
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

A Novel Code Completion Strategy

Hayatou Oumarou
University of Maroua, Maroua, Cameroun

LaRI Team, Maroua, Cameroun

Ousmanou Dahirou
University of Maroua, Maroua, Cameroun

Abstract—Programmers rely on a multitude of techniques to
speed up the development process. Among these techniques is
code completion, a productivity improvement technique widely
used by developers to explore APIs and automatically complete
a word being typed by providing a progressively refined list
of candidate words (or recommendations). Still called auto-
completion, it reduces incorrect calls to APIs. Several techniques
have been developed to obtain the list of candidates. Some
methods use the history of the code, others neural networks
or artificial intelligence; some exploit the program’s structure
through AST. Often the recommendation list is long, and finding
suitable candidates comes at a cost. In this work, we propose
a strategy that improves the accuracy of recommendation list
offered by code completion. We present a sorting approach based
on the popularity and importance of the elements (suggestions)
of the list by analyzing the usage data of classes, methods, and
variables of projects in the same development environment. We
implemented our sorting strategy in Pharo (IDE and language),
an immersive modern programming environment to show its
applicability. The empirical evaluation results of this strategy
show that our approach improves the quality of the suggestions.

Keywords—Integrated development environment; code comple-
tion; API; code completion tool; pharo

I. INTRODUCTION

Integrated Development Environments (IDEs) have become
a critical paradigm for software engineers to speed up the
coding process and reduce typos and other common errors.
An IDE brings together tools for developing software such as
mobile applications, computer or game console applications,
web applications, etc. There are more IDEs than program-
ming languages. However, most IDEs are specific to a given
language [1]. A modern IDE has various tools distributed
together, which are among others: the text editor, the graphical
interface, the debugger, the compiler, testing and versioning
tools, ... helping the programmer to write code efficiently and
accurately by providing it with a set of valuable services such
as automatic indentation of code blocks, highlighting of lan-
guage keywords by color or bold characters, code completion,
etc. Code completion is the mechanism allowing from part
of a word entered by the user to offer him a progressively
refined list of candidates (complements) which could suit the
remaining string of characters of the word. This functionality
can be found in several applications : text editors (for entering
source code, for word processing, etc.), web browsers, as well
as specific intuitive input systems installed on smartphones.
This work will focus on code completion in IDE editors,
highlight its shortcomings, and propose an improvement.

A. Context

Murphy [3] published an empirical study on how 41 Java
developers used the Eclipse IDE. One of their findings was that
every developer in the study used the code completion feature.
Among the top commands executed by the 41 developers,
code completion came in sixth with 6.7% of the number of
commands executed, sharing the top spots with basic editing
commands such as copy, paste, save and delete. Not sur-
prisingly, this has been little discussed: Code completion has
become second praxis to implementation activity. Nowadays,
every major IDE offers a language-specific code completion
system; according to [4] any text editor must provide at least
word completion to be considered usable for programming. In
the same vein, we did an online survey in June 2020 with
local developers. The survey focused on quality practices and
measures in software development companies [5].

B. Motivations

Now-a-days, software development has become highly
complex and very difficult to master due to the increase in
the scale of the projects, the increasingly short development
time, the requirements and the quality of the software product.
To successfully manage the development of software, it is
necessary to consider many parameters, including material
resource constraints, the programming languages used, and the
human factor. The latter greatly influences the progress of soft-
ware development. The software production cost includes the
hardware cost, the training cost, and the effort required for the
development and maintenance. However, the most significant
cost is that of the construction effort (software development)
because it represents more than 80% of the software production
time [6]. Cost overruns and delayed product delivery deadlines
are often encountered during software development. To provide
an element of the solution to these problems, engineers should
strive to act to ease the development process by reducing
costs (effort) and development time. Thus, we could increase
the productivity of programmers by automating part of the
activities (reducing keyboard input by code completion) and
by simplifying operations (rapid debugging, less or easily con-
sults the documentation) to achieve the qualitative objectives
(quality, cost and time). The code source is the essential
element of the software. It is done during implementation
and is reviewed during maintenance, representing more than
80% of the software cost. The code completion mechanism
takes center stage. Jin [1] highlighted the hidden cost of
auto-completion, which mainly impacts developers when code
completion techniques produce long recommendations. They
show how the length of the recommendations list affects other
factors that can lead to inefficiencies in the process. The idea of
improving and adapting the completion mechanism is relevant

www.ijacsa.thesai.org 866 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

to provide support to developers by providing considerable
time savings and reducing the number of typing errors during
development. So software developers will write code more
effectively and efficiently.

C. Description of the Problem

Automatic code completion is considered the most used
feature in integrated development environments [14]. The rec-
ommendations (suggestions) are presented to the programmer
during the completion process in a pop-up window in a specific
order. A study on the length of self-completion suggestion lists
[1] found that around 17% of the lists were 250 items long. In
the same study, they showed that the median position of the
selected item is beyond the 100th spot. So given the multitude
of suggestion possibilities offered by code completion and the
way these suggestions are sorted, finding a candidate’s place
in the list can be tedious or slower than typing in the full
name of the element to be completed. Generally, it takes too
long to locate the word in the suggestions list. In that case,
code completion loses all its importance because, instead of
being a tool that increases the coder’s productivity by reducing
the entry time, it slows down and slow motion. This highlights
weaknesses in the suggestion sorting strategies implemented in
most code completion systems in development environments.
These strategies do not rank the results relevance according to
the programmer’s context. This work will propose a sorting
strategy that improves the precision of the list of suggestions.

D. Structure of the Document

Our main contributions are summarized as follows:

• We propose a new prioritization method.

• We propose a discriminator model on top of the IDE
code completion engine that uses contextual scope
information for precise code completion.

• We do an extensive experiments showing performance
in terms of precision.

The rest of the paper is organized as follows: Section II
presents the details of the RBSS strategy. Section III reports
the experimental results. Section IV investigates related work.
Section V discuss threats to validity of our approach. Section
VI concludes the document.

II. THE STRATEGY: RELEVANCE BASED-SORTING
STRATEGY

In this section, we present the candidate list refinement
strategy called Relevance Based- Sorting Strategy (RBSS).
Fig. 1 show an overview of the approach. The idea is to
measure the relevance score of each of the list elements
(method name, variable name, class name, etc.) according
to the number and weight of the links that it receives to
refine its position in the suggestions list depending on the
context. We need the static and structural information from the
source code to do this. Thanks to of the Abstract Syntax Tree
(AST) analysis, which returns the syntactic information of the
element to be completed, we are able to sort the completion
options (names of methods, variables, classes, definitions, etc.)
according to their popularity ratings which are the essential

Fig. 1. Overview of RBSS Approach

criteria in referencement. To do this, we contextualize the
idea of Google’s web page indexing algorithm (PageRank).
PageRank is an referencement technique used by the Google
search engine to index web pages and provide results that are
relevant. The latter, an index used by Google to know the
popularity of its index, is noted between 0 and 10. A page is
considered very popular if it has a maximum rating or index.

1) Partitioning of candidates The first step is to partition
the candidates according to the types of elements with
the RBSS Partition algorithm as in Fig. 2.

PARTITION

INPUT : candidates List (L)
OUTPUT : List of candidates lists by type (L’)
BEGING
MethodsList, VariablesList, ClassesList,

OutOfVocabList : List of candidates
For each elt in L do
case of type elt

Method : Add elt in MethodsList
Variable : Add elt in VariablesList
Class : Add elt in ClassesList
Otherwise : Add elt in OutOfVocabList

end case
End for

Return L’= [MethodsList, VariablesList,
ClassesList, OutOfVocabList]

END.

Fig. 2. Algorithm RBSSPartitionner: Partitions a List According to Elements
Type

In this step, each item in the list is classified accord-
ing to:
• Methods For each method in suggestions list,

it will be a question of looking at the number
of their Senders and their Implementors. The

www.ijacsa.thesai.org 867 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

Senders represent all methods that may use
or invoke a given method. The Implementors
also work the same way. Instead of returning
a list of Senders of a message (or method-
envoyeuses), they resolve all classes that im-
plement a method with the same selector.
RBSS considers a method popular when many
links point to it. Here, a link can represent
either a call of the method in question by
another method or an implementation of the
method in the different classes of the system.

• classes Concerning the case of a class, we will
be interested in its references as an attribute
for evaluating its popularity. These references
are : AllRefInside and AllRefOutside. All-
RefInside represents all the references of the
other classes of the system which reuse (inher-
itance, re-implementation,. . . ) the properties
of a given class. AllRefOutside does the oppo-
site of AllRefOutside by displaying all the el-
ements of the classes whose attributes a given
class uses. Our strategy considers that a class
is popular if it has more AllRefInside than
AllRefOutside if the size of the AllRefInside
list is greater than the size of AllRefOutside.

• variables Regarding the variables, we will
consider either the number of methods that
use it (outgoingInvocation), or the number of
methods that store data in this variable (in-
commingInvocation). In both cases, the RBSS
sorting strategy will consider the size of the
list of methods as a criterion for evaluating
the popularity of the variable.

2) Score attribution by category RBSS then rates the
popularity of each item in the suggestion list based on
the number of times other objects in the system use it.
To assess the popularity score of items in a suggestion
list partition, we assign a weight to each link that a
given item can have. Thus, the total number of links
of an element represents its popularity score, which
is one factor that conditions the element’s positioning
(method, Class, Variable) in the suggestions list. for
this, we use the RBSSSorter algorithm Fig. 3. This
algorithm uses algorithms from Fig. 4 and Fig. 5.
The position of an element in the completion list
considers the context of the word to be completed. So,
we will contextualize the sorting of the list according
to the type and the current situation. For example, in
the case of a list having methods, variables, classes
etc. as a completion proposal, the RBSS strategy after
having sorted this list will first consider the context
before displaying the result. If we are in a method
context, RBSS will place the most popular methods
at the top of the list and then complete the list with
other popular elements (variable, class, ...) from this
list and thus vice versa.

3) Recombination of the elements (see Fig. 6) of the
partitions into a single list. For this we rely on the
following RBSS Recombiner algorithm:

SORT

INPUT: L, the list of Candidates
RETURN: L’, the sorted list of candidates
LOCAL: chg, the list of couple (l,c) where l in L and c

the computed score
For each l in L

Chg add (l, score(l))
End for
For i=1 to threshold do

For each (l,c) in chg
(l,c) ← (l, (c + SUM Score(l’) l’ In Neighbor(l) ) /

1+ (c + SUM Score(l’) l’ In Neighbor(l) ))
End For

End for
Sort chg
RETURN first chg
RETURN seq

END.

Fig. 3. Algorithm RBSSSorter: Sort the List of Candidate According to their
Score

NEIGHBOURG

INPUT: l, a Candidate
RETURN: N, a list of neighbor of l
Case type of l :

Method : N ← senders(l)
Class : N ← AllRefInside (l)
Variable : N ← OutGoingInvocation (l)

End Case
RETURN N
END.

Fig. 4. Algorithm Neighbourg: Find Neighbor of a Candidate

III. EXPERIMENTS AND DISCUSSIONS

In a recent study [2] Hellendoorn and others present a
case study on 15,000 code completions that were applied by
66 real developers. They find that many aspects of real-world
completions are not represented in synthetic benchmarks and
tested completion tools were far less accurate on real-world
data. Worse, on the few completions that consumed most of
the developers’ time, prediction accuracy was less than 20%
– an effect that is invisible in synthetic benchmarks. For these
reasons we choose to test our strategy on real-world system.

SCORE

INPUT: l, a Candidate
RETURN: c, the score for l

c ← #Neighbourg(l) / 1+ #Neighbourg(l)
RETURN c
END.

Fig. 5. Algorithm Score: Give a Score to a Candidate

www.ijacsa.thesai.org 868 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

RECOMBINER

INPUT : List of candidates list sorted by type (L’)
OUTPUT : List of candidates(L)
BEGIN

L’:= empty list
For i = 1 to lenght(L) do :
if type-elt-context = type-elt (L[i]) then
Add elements of L at the beginning of L’
else
Add elements of L at the end of L’
EndIf
EndFor

RETURN (L’)
END

Fig. 6. Algorithm RBSSRecombiner: Recombine Partioned Lists.

A. Setup

For the evaluation the data used is as follows:

• We tested a large body of 1000 tokens in the pharo 9.0
source code to clearly show the impact. Pharo is a pure
object programming language in which everything is
object. the criteria that guided this choice are : the
length of the object’s source code, the type of the
object (instance side, class side, ...), for the evaluation.
Finally, we compare the score of our model with some
basic strategies. The main objective of this evaluation
is to empirically answer the research question about
RBSS:

• How accurate is the RBSS method? We use this
dataset as the basis for our assessments. We use the
context and scope of each source code element.

Table 1 shows the data statistics, where LOCs are the line
of codes, Files are the number of files, and Total Projects are
the number of included projects.

TABLE I. DATA STATISTICS

Packages Object Types LOCs Tokens
Epicea, Collections-Strings, Colors Instance side 1119 7514
Epicea, Collections-Strings, Colors Class side 370 2860
Total 1489 10374

We have tried different scope granularities such as class
scope, method scope, and block scope. To the test pattern, we
used 10,374 Entries names range in length from 3 to 12, with
an average of 5. Accuracy assessment measures the difference
between the expected result and the result obtained. We are
looking for the right word to be placed in top positions at
best. Otherwise, it occupies the highest position in the list.
For this purpose, we will look at the top2, top 3, top4 and
top5. We stop at this level because [1] have shown that beyond
position 5 the programmer continues to type. By the way the
words are not usually long in Pharo. Experimental result We
evaluate the accuracy of our completion models according
to standard metrics. We mainly consider top-K accuracies
implying that the correct completion was often near the top

of the suggestion list. Meaning that, we evaluated the RBSS
strategy according to the position of the expected word in
the list of suggestions. We did not dwell on the speed of
execution, which will be the subject of another study. For this,
we intend to exploit optimization techniques such as indexing
and dynamic programming. Table 2 shows the results obtained
within the Pharo environments.

Through empirical evaluation of RBSS in both environ-
ments, we were capable to show its ability to improve the
accuracy of the list of returned candidates. The tests results
carried out according to the defined case show that with the
RBSS strategy, If we take the first five candidates from the
list, in 61,6% of cases, we have the right candidate in the list.
From this point of view, the RBSS strategy is improved on
auto-completion. In conclusion, we have shown that the sorting
strategy based on the popularity of the elements improves
the precision of the code completion system, that is, the
positioning of the elements in the suggestion list. However,
although RBSS performs better, we did not consider the
execution speed aspect, which we intend to improve in future
studies.

IV. THREATS TO VALIDITY

As any empirical evaluation, the results of our experiments
are subject to threats to validity. We identified the following
noteworthy threats:

• The studied system might not entirely represent a
larger population of systems, either from another
application domain or written in another programming
language. This is always a complex threat to mitigate
as there is little information on what property of a
system is essential to ensure representativeness. Repli-
cation of the experiment for other systems must be
realized. This said, we strongly believe our approach
is independent of the programming language and the
application domain.

• The way in which we setup our experimentation may
introduce bias. We also believe Pharo and visual works
are credible, real world, non-trivial, case study. It was
medium to big system and it includes a significant
number of completion tools and options. However, we
firmly believe that our approach is language indepen-
dent.

• We tried with different type of object (instance side,
class side, traits). This was done to eliminate a
possible problem with the obviously simple solution
working for any kind of object.

• Internal threats to validity are related to the imple-
mentation of our approach. It is still possible that
our approach implementation contains errors that can
affect our results’ exactitude. We manually studied a
subset of the results to counter this threat and did not
find any obvious errors. Bias concerning developer
working habits might also occur in our selection
of evaluation subjects. We selected various packages
from the two studied systems to reduce this risk,
all issued from different areas. Thus, we believe the
objects represent a heterogeneous enough population
of the source code element.

www.ijacsa.thesai.org 869 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

TABLE II. DATA COMPARISON

Token Type Method Class Variable
Top3 Top4 Top5 Top3 Top4 Top5 Top3 Top4 Top5

RBSS 56,4% 59,7% 61,6% 50,4% 55,8% 63,4% 38,4% 39,9% 47,6%
Pharo 55,7% 59,6% 61,5% 50,7% 55,5% 63,4% 37,7% 39,8% 47,6%

V. SOME WORK ON CODE COMPLETION

Code completion. With the birth of IDEs, code completion
research has received much attention in recent decades. In [8]
authors present a largescale study of user interactions with
autocompletion. They found that lowerranked auto-completion
suggestions receive substantially lower engagement than those
higherranked. They note that users are most likely to engage
with auto-completion after typing about half of the query, and
in particular at word boundaries. They also found that the
likelihood of using auto-completion varies with the distance
of query characters on the keyboard. In a first study, the
traditional models which are based on the formal structure of
the programs, that is to say on the syntactic information and
the static properties of the code. These syntactic approaches
have been the most explored [9], [4], [7]. In the paper [12] we
can read: Software engineering and programming languages
(SE / PL) should make the same transition as research on
natural language processing, assisting traditional methods that
only take into account the formal structure of the programs,
that is to say the information on the statistical properties
of the code, and also exploiting repetitive and predictable
elements of the source code. Essentially, three completion
techniques are recited, each using the information in the
example database differently. It is about : A Frequency Based
Code Completion System (FreqCCS) uses the frequency of
method calls to decide their suitability and suggests the most
frequently used method. An Association Rule Based Code
Completion (ArCCS) which is a statistical learning technique
for finding interesting associations between elements in data,
ArCCS exploits the rules m → n which, if the method m is
used, the method n is frequently called and suggested. The
Best Matching Neighbors code completion (BMN) which
is the modification of the K-Nearest-Neighbors machine
learning algorithm, BMN adapts the KNN to suggest a
variable v . The probabilistic models or statistical language
models (Statistic Language Model). Recent work has started
to examine linguistic models based on statistical learning
[17], [18], [10] aiming to model the source code as statistical
language learning models. These approaches offer an exciting
new goal of the code completion problem that suggestions
can capture the deeper meaning of terms’ semantic and
idiomatic meaning. These are, among others : N-gram models
and Recurrent Neural Networks ( RNN ). The n-gram
models which exploit probabilistic models and predict each
token based on the probability of the preceding token. To
deal with data scarcity, an N-gram data model estimates
the probability of a sentence by modeling language as a
Markov chain of order. The probability of the next word in
the sentence (phrase) depends only on the previous words
[11]. The Recurrent Neural Network outperforms the n-gram
and predict each token (node to predict) sequentially. For
example [16] proposes an approach that combines RNNs with
networks of pointers to complete the code. In [13] authors
explore the use of neural network techniques to automatically

learn code completion from a large corpus of dynamically
typed JavaScript code. Authors propose a neural network
model and believe that neural network techniques can play
a transformative role in helping software developers manage
the growing complexity of software systems. Performance
measurement of these approaches. The following metrics are
the most used [15]: precision , recall and F-Measure. Whose
formulas are:

precision(P ) =
Recommendationsmade∩relevant

Recommendationsmade

recall(R) =
Recommendationsmade∩relevant

Recommendationsrelevant

F −measure =
(2 ∗ P ∗R)

(P +R)

The measurement F is called the harmonic mean of recall
and precision. Usually, it is difficult to achieve optimal results
simultaneously for recall and precision. For example, if all
words are classified as irrelevant, the resulting recall score
will be 100% where the accuracy score will be low. Therefore,
measurement F is a compromise between recall and precision.
The score range for measure F is 0 to 1 ; the higher score
implies a better classification model.

VI. CONCLUSION

In this paper, we have proposed an approach for improving
code completion. This approach if used increase the productiv-
ity of coders. In addition, this mechanism offers advantages in
terms of reducing typing errors and time while increasing the
efficiency and productivity of programmers. We have examined
our approach with Pharo a dynamic object language. The
experimental results have shown that our proposed method
surpasses existing methods in terms of effectiveness and ef-
ficiency. It turns out that our sorting strategy significantly im-
proves code completion. The accuracy of the list of suggestions
(the right candidate is in the top 3 first candidates 59.6% of the
time) compared to the Pharo 9.0 completion engine sorting.

Several improvements and perspectives are possible despite
achieving an adequate precision sorting strategy. Indeed, the
RBSS sorting strategy proposed in this work is limited and
has shortcomings. The essential concerns its execution speed :
RBSS is slower than the alphabetical sorting strategy, i.e. the
strategy takes much longer to display list of suggestions. Thus,
the main perspective considered concerns optimizing the RBSS
sorting strategy to consume less resources. This optimization
requires for example the creation and initialization of an
index or of an array in which RBSS will read and that the
array is updated automatically at a precise time or at a given

www.ijacsa.thesai.org 870 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 5, 2022

frequency to go fast. And this takes into account the size
and the appropriate structure of this table. We also plan to
compare the performance of our system with the latest systems
proposed in the literature. Another perspective is to evaluate
our approach on a large set or developers’ community to
collect their comments and quantify the pros and cons of
our approach. We also wish to extend and test our approach
on other languages and environments because currently, our
results are valid than Pharo.

REFERENCES

[1] Jin, X., & Servant, F. (2018). The Hidden Cost of Code Completion:
Understanding the Impact of the Recommendation-list Length on its
Efficiency. Virginia Tech.

[2] V. J. Hellendoorn, S. Proksch, H. C. Gall and A. Bacchelli, ”When
Code Completion Fails: A Case Study on Real-World Completions,”
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), 2019, pp. 960-970, doi: 10.1109/ICSE.2019.00101.

[3] Murphy, M. K. (2006). How are java software developers using the
eclipse IDE ? IEEE Software, 23(4), pp. 76–83.

[4] Robbes, R. a. (2008.). How program history can improve code comple-
tion. Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering.

[5] Hayatou, O., Kolyang, & Moulla, K. (2019). Sur l’utilisation des mesures
de qualité lors des phases de développement dans l’industrie logicielle
camerounaise. Maroua: Universite de Maroua.

[6] ZAKRANI, A. (janvier 2020). Estimation des coûts de développement
de logiciels par un réseauneuronal RBF flou.

[7] D. Hou and D. M. Pletcher. (2011, Septembre). An evaluation of the
strategies of sorting, filtering, and grouping API methods for Code
Completion. ICSM ’11: proceedings of the 2011 27th IEEE International
Conference on Software Maintenance, 3-6.

[8] Mitra, Bhaskar et al. “On user interactions with query auto-completion.”
Proceedings of the 37th international ACM SIGIR conference on Re-
search & development in information retrieval (2014).

[9] Han, S. D. (2009). Code completion from abbreviated input. Automated
Software Engineering, 2009. ASE’09. 24th IEEE/ACM International
Conference on. IEEE.

[10] Bielik, P. V. (2016). PHOG: probabilistic model for code.
[11] Raychev, V. P. (2016). Probabilistic model for code with decision trees.
[12] Allamanis, M. e. (2018). A Survey of Machine Learning for Big Code

and Naturalness.
[13] Chang Liu, X. W. (s.d.). NEURAL CODE COMPLETION. University

of California, Berkeley.
[14] Amann, S. e. (2016). Une étude de l’utilisation des studios visuels dans

la pratique. 23e Conférence internationale IEEE sur l’analyse, l’évolution
et la réingénierie logicielles (SANER)., 1.

[15] Rahman, M. W. (2020). A Neural Network Based Intelligent Support
Model for Program Code Completion. Scientific Programming.

[16] Jian Li, Y. W. (2016). Code Completion with Neural Attention and
Pointer Networks.

[17] Hu, S. X. (2019). Scope-aware code completion with discriminative
modeling. Journal of Information Processing, 27, 469-478. .

[18] Liu, F. L. (2020). A self-attentional neural architecture for code com-
pletion with multi-task learning. Proceedings of the 28th International
Conference on Program Comprehension, 37-47.

www.ijacsa.thesai.org 871 | P a g e


