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Fig. 1. General View of Approach Applicable for the ITS System. 

IV. METHODOLOGY 

A. Transformation Techniques for Dataset 

a) Visualization dataset: For our implementation, we use 

a dataset of the German traffic sign Benchmark [47], composed 

tree part, training data, validation data, and testing data. The 

training set uses 80% of the data and the validation set uses 

20%. The GTSRB is composed of 43 traffic road sign classes, 

34799 images for training data, 4410 images for validation 

data, and 12630 images for testing data, as illustrated in Fig. 2. 

 

Fig. 2. Visualization of GTSRB Training Datasets. 

b) Normalization of a histogram: Normalizing a 

histogram is a technique consisting of transforming the discrete 

distribution of intensities into a discrete distribution of 

probabilities [48]. To do this, we need to divide each value of 

the histogram by the number of pixels. In our case, the 

normalization is done by dividing all pixels in an image by 

255. 

c) Equalization of a histogram: Histogram equalization 

is an image processing method to adjust the contrast of an 

image, by modifying the intensity distribution of the histogram 

[49]. Equalization processing is based on the use of the 

cumulative probability function. This function is a cumulative 

sum of all the probabilities in its domain and is defined by 

equation (2). 

   ( )  ∑  ( )              
                (2) 

The idea of this processing is to give the resulting image a 
linear cumulative distribution function. 

B. Convolutional Neural Networks (CNNs) 

Domain CV has been affected by AI mainly by CNNs. The 
neural network architecture was introduced by LeNet-5 [50]. 
The next step is the description of each layer type used in the 
CNN model. 

a) Convolution layers: The first layer of analysis is the 

convolution, it allows us to detect the characteristics of each 

visual element: circles, lines, colors, edges ..., this work is done 

by internal filters in the layer. If the number of filters is very 

well brought, they have more features for better accuracy.  The 

filters have a square shape that sweeps over the image from the 

right to the left. Then there is a very important parameter, 

which is the width and length of the filter that normally affects 

the number of features extracted from the images. The single 
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output matrix of the convolution layer is described in equation 

(3). 

    (∑     
 
             )                     (3) 

Img : Input matrix. Ker: Kernel matrix.  

bj: Bias. g: Non-linear activation. 

Each set of kernel matrices represents a local feature 
extractor that extracts regional features from the input matrices. 
Optimizes neural network connection weights, and can be 
applied here to train the kernel matrices, biases as shared 
neuron connection weights. 

b) Max pooling layers and dropout layers: Putting the 

Max-Pooling layers belong after every convolution layer. It 

serves for re-sizing a picture of 2D in a smaller dimension [51].  

Most CNN frameworks implement dropout as a separate layer 

to avoid the production in DL the overfitting. Dropout layers 

function like a regular, densely connected CNN layer. The only 

difference is that the dropout layers will periodically drop some 

of their neurons during training. 

c) Activation function: However, current deep neural 

networks mainly use the following activation functions, each 

function has a role to play in a neural network.  For the output 

of the hidden layers, we use the ReLU (Rectified Linear Unit) 

function [52]. The ReLU function is calculated as follows in 

equation (4). 

 ( )        (   )                                  (4) 

The ReLU activation function [53][54] was one of the key 
improvements in CNN applications, that make deep learning. 
Unfortunately, the ReLU function is not differentiable at the 
origin, which makes it hard to use with backpropagation 
training. ReLU for rectified the feature map, to find the final 
value positive and deleted the negative value. 

The output of classification CNN: We implemented 
SoftMax. The SoftMax is calculated as follows in equation (5). 

  ( )  
   

∑  
  

       
                                     (5) 

The SoftMax function is only useful with more than one 
output neuron. It guarantees that the sum of all output neurons 
is equal to 1.0. It is therefore very useful for classification, 
where it indicates the probability that each of the classes is the 
correct choice. 

d) Optimization function: Adam optimizer is very 

effective [55]. Adam estimates the first mean and second 

variance moments to determine the weight corrections. Adam 

begins with an exponentially decaying average of past 

gradients (m) described in equation (6). 

          (    )                                         (6) 

   : the gradient at time t. 

This average accomplishes a similar goal as a classic 
momentum update; however, its value is calculated 
automatically based on the current gradient (gt). The update 
rule then calculates the second moment (vt) in equation (7). 

          (    )  
                                       (7) 

The values mt and vt are estimates of the first moment (the 
mean) and the second moment (the uncentered variance) of the 
gradients respectively.  1 and  2:  are exponential decay rates. 
Adam is very tolerant of the initial learning rate (η) and other 
training parameters. Default values of β1=0.9, β2=0.999, and 
η=10

-8
 [45]. 

C. CNN Architecture 

We have a dataset of dimensions (32,32,3), and we will 
perform a conversion from RGB color space to gray level. The 
input images of our architecture will have dimensions 
(32,32,1). Table III presented the architecture of CNN in detail, 
type of layers, output shapes, and activation functions. The 
layers with their corresponding type are shown, denoting the 
characteristics used. Then implementation of CNN in CPU 
takes more time because we have a dataset of images that are 
more difficult to execute. However, the faster implementation 
we propose to use GPU. 

TABLE III. PROPOSED CNN ARCHITECTURE 

Layer Type 
Output 

shape 
param Activation 

Conv2d_1 Conv2D 
(None, 28, 
28, 60) 

1560 ReLU 

Conv2d_2 Conv2D 
(None, 24, 

24, 60) 
90060 ReLU 

Max_pooling2d_1 Max_pooling2d 
(None, 12, 

12, 60) 
0 N/A 

Conv2d_3 Conv2D 
(None, 10, 
10, 30) 

16320 ReLU 

Conv2d_4 Conv2D 
(None, 8, 

8, 30) 
8130 ReLU 

Max_pooling2d_2 Max_pooling2d 
(None, 4, 

4, 30) 
0 N/A 

Dropout_1 Dropout 
(None, 4, 

4, 30) 
0 N/A 

Flatten_1 Flatten 
(None, 

480) 
240500 N/A 

Dense_1 Dense 
(None, 
500) 

0 ReLU 

Dropout_2 Dropout 
(None, 

500) 
21543 N/A 

Dense_2 Dense (None, 43)  Softmax 

Total params: 378,023 

Trainable params: 378,023 

NON TRAINABLE PARAMS: 0 

V. EXPERIMENTATION AND EVALUATION 

The results are implemented in ASUSTek Computer, 
processor intel® Core™ i7-7500 CPU @2.70GHz 2.90GHz, 
Memory installed (RAM): 8,00 Go, exploitation System 64 
bits, processor 64 bits Systems Model: X541UJ, GPU NVIDIA 
GeForce 920M using the TensorFlow, Keras, and OpenCV 
libraries. 

A. Simple Fit Function 

The training of the proposed CNN model requires two 
essential elements, the training data, and the training labels. For 
the training, we will use the fit function of the Keras library. 
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The number of epochs is the number of times the model will 
run through the data. The more epochs we run, the more the 
model will improve, up to a certain point. We started our 
model for 50 epochs with a batch size set to 32. We will also 
train the dataset with equalization and normalization of the 
histogram. Thus, the training without equalization and 
normalization will be noted as Method 1, and the training with 
equalization and normalization will be noted as Method 2. 

We can visualize in Fig. 3 in the accuracy curve, a drop 
during the training of the data in 2 steps for 50 and 100 epochs. 
But for the loss curve, we have a huge increase in the error 
value. So, method (1) leads us to overfit. We can deduct from 
Fig. 4 that we don’t have any underfitting or overfitting in the 
accuracy curve, we can easily observe that the increase in the 
number of epochs did not disturb the learning stability. The 
same thing for the loss curve, we have a very remarkable 
degradation of the error values compared to the curve of 

method (1). Equalization and normalization can be used 
almost. However, this method (2) shows negligible effect loss 
and we have the full precision of our network that shows a 
significant improvement. 

A comparison of the performance in Table IV sows 
accuracy function and loss function. We can conclude from 
Table IV which contains tests accuracy and loss for Method (1) 
and Method (2). It is necessary to equalize and normalize. The 
equalization is served to adjust the contrast in the image’s 
dataset. For the normalization, it allows making training faster 
and the loss becomes more circular symmetric. The next step is 
to change the simple fit function by using a fit generator, we 
visualize if does good predictions and evolution of accuracy 
with a loss function. The equalization and normalization 
algorithms result in improved performance of CNN 
classification. 

 
(a)    (b) 

Fig. 3. Method (1): (a) Training and Validation Accuracy, (b) Training and Validation Loss. 

 
(a)          (b) 

Fig. 4. Method (2): (a) Training and Validation Accuracy, (b) Training and Validation Loss. 
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TABLE IV. PERFORMANCE COMPARISON OF METHOD 1 AND METHOD 2 

Method Model 
Fit 

Function 

Learning 

Rate 

Loss 

Function 
Optimizer 

Train 

Dataset 
Epochs 

Test 

Accuracy 

(%) 

Test 

Loss  

(%) 

M
e
th

o
d

 1
 Without 

Equalization 

and 

Normalization 

images Datasets 
CNN Simple 10-2 

Categorical 

Cross-

Entropy 

Adam 34799 

50 94.63 44.11 

100 78.21 35.09 

150 64.18 5.76(>100%) 

M
e
th

o
d

 2
 With 

Equalization 

and 

Normalization 

images Datasets 

50 96.43 17.65 

100 96.19 25.48 

150 96.52 42.29 

B. Fit Generator Function 

We propose to use the fit generator function to accept the 
data sets, perform backpropagation, and update the weights in 
our model. This function has a hyperparameter, it is the 
number of steps per epoch, its value as the set of servant 
landmarks becomes divided by the batch size. It is based on an 
infinite loop, which must not return empty or exit. However, all 
researchers calculate the value of steps per epoch as the total 
number of training data divided by the batch size of training 
data images. 

So, the idea of our experiment is to use method 2 from the 
previous section. Method 2 will be driven by the generator 
fitting function with a batch size of 32. We will compare 
different optimizers (Adam and SGD) and the loss function 
(Categorical cross-entropy, and Mean squared error). We fixed 
parameters learning rate in 10

-2
 and epochs in 50. 

In Table V, when the loss function uses categorical cross-
entropy, we have a high prediction score with a low loss score. 
Now we improved the model to get the lowest loss score. We 
got the best scores with the Adam optimizer and the categorical 
cross-entropy function, for 97.11% accuracy and 11.32% loss. 
Moreover, the idea is now to improve the accuracy score. 

As we can see in Fig. 5, using the fit generator function in 
the training model the objective is achieved, at 90% we control 
the situations for not have the overtraining our DL models. The 
assumptions are therefore correct, we using all of the datasets 

at each epoch. We need to choose a batch size and steps per 
epoch which multiply to give a total number of samples. 
Usually, it will be a resource. If memory is a problem, we need 
to reduce the batch size until we can adapt a batch on a GPU. 
Note that this implementation also allows us to use the 
multiprocessing argument of a fit generator, where the number 
of threads specified in workers corresponds to those which 
generate batches in parallel. A fairly high number of workers 
ensure that the calculations performed on the GPU are 
managed efficiently, or in other words, the bottleneck of the 
whole training process will be due to the propagation 
operations. In our case, we would probably set batch size the 
desired amount; we change it only if you want the model to not 
use all the data for each epoch which deflects the definition of 
the word epoch. 

TABLE V. EXPERIMENT RESULTS OF OPTIMIZER AND LOSS FUNCTION 

Loss 

function 
Model 

Fit 

Function 
Optimizer 

Test 

Accuracy 

(%) 

Test 

Loss 

 (%) 

Categorical 

Cross-
Entropy 

CNN Generator 

SGD 86.74 46.27 

Adam 97.11 11.32 

Mean 

Squared 

Error 

SGD 01.16 02.27 

Adam 97.08 12.12 

 
(a)                              (b) 

Fig. 5. (a) Training and Validation Accuracy, (b) Training and Validation Loss. 
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VI. DISCUSSION 

We introduce one more technique to improve the model 
training process data augmentation. This technique creates new 
data for our CNN model to use during the training process. 
This is done by taking our existing datasets and transforming 
or altering the images in useful ways to create new images. 

A. Image Data Generator Function 

We can have a typical sign image such as this STOP sign 
image, taking this image and transforming it to create a 
different image representing the same stop sign. The 
transformation could be rotation or simply zooming into the 
image. Also, could even be a combination of both these 
transformations. These newly created images are referred to as 
augmented images because they essentially allow us to 
augment our dataset by adding them. The data augmentation 
technique is useful because it allows our model to look at each 
image in our dataset from a variety of different perspectives. 
This allows it to extract relevant features more accurately and 
allows it to attain more feature-related data from each training 
image. This is especially the case for our traffic sign datasets 
because we have a small dataset (32x32) and a large number of 
classes. This means that certain classes have very few 
proximately only 200 training in the Fig. 2. It can benefit our 
traffic sign recognition model. 

We apply the five following transformations with shift 
range, height shift range, zoom range share, and a rotation 
range. Five transformations will add sufficient variety to 
GTSRB datasets and will allow the training process to be much 
more effective. The first transformation is with shifts, this 
refers to a horizontal translation in the image which will cause 
our images to be centered, and this will help our CNN model 
adapt to test images that aren’t necessarily going to be 
centered. The range can be defined in two ways, if the range 
value is defined as a number between 0 and 1, then it refers to 
the fraction of the image that can be shifted. A value of 0.1 
would simply imply that the maximum horizontal shift possible 
is 10 percent of the width of the image.  The images with only 
horizontal translation can be similar. So, to have a difference 
between the generated, we apply a second technique is a 
vertical translation. The range value is defined in much the 
same way and for that reason; the value of vertical translation 
is 0.1 (10%). 

For zoom transformation, can be either zoom out or into the 
image. The degree of zoom can be defined with a float value 
between 0 and 1. While the maximum outer zoom is defined by 
one minus the float value and the maximum zoom is defined by 
a 1 plus the flow value. We will use a float value of 0.1 which 
means that we can zoom as far as 0.1 eight’s and zoom in as 
close as 0.2. Next, we have the shear transformation in plane 
geometry a shear mapping is a linear map that displaces, each 
point in a fixed direction by an amount proportional to its side 
and distance. The line that is parallel to that direction, possible 
in both the x-direction and the y-direction. This transformation 
is defined using shear intensity which simply refers to the 
magnitude of the shear, angle in degrees as seen in the image 
above. We apply a small magnitude of shear to be effective, 
using a value of 0.1. The last transformation is the rotation; this 
transformation is a bit more intuitive it simply rotates an image 

by a certain value of degrees. This value can be defined using 
an integer value, in our case, we will use 10. These 
transformations are simply applied to stop signs as shown in 
Fig. 6, which will then be applied to the GTSRB dataset. 

B. Batch Size Function 

First, we declare a batch size is equal to 32 which mean that 
our image generator will create a batch of 32 images at a time 
for our CNN model to use our next argument as illustrated in 
Fig. 7. Also, the steps per epoch this parameter essentially 
refers to the number of batches. The steps per-epoch argument 
must specify the number of batches of samples comprising one 
epoch. In our case, the original dataset has 34799 images and 
the batch size is 32. Then a reasonable value for steps per 
epoch when fitting a model on the augmented data might be 
ceil (34799/32), or 1087 batches. So, we fix the value of the 
steps per epoch in 1000. 

C. Experimental Results 

We are fixed step pre-epochs to 1000, we switch the value 
of epochs between 50 and 150, we behold augmentation 
accuracy the same time value loss has diminution. We fit and 
evaluate all these models in different batch sizes (32, 64, 128, 
and 256) using the same procedure above of optimizer Adam 
and the same value of steps pre-epochs with different epochs, 
found through some minor experimentation. The model is 
evaluated, reporting the classification accuracy on the test sets 
between 96.86% and 98.01%. We can specify the results may 
vary given the stochastic nature of the training algorithm. 
Table VI demonstrates the effect of batch size, after testing 
very hard which took an enormous time to find it up to 
incredible values. When we have for batch size is 256, we have 
a precision in 50 epochs of 98,01% which is very interesting, 
and also a remarkable reduction in the function error of 
09.15%. The same thing for size 100 epochs has values for the 
two 97.99% and 09.11%. 

                             
  Original Image                  Random Rotation         Random Zoom 

                             
Horizontal Shift                  Vertical Shift               Shear Range 

Fig. 6. Different Transformation for Dataset Augmentation. 

 

Fig. 7. The Batch of the Training Dataset GTSRB. 
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TABLE VI. FLOW DATA FOR BATCH SIZE FUNCTION 

Batch 

Size 
Optimizer 

Step pre-

epochs 
Epoch 

Test 

Accuracy 

(%) 

Test 

Loss 

(%) 

 

32 

 

Adam 1000 

50 97.15 10.94 

100 97.11 11.32 

150 96.86 14.16 

64 Adam 1000 

50 97.18 11.90 

100 97.04 12.28 

150 97.69 09.25 

128 Adam 1000 

50 97.38 11.02 

100 97.85 10.74 

150 97.94 09.68 

256 Adam 1000 

50 98.01 09.15 

100 97.99 09.11 

150 97.83 10.84 

In Fig. 8, we can see the validation converges to above 
99%. A significant improvement is shown over our previous 
CNN model. This might be our modification that was pretty 
effective. We have a much smaller gap and training accuracy 
as well as our validation loss and accuracy, respectively. This 
demonstrates consistency in our training and a better-trained 
model and we now finish our model training with a validation 
accuracy of over 98 % and training accuracy. This is all very 
good to see and shows our augmentation technique was 
effective. The model will not learn complex patterns and we 
can avoid overfitting, we use more dropout layers in our 
architecture and check its performance. So, the augmentation 
dataset after performing histogram normalization and 
equalization, the model learned the data better, and the 
accuracy of the set improved. Now there is just one more test 
that our model needs to pass and that is classifying images 
from the test dataset to predict a couple of them correctly. So, 
we'll start by testing out the image not seen before for our CNN 
model. 

D. Analyses Performance of a Model Trained 

We define several measures based on the confusion matrix, 
to quantify the performance of a classifier from different points 
of view: Precision by class, average precision, Recall by class, 
average recall, F-score by class, and f-score average. 

a) Precision of classification: The accuracy of a 

classifier concerning a certain class in other words, about a 

certain modality of the variable to be predicted, is measured as 

the proportion of individuals, among all those for whom the 

classifier predicted this class, who belong to it, exposed in this 

equation: 

     
  

     
                                           (8) 

   :(True Positive) Element of the class correctly predicted. 

FP: (False Positive) Element of the class badly predicted. 

The overall means of the precision over all the classes i can 
be evaluated by the macro-average which first calculates the 
precision on each class i followed by a calculation of the 
average of the details on the n classes based on this equation: 

          ∑
  

 

 
                                   (9) 

  : precision each class i.    : number of classes. 

b) Recall of classification: The recall of a classifier with 

a certain class is measured, like the proportion of individuals, 

among all those who belong to this class, for which the 

classifier predicted this class. 

     
  

     
                                           (10) 

The global averages of the recall over all of the classes i 
can be evaluated by the macro-average which first calculates 
the recall over each class i followed by a calculation of the 
average of the reminders over the n classes: 

         ∑
  

 

 
                                        (11) 

  : recall each class i.   : number of classes. 

 

Fig. 8. Accuracy and Loss Curves of Epochs with a Batch Size of 256. 
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c) F-score of classification: We can summarize the 

recall precision measurements to a class in a single indicator, 

by calculating the harmonic mean: 

            
  (     )

     
                      (12) 

  : precision each class i.   : precision each class i. 

The average over each class of these indicators gives global 
indicators on the quality of the classifier. 

         
  (                )

                
                           (13) 

         : The average precision of all classes. 

      : The average recall of all classes. 

E. Confusion Matrix 

The Confusion Matrix identifies the classes of signs and 
also gives the number of times it gets the confused class to 
identify the class from another in Fig. 9. Most of the color is 
diagonal, but there are still some annoying spots somewhere. 
When we narrowly look at the confusion matrix, we see that 
the classes [0] have very less respectively all classes, but it’s 
minimized for other classes. The diagonal observations are the 
true positives of each class and other non-diagonal 
observations are incorrect classifications of the model. 

F. Classifier Metrics 

A Classification report is used to measure the quality of 
predictions from a classification algorithm. We can see in the 
Table VII, the model has the as recall and precision are 
calculated for individual classes, have a good score of all the 
class of traffic road signs. We use macro or micro or weighted 
scores of recalls, precision, and F1 score of a model for 
multiclass classification problems have a higher score is 98% 
this very satisfied. 

 

Fig. 9. Confusion Matrix Epochs 100 and Batch Size 256. 

TABLE VII. CLASSIFIER REPORT FOR THE CNN MODEL 

Class names precision recall 
f1-

score 
support 

Speed limit (20km/h) 0.98 1.00 0.99 60 

Speed limit (30km/h) 0.99 1.00 0.99 720 

Speed limit (50km/h) 0.99 0.99 0.99 750 

Speed limit (60km/h) 0.99 0.94 0.96 450 

Speed limit (70km/h) 1.00 0.98 0.99 660 

Speed limit (80km/h) 0.95 0.99 0.97 630 

End of speed limit (80km/h) 0.99 0.90 0.94 150 

Speed limit (100km/h) 1.00 1.00 1.00 450 

Speed limit (120km/h) 1.00 1.00 1.00 450 

No passing 1.00 1.00 1.00 480 

No passing for vechiles over 

3.5 metric tons 
1.00 1.00 1.00 660 

Right-of-way at the next 

intersection 
0.98 0.96 0.97 420 

Priority road 1.00 0.99 1.00 690 

Yield 1.00 0.99 1.00 720 

Stop 1.00 0.99 0.99 270 

No vechiles 1.00 0.97 0.98 210 

Vechiles over 3.5 metric tons 

prohibited 
0.99 1.00 1.00 150 

No entry 1.00 0.97 0.99 360 

General caution 0.99 0.89 0.94 390 

Dangerous curve to the left 0.98 1.00 0.99 60 

Dangerous curve to the right 0.98 1.00 0.99 90 

Double curve 0.85 0.78 0.81 90 

Bumpy road 1.00 0.93 0.96 120 

Slippery road 0.98 1.00 0.99 150 

Road narrows on the right 0.99 0.98 0.98 90 

Road work 0.98 0.97 0.97 480 

Traffic signals 0.91 0.98 0.95 180 

Pedestrians 0.89 0.95 0.92 60 

Children crossing 0.99 1.00 1.00 150 

Bicycles crossing 1.00 0.99 0.99 90 

Beware of ice/snow 0.89 0.95 0.92 150 

Wild animals crossing 1.00 1.00 1.00 270 

End of all speed and passing 

limits 
1.00 0.98 0.99 60 

Turn right ahead 0.96 1.00 0.98 210 

Turn left ahead 0.99 1.00 1.00 120 

Ahead only 1.00 1.00 1.00 390 

Go straight or right 0.99 1.00 1.00 120 

Go straight or left 0.97 0.98 0.98 60 

Keep right 1.00 0.97 0.98 690 

Keep left 1.00 0.98 0.99 90 

Roundabout mandatory 0.85 0.93 0.89 90 

End of no passing 0.98 1.00 0.99 60 

End of no passing by vechiles 

over 3.5 metric tons 
0.95 0.87 0.91 90 

micro avg 0.98 0.98 0.98 12630 

macro avg 0.98 0.97 0.97 12630 

weighted avg 0.99 0.98 0.98 12630 

samples avg        0.98 0.98 0.98 12630 
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VII. TESTING THE MODEL 

A. Test with the Test Dataset 

A remarkable performance is illustrated in Fig. 10.  Now 
we'll test for test datasets, we look reaction to our model, to see 
where the fails. We tried to visualize the class predictions of 
the test images, it is relevant to have good results, all the 
images were well classified, and the curve shown next to each 
image represents the class of the images among the 42 classes, 
when we have the color blue and a single peak in the curve 
means the image has been put in the right place without any 
errors. 

B. Testing the Proposed CNN Model in Real-Time 

In this section, we will present and evaluate the results of 
our approach. Traffic road signs that appear in video sequences 
are often detected. More details on the video sequences are 
given in Table VIII. In general, for all performance indicators, 
our proposed approach outperforms other object detection 
algorithms by achieving up to 100% accuracy. Our CNN 
model metric value is often higher than in the results of 
previous work. For the video sequences, our algorithm 
surpasses the good probability of prediction and classes of 
Traffic Road signs by the method. This shows that using a 
robust appearance CNN model achieves better results. It can 
also be observed that the CNN precision value obtained for the 
video sequence is higher than that obtained by the approach 
with a difference between 97.56% and 100%. 

 

Fig. 10. GRTSB Test Datasets. 

TABLE VIII. TEST OF NEW IMAGES IN REAL-TIME 

Traffic Road Signs Recognition Classification 
Prediction 

(%) 

 

Class Number: [17]  

No Entry 

 
97.56% 

 

Class Number: [12]  

Priority Road 

 
99.15% 

 

Class Number: [5]  

Speed limit (80km/h) 

 
98.4% 

 

Class Number: [14]  

STOP 
100% 

 

Class Number: [34] 

Turn let ahead 
 

Class Number: [33] 

Turn right ahead 
 

100% 
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VIII. CONCLUSION 

In this paper, we proposed a methodology for the 
construction robust CNNs model. We talked about the 
problems associated with the detection and recognition of 
traffic road signs in real-time. We also demonstrated how using 
the right tools and techniques helps us in developing robust 
CNN models. These CNNs can guarantee road safety in real-
time. We also try other pre-processing techniques to further 
improve the model's accuracy (equalization and normalization 
histogram).  The step of adding augmentation data improved 
the performance of our deep learning CNN model. We are 
curious about how much the accuracy can be improved based 
on adding such simple transformations. We think these results 
could further be used in the development of automotive 
systems, such as intelligent transportation systems (ITS). All 
this is for the safest roads; we try in the future to get better 
performance and optimist. It is also very interesting to note that 
the proposed CNN model reaches 98% accuracy using 
NVIDIA's GPU processor, which makes them feasible for real-
time traffic sign recognition. 

In future work, we plan to study other neural network 
architectures that have been shown to be optimistic for traffic 
sign detection or classification. In addition, we will attempt to 
employ these networks in advanced in-vehicle platforms 
applicable to intelligent transportation systems to reveal 
valuable information that will help drivers make the right 
decisions in the real world. 
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