
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

Relational Deep Learning Detection with
Multi-Sequence Representation for Insider Threats

Abdullah Alshehri
Department of Information Technology

Faculty of Computer Science and Information Technology
Al Baha University

Alaqiq 65779-7738, Saudi Arabia

Abstract—Insider threats are typically more challenging to
be detected since security protocols struggle to recognize the
anomaly behavior of privileged users in the network. Intuitively,
an insider threat detection model depends on analyzing the audit
data, representing trusted users’ activity streams, on recognizing
malicious behaviors. However, the audit data is high dimensional
data in that it presents n dependent streams of activities where
it establishes a complex feature extraction. In this context, the
dependent streams represent user activities where each activity
is represented by an ordered set of real variables that pertain
to a specific occurrence, such as log-in records. As a result,
multiple actions can be represented simultaneously, with one
or more values being recorded at each timestamp. Moreover,
the relations between dependent streams are typically neglected
while detecting the anomaly behavior. Ideally, relation learning
is commonly considered to recognize occurrence patterns in
streaming data. Thus, the latent relations are thought to have
insight for the accurate detection of anomaly behavior concerning
insider threats. This study introduces a novel model to detect
insider threats by representing audit data as multivariate time
series to explicitly learn the existing inter-relations between
activity streams using a Recurrent Neural Network (RNN). The
model considers learning the latent relationships to effectively
extract features for modeling the behavior profile where anomaly
behavior can be detected accurately. The evaluation, using the
CERT dataset has shown that the proposed model outperforms
the comparator approaches to insider threats detection with AUC
of 0.99.
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I. INTRODUCTION

With the rapid advancement and growth in networking
technology, cyber threats have become a significant issue for
numerous companies and organizations worldwide [1]. A cyber
threat can mainly be realized by breaching network security.
Ideally, the primary option for malicious intent to breach
network security is by using a malware [2]. In this context, the
malware contravenes the secured network by an external mali-
cious component such as rootkits, Trojan horses, viruses, and
worms [3]. Thus, the ideal solution to secure the network from
such external threats is by proposing a perimeter defense, e.g.,
firewalls, antivirus software, and intrusion prevention/detection
systems.

However, a cyber attack can be triggered from an internal
source in the network; it is well known as an insider threat
[4]. A typical form of an insider threat is that the legitimate
user may conduct harmful work at the network, such as

leaking, altering, or disrupting sensitive data. Thus, an insider
threat (malicious) is typically realized as an abnormal action,
or behavior, in the network flows that is performed by the
legitimate user [5]. Fig. ?? shows a conceptual illustration of
the internal and external attacks intuition which can affect such
a network in cyber space. It can be observed that the external
attack is transparent to be prevented/detected by the perimeter
defense protocols. On the other hand, the insider attack is
commonly deceptive as the perimeter defense can hardly detect
attacks conceived from inside the network. Therefore, insider
attacks pose a critical challenge in the cyber security domain
where the demand to propose practical solutions to detect
insider threats remains a desirable solution for a tremendous
number of organizations in the market [6].

To detect insider threats, the typical solution relies on
developing systems that are capable of analyzing the user’s
behavior to discover anomalies in the network [7]. The idea
is to observe the user’s daily activities and tasks where these
activities yield frequent network usage patterns. Ideally, the
regular activities can underline insightful patterns to map a
typical behavior for the legitimate user. In this context, the
ideal method to analyze the user’s behavior is accomplished
using Machine Learning (ML)-based approaches, (see for
instance [8], [9], [10], [11]). ML approaches, such as Hidden
Markov Model (HMM) and Support Vector Machine (SVM),
have been utilized to detect insider threats via modeling the
behavioral profile from the audit data (daily activities) such
as the log events. Typically, these ML approaches, which are
well known as shallow learning methods [12], are subject
to attentive feature engineering to model the behavior profile
accurately. The reason is that the audit data is composed of a
large volume of unstructured, high-dimensional, and sparsity
instances, which makes extracting features a non-trivial task.
The traditional approaches have modeled the user’s behavior
by aggregated data consisting of the user’s activities within
a single day. However, missing some features can cause
unpredictable behavior where it imposes unbalanced detection
alarms; for example, it can increase the false alarms in the
system. Deep Learning (DL), a subset of ML approaches,
has been employed to address the drawback mentioned earlier
for insider threats detection [13], [4], [14], [15]. DL provides
the advantage that features can be represented immediately
from unstructured data [16]. Moreover, it has the advantage
that features can be extracted sequentially to reduce missing
temporal feature learning, a way that is not applicable in the
case of shallow learning methods.
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Fig. 1. A Conceptual Illustration Shows the Intuition of External and Internal Attacks in Cyber Space Networks.

Nevertheless, insider threats detection approaches neglect
considering the temporal representation of multivariate se-
quences to model the user’s behavior, where this limitation
has established a downside to developing an accurate detection
model. Intuitively, the user activities are temporally recorded
as sequences of dependent variables, i.e., at each timestamp,
one or more variables, such as user id and log-in/off time,
would be recorded simultaneously. Therefore, incorporating
more extensive dependent variables can increase the chance of
better modeling the user’s behavior. It is worth mentioning that
increasing data volume results in improving the learning accu-
racy as per Bonferonni’s principle [17]. This, in turn, brings
the motivation to structure the entire audit data as temporal
sequences, i.e., multivariate time series representation, which
thought it is fruitful to map all possible behavior patterns of
the user. Moreover, as the audit data consist of multi-sequential
actions, the relations between these sequences are not well
considered in previous studies. Thus, the conjecture is that the
sequences related to one user would underline strong relations
to describe unique user-related patterns used for insider threat
detection.

This study proposes a novel model that utilizes DL to
learn the user’s behavior for insider threats detection using a
multivariate representation of audit data. The model represents
the user activities as a set of dependent sequences in the
temporal domain to where the hidden relations are extracted
and learned. In concise, each activity is represented as an
ordered set of actual values that refers to some event, such
as log-in records. Thus several activities can be represented
simultaneously such that one or more values are recorded
at each timestamp, i.e. the user activities are represented as
multivariate time series streams such that at each time tick,
n values are recorded temporally. We then use Recurrent
Neural Network (RNN) to learn the existing latent temporal
relationships between sequences to map the hidden patterns.
Thereafter, the model serves to extract features where the
recognized behavior is classified as normal or anomaly, which

indicates a possible insider threat.

The contributions of the proposed work can be summarized
as follows:

i) The study has presented a novel method to model the user
behavior in a multivariate time series structure. More specif-
ically, the user behavior is represented using all sequences
of events that denote the user activities. The intuition is that
time series frequencies would present accurate, readable user
behavior patterns because they incorporate exclusive features,
not only aggregated features.

iii) The developed model has considered learning and
extracting the relations between the multivariate sequences to
extract patterns in training data. The existing sequences hold
latent relations that can be extracted for accurate behavior mod-
eling, leading to the accurate prediction of anomaly behavior.

iii) The proposed model has applied deep learning to
extract features from inter-correlation streams that represent
audit data of user activities. The importance is that user
activities are stochastic and unstructured, so deep learning is
ideal for extracting features from unstructured data.

The remainder of this paper is structured as follows.
Section II presents an overview of the related work. This is
followed by Section III where the proposed model has been
introduced. In Section IV, we demonstrate the evaluation and
results of the proposed model. Section V provides conclusions
and future directions where this study can be extended.

II. RELATED WORK

ML has been increasingly used for cyber threats detection
throughout the previous decade [18]. Generally speaking, ML
has shown to be advantageous in the identification and classifi-
cation of anomalous occurrences in the network streams [19],
[20]. Insider threat is a well-known type of cyber attack [21]
that has received considerable work using ML approaches. The
insider attack detection model heavily depends on the user’s
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daily activities where the behavior is recognized. Typically, the
obtained data is unstructured and complex due to the diversity
of the user’s activities on the network. Thus, modeling the
user’s behavior is a relatively intricate task. In the literature,
most ML approaches for insider threat detection are data-
driven in that the user activities are aggregated to underline
representative features where the behavior profile is modeled.
In this context, insider threat detection would be proposed
based on different examples of data instances where the
detection model is handled as an anomaly detection problem.
Accordingly, various ML methods have been developed for
insider threat detection. For example, SVM is used as a one-
class detection method for insider attack [22]. The study pre-
sented in [9] had proposed an HMM model to map the typical
user behavior based on weekly activities. The insider attack is
detected by computing a deviation score between sequences;
a low probability score could indicate a probable attack. In
[8] a set of supervised and unsupervised ML approaches have
been evaluated for insider attack detection. The study had used
Self Organization Map (SOM), HMM, and Decision Tree to
model malicious behavior for anomaly detection. The features
were extracted into two categories, including numerical and
sequential features. Whatever category was being employed,
the features were aggregated to a set of weekly representative
instances. Thus the detection model was complex due to the
need for extensive feature engineering.

DL methods have been proposed to tackle the issue of
requiring feature extraction and handling the large volume
of features to be learned in the detection model for insider
attacks data. In [5] a comprehensive survey has introduced
the state-of-the-art of DL with insider threat detection. In this
context, a number of DL applications have been recruited
such as deep feed-forward neural network [23], [24], recur-
rent neural network (RNN) [14], [25], conventional neural
network[26], and graph neural network. [13], [27]. Due to the
complexity of data structure, the majority of DL approaches
have focused on representing sub-sequences, such as one-day
activities, for detection granularity. In practice, each session
is a subsequence that denotes a series of activities, i.e. “log-
in” and “log-off” events. Whenever a subsequence contains
malicious activity, the subsequence will be designated as a
malicious subsequence where a possible attack could occur.
Therefore, detecting abnormal actions is difficult due to the
limited information (features) that can be leveraged. Moreover,
the relation extraction between sequences is ignored; however,
the extraction of latent relations can bring insight for better
modeling of user’s behavior.

This study addresses the above-mentioned drawbacks by
representing all activities (sequences) as multivariate time
series streams where the relations between streams are also
considered for building the behavior profile. The study also
endeavors to leverage the advantage of using RNN for effective
feature extraction from the temporal/sequential data. Recall
that RNN has shown effective feature learning of the sequential
data for anomaly detection [28], [29], [30].

III. PROPOSED MODEL

This section elaborates on the proposed insider threat
detection model. Fig. ?? illustrates an overview of the model
flows. As it can be seen from the figure that the model

operates in several consecutive steps, including i) user activity
representation, ii) sequence activity embedding, iii) latent rela-
tions learning, iv) feature learning, and v) anomaly detection.
The following subsections give further detail of each step as
follows.

A. User Activity Representation

The primary step in the proposed model is to represent
the user’s activities as multivariate time series. As noted in the
introduction to this paper, the user’s activities can be structured
as a series of temporal activities recorded each tick of time.
Several data points (characteristics values) should be recorded
at each timestamp, such as log-in/off information, user’s id,
and HTTP data.

More formally, given a series of a single activity A1 it
consists of a sequence of an ordered n data points such that
A1 = {p11, p21, . . . , pn1}, as for a given point p it maps an
encoded real value of an event. The entire activities are ex-
pressed as a whole series S which represent set of m activities,
i.e. S = (A1,A2, . . . ,Am) = (A1,A2, . . . ,An)ᵀ ∈ Rm×n,
where n ∈ N is the length of time series, i.e. the number of
data points in each single activity. Intuitively, S is structured as
a matrix consisting the entire user’s activities whose samples
are denoted as p(t)i (i = 1, . . . ,m; t = 1, . . . , n).

S =

 p11, p
2
1, . . . , p

n
1

p12, p
2
2, . . . , p

n
2

. . .
p1m, p

2
m, . . . , p

n
m


B. Sequence Activity Embedding

The represented activity sequences have a wide range of
features that can be related in diverse ways. For example, if
we consider the log-in and user id sequences for two different
users, the sequences for the same user likely have strong rela-
tions. Thus, the idea is to portray each sequence in a flexible
fashion that captures the various characteristics that underpin
its behavior in a multidimensional manner. To this end, each
activity sequence A has been encoded as an embedding vector
~v such that ~vi ∈ Rd, for i ∈ {1, . . . ,m}. Note that the
encoded embedding sequences are randomly initialized before
being trained with the remainder of the model. Moreover,
sequences with comparable embedding values should have a
strong inclination to be connected since similar embedding
sequences indicate similar activities.

C. Latent Relations Learning

The subsequent step is to learn relations between the
embedded vectors. The optimal method to conduct so is by
using direct graph architecture. In this context, given embedded
vectors V = {~v1, . . . , ~v|V|}, they are mapped to graph structure
V 7→ (N , ξ) with nodes and edges; where nodes denote
embedded vectors, such that ~vi ∈ N for i = {1, . . . , |N |},
and edges represent pairs εi ∈ ξ 7→ εi = 〈~v,~v′〉 ∈ N × N .
In this study, we implement direct graph representation for
latent relations learning as direct edges ~v 7→ ~v′ between nodes
because the dependency patterns between vectors do not have
to be symmetric. Thus, the mapped edges between vectors
represent relative dependant relationship in that the first vector
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Fig. 2. Illustration of the Proposed Insider Threat Prediction Model.

is used to model the behavior of the second vector. Recall that
given a node vector ~v is denoted by h~v ∈ Rd. Each node has
given a label `~v ∈ {1, . . . ,LN } that indicates the activity type,
e.g. the log-in activities, where the edge has also been given
label such that `ε ∈ {1, . . . ,Lξ} for each given εi.

Note that when an edge connects two vectors, it means the
first vector is utilized to underline the behavior of the second
vector. The dependency is represented between vectors as a
set of candidate relations Ri for each vector such that Ri ⊆
{1, . . . ,m}\{~vi}. The selection of which dependencies related
to ~vi is conducted by the search for the most similar candidate.
To this end, we compute the similarity θ between εi edge node
and the embeddings of its candidate relation j ∈ Ri using dot
product measure. Equation 1 shows θ similarly measurement.

θ(εi, εj)
~vi · ~vj

||~vi|| · ||~vj ||
for j ∈ Ri (1)

D. Feature Learning

Having represented relations between embedded vectors
(graph nodes), the next step is concerned with extracting
and learning features. The idea is to establish an abstracted
feature space using RNN to fuse a node’s information with its
neighbors. In the proposed model, feature extraction includes

the vector embedding ~vi, which describes the various behaviors
of various vector kinds. Nevertheless, feature extraction has
been accomplished using Long-Short Term Memory (LSTM),
a well-known set of RNN architecture. The main benefit of
adopting an LSTM unit is that the cell state averages activities
over time, which helps to avoid disappearing gradients and
better capture long-term time series relationships.

At each tick of time, an individual entry node ~v will map
a hidden layer h(t). Each hidden unit has a memory cell c(t)
to obtain long-term dependencies. The intuition is that c(t)
serves to remember the effect of the prior input layer. In the
proposed model, the mapping function use three non-linear
gates to manage the access to c(t) cell as follows: i) remember
vector vr, save vector vs, and focus vector vf . The following
equations express the mathematical notation of gated vector
vr, vs, vf respectively (2, 3, 4), memory cell control c(t) (5),
and mapping function h(t) (6).

vr = σ(Wr[h
(t−1); v(t)] + εr) (2)

vs = σ(Ws[h
(t−1); v(t)] + εs) (3)

www.ijacsa.thesai.org 761 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

vf = σ(Wf [h(t−1); v(t)] + εf ) (4)

c(t) = vr � c(t−1) + vs � σ(Wc[h
(t−1);~v(t)] + εc) (5)

h(t) = vf � σ(c(t)) (6)

where
[
h(t−1); v(t)

]
∈ Rd is the sum of the prior hidden

state h(t−1) and the current vector v(t) along with some bias ε,
� is the element-wise multiplication, and σ is the non-linear
Rectified Linear Unite (ReLU) activation function [31]. Here,
the resulted output is an aggregated representation Zi of hidden
layers at time (t) from such input node ~vi.

Z(t)
i = σ(h(t), ~v

(t)
i ) (7)

where ~v(t)i is the input for a given node at time t, with ReLU
activation σ.

E. Anomaly Detection

When the relations are learned as per the previous subsec-
tion, the next step is to determine how the anomaly behavior
can be detected accordingly. The idea is to determine how
such an unseen behavior deviates from learned relations for
each user. Thus, the proposed model attempts to calculate
a similarity score Φ between the observed behavior of the
user, that has resulted from the learned relations, and the new
abstracted stream Ẑ:

Φ
(t)
i = |Z(t)

i − Ẑ
(t)
i | (8)

To assure a robustness calculation of the similarity score,
we normalize the score for each input node using the median u
of the difference between 1st and 3rd quartiles of distribution
α.

ϕ
(t)
i =

Φ
(t)
i − ui
αi

(9)

Recall that the use of inter-quartile range shows an effec-
tiveness calculation of the distribution’s spread for anomaly
detection in stream data [32]. Then, the anomaly score Anomsc
is the max value of ϕ that is computed at time (t) as follows:

Anom(t)
sc = max(ϕ

(t)
i ) (10)

Hence, the stream is classified as either normal or anomaly
activity at some fixed threshold. The user can configure the
threshold value; however, in the evaluation of this study, the
value is set to max over the validation data. Thus, the stream is
labeled as an anomaly whenever the similarity score exceeds
the max Anom(t)

sc value.
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Fig. 3. The MSE Performance over the Grid Search Concerning different
Parameters: (a) Considers the Grid Search with epochs = 50, and (b)

Considers the Grid Search with epochs = 100

IV. PERFORMANCE EVALUATION

This section provides the evaluation of the proposed model
to determine its efficacy. The main objective of the evaluation
is to show the effectiveness of detecting insider anomalous in
network flows based on relation-based learning with LSTM.
Moreover, the evaluation examines the model’s performance
under different LSTM parameters tuning to determine how
they would affect the detection accuracy. Finally, the evaluation
shows how well the performance of the proposed model
compared to baseline methods of detecting insider attacks.

A. Evaluation Settings

1) Dataset: The evaluation experiments have been con-
ducted over CERT dataset [33]. CERT is a public released
insider threat dataset. It consists of activities data for more
than 1k users, with 32 million events (log lines) generated
over 502 days. There are around 7k log lines representing
anomaly actions among the total recorded activities; these logs
were manually placed into the data records by specialists.
The data pertaining to log-in, log-off, device, and HTTP is
stored in the logline. Each user action is parsed into a vector
in the experiment, including the id, date, user, computer, and
activity type as multivariate time series sequences. The dataset
has been spillted to training (70%) and testing (30%) for all
conducted experiments.

2) Metrics: Confusion Matrix (CM) has been used to com-
pute a number of metrics to evaluate the model’s performance.
Recall that CM shows the classification performance of the
proposed model under different parameters settings and with
compared to other comparators baselines.Thus, CM is used to
measure: i) F1-score (F1 = Equation 11), Precision (Pre =
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Fig. 4. ROC Curves of the Proposed Model with different Hidden-Layer Size Setting as Follows: (a) h = 16, (b) h = 32, (c) h = 64, (d) h = 128, and
(e) h = 256,

Equation 12), and iii) Recall (Rec = Equation 13), Area Under
Cure (AUC), and Receiver Operator Characteristics (ROC)
curve.

F1 =
TP

TP + 1
2 (FP + FN)

(11)

Pre =
TP

TP + FP
(12)

Rec =
TP

TP + FN
(13)

where TP is true positive samples, TN is true negative
samples, FP is false positive samples, and FN is false negative
samples.

Moreover, Mean Squared Error (MSE) is used to calculate
the error rate between predicted values and the actual values.
Considering n anomalous sequences inside the dataset, MSE
computes the mean of the sum of all the squared errors of
each sequence individually (Equation 14).

MSE =

n∑
i=1

(ai − pi)2

n
(14)

where ai is the actual value, and pi is the predicted value.

3) Experiment Settings: The experiments have been con-
ducted using TensorFlow1. A number of LSTM parameters, in-
cluding the epochs, batch-size and hidden-layers,
have been tested while learning relations and extracting fea-
tures. Further detail concerning the choice criterion is given
in the following section. Recall that batch-size refers to

1https://www.tensorflow.org/

the size of the embedding vector ~vi of an activity stream
as proposed in the model. The model is trained using Adam
optimizer with 0.01 learning rate.

B. Results

The model has been evaluated under different LSTM
parameter setting to determine the best performance of relation
learning and feature extraction. To this end, we determine the
performance of the model under different parameter-setting
including epochs, batch-size, and hidden-layer
size. To determine the optimal setting for batch-size
we conduct a grid search over {32, 64, 128, 256}. For
hidden-layer we also conduct a grid search to tune the
best performance over hyper-values of {8, 16, 32, 64, 128}.
The model is run over epochs = 50 and epochs = 100,
for the entire grid searches, respectively. Fig. 3 illustrates
the performance of the proposed model in terms of MSE
value for different parameter setting. The figure shows that
epochs = 100 has generally produced better performance
than epochs = 50 with different scales of batch-size and
hidden-layer. The best results of MSE are recorded with
batch-size = 256. It can be seen that the batch-size
has an influence on obtaining better results whenever the value
get larger although we found that the time complexity is
increased accordingly. However, the efficiency on terms of time
complexity scale is beyond the scope of this study despite it
is interesting for consideration in other simulations such as
the case of online feature extraction. Moreover, the model has
yield best results whenever hidden-layer = 128 get larger.
Figure 4 shows the ROC curves of the proposed model with
respect to different hidden-layer sizes. The best result is
recorded with AUC = 0.99 at hidden-layer = h = 256.
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TABLE I. THE RESULTS OF ANOMALY BEHAVIOR DETECTION IN TERMS
OF F1, PRE AND REC OF THE PROPOSED MODEL COMPARED WITH

BASELINES

Method F1 Pre Rec

SVM 0.28 34.20 21.20
HMM 0.35 55.98 49.20
NN 0.74 89.76 58.10
Rel-RNN 0.80 99.12 67.12
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Fig. 5. The ROC Curves that Show the Performance of the Proposed Model
along with Baseline Methods.

The proposed model has been evaluated to determine the
detection accuracy in terms of F1, Pre and Rec compared
with baseline methods. The evaluation explores the detection
of anomaly behavior with relation-based feature learning of
temporal streams, as in the proposed model, and the ag-
gregated features based on statistician abstraction of audit
data. We adopt the following baselines: SVM, HMM, and
shallow Neural Network (NN). Note that the later considers
feedforward structure with one layer of batch-size = 265
and hidden-layer = 128. Table I shows the obtained
results of all methods; for clarity, we denote the proposed
method as Rel-RNN. It can be seen from the table that the
Rel-RNN has recorded best results with 0.80, 99.12, 67.12
for F1, Pre, and Rec respectively. To further demonstrate
the obtained results, Fig. ?? shows the ROC curve for the
proposed model compared with baseline methods. It can be
observed that the performance of Rel-RNN has obtained a
better AUC value of 0.99.

V. CONCLUSION

This study has proposed a novel model for insider threats
detection. The proposed model structures the audit data, which
represents the daily activities, as a multivariate time series cov-
ering broader characteristics for better user behavior learning.
Thus, the temporal sequence of exclusive events is consid-
ered rather than an abstract set of features. The represented
sequences are fed into an RNN model to learn hidden relations
for feature extraction. The relations between representative
features can be learned to identify latent patterns in the

sequences for recognizing malicious behavior. To maintain the
consecutive temporal lags between the set of features, LSTM
has been used thus to avoid the vanishing gradient problem.
The evaluation on the CERT dataset has shown that the
proposed model has outperformed the comparator baselines for
insider threat prediction. In the future, the plan is to incorporate
Spatio-temporal dependencies to determine whether it affects
modeling the latent relations to profile the user’s behavior. This
is desirable when users have the authorization to access the
network from different places remotely. This case is observed
during the COVID-19 pandemic when most companies and
organizations allow employees to access networks from distant
locations.
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