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Abstract—In recent years, object detection from space in
adverse weather, incredibly foggy, has been challenging. In this
study, we conduct an empirical experiment using two de-hazing
methods: DW-GAN and Two-Branch, for removing fog, then eval-
uate the detection performance of six advanced object detectors
belonging to four main categories: two-stage, one-stage, anchor-
free and end-to-end in original and de-hazed aerial images to find
the best suitable solution for vehicle detection in foggy weather.
We use the UIT-DroneFog dataset, a challenging dataset that
includes a lot of small, dense objects captured in various altitudes,
as the benchmark to evaluate the effectiveness of approaches.
After experiments, we observe that each de-hazing method has
different impacts on six experimental detectors.
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I. INTRODUCTION

Nowadays, with the significant development of information
and communication technology, especially the surging growth
of the deep learning era, vehicles detection and surveillance
have become extremely important and necessary. Along with
that development, the prevalence of UAVs (Unmanned Aerial
Vehicles) makes vehicle surveillance extremely simple and
effective. Traffic surveillance from aerial images is a particular
interest to researchers because it serves many essential different
purposes, such as being used in the military or monitoring
traffic conditions, urban management, or simply helping us
know where to park in the parking lot. Compared to detecting
ground view vehicles, detecting vehicles from the aerial image
is more complicated and challenging due to multiple frames,
various backgrounds, small objects appearing with a variety
of shapes. In addition, there is a critical factor that directly
affects the model’s performance: the weather.

Recently, by applying deep convolution neural network
CNN [1], a significant number of studies have been done
to tackle this problem, such as the proposal of the Double
focal loss convolutional neural network framework (DFL-
CNN) model [2] with the combination of feature CNN and the
focal loss function [3] or [4] carried out experiments on YOLO
[5] for vehicle detection based on aerial images datasets COWC
[6], VEDAI [7] and DOTA [8]. These articles have one thing
in common: they were all experimented with in clear-weather
conditions and achieved excellent results.

However, in reality, the weather conditions are constantly
changing (rain, snow, smog, night, thunderstorms, fog, etc.),
which significantly affects the accuracy and learning ability of
the models.

We choose the scope of our research to detect vehicles from
aerial images under foggy weather. We choose the fog scene
because it is often seen in the early morning. Sometimes, the
appearance of dense fog may seriously affect the ability to
monitor the traffic situation. Prior studies such as SFA-Net
[9] used to detect objects in the rain or solve the problem of
semantic foggy scene understanding (SFSU) by de-fogging of
convolutional neural networks [10].

In this study, we focus on investigating advanced object
detection methods Cascade R-CNN [11], Casdou [12], YOLO-
v3 [13], CrossDet [14], Deformable DETR [15], Sparse R-
CNN [16] for object detection in foggy conditions that limit
visibility. At the same time, the evaluation of visibility im-
provement through 2 de-fogging (Image Dehazing) methods,
which are DW GAN [17] and Two-branch Dehazing [18], also
implemented on the UIT-DroneFog [12].

We summarize our contributions in this paper as:

• Using image dehazing methods to filter foggy images
from the challenging dataset UIT-DroneFog.

• Experimenting with one-stage, two-stage, and the lat-
est end-to-end deep learning methods on dehazed
datasets.

• Providing in-depth evaluation of dehazing methods on
experimental deep learning models to choose the best
models.

The rest of the paper is: Section II is Related work; Section
III is Experimental Methods; Section IV is Experimental
Results; and finally, Section V is Conclusion and Future Work.

II. RELATED WORK

Object detection in the foggy condition in particular and in
adverse weather conditions has been addressed in two direc-
tions: domain adaption and condition-based object detection.
In domain adaptation approaches, many studies proposed to
improve the more robust detector based on Faster R-CNN [19],
[20], [21] to help it be adapted with other domains of images,
which could be different from the original dataset. These
domain-adapted detectors were trained on the source dataset,
which might include images with normal, original conditions.
Then, the detectors were then evaluated the performance on
images with foggy, rainy or other adverse weather conditions.
The characteristic of this approach was focusing on the model’s
architecture and did not affect the images. On the other hand,
condition-based approaches tended to propose the specific
detectors in concrete contexts [22], [23]. Therefore, these
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detectors include processing modules such as rainy and foggy
removal to transform condition-adverse images into normal
images. Then the transformed images were then used for
training and testing.

A. Domain Adaptation in Adverse Weather

The author in [19] tackled the adaptive domain problem
by focusing on two levels: the image-level shift and the
instance-level shift. The image-level shift could be described
as style, illumination, etc., while the instance-level shift was
object appearance and size. Based on Faster R-CNN, the
authors designed H-divergence theory-based adaption module
on image-level shift and instance-level shift to decrease domain
discrepancy. In detail, a domain classifier was built and trained
in an adversarial training manner at each level. Those two
classifiers then incorporated a consistency regularizer to train
a domain-invariant Regional Proposal Network in Faster R-
CNN, which then could be adapted with other domains of
images. The authors used the Cityscapes dataset as one of the
experimental datasets. They trained on the normal version of
Cityscapes and evaluated on its foggy version. Experiments
proved that the performance increased by combining the pro-
posed adaption module.

The author in [20] proposed a robust Faster R-CNN and
the Noisy Labeling strategy for domain adaptation. In de-
tail, the authors split the pipeline into three phases. In the
first phase, the Faster R-CNN was trained on the source
dataset then used as the base detector. Next, the authors used
the base detector to obtain noisy bounding boxes. At the
same time, all ground-truth instances in the source dataset
were also extracted. After that, noisy bounding boxes and
all extracted ground-truth boxes were fit into a classification
module. The classification module would be trained on the
exact ground-truth boxes from the source dataset and refine
the class categories of the noisy boxes. Finally, the upgrade
version of Faster R-CNN was trained on both datasets: the
source dataset with human-annotated ground-truth boxes and
the target dataset with annotations refined via a classification
module. The proposed approach was evaluated by training on
the Cityscapes and evaluating on Foggy Cityscapes dataset.
Through experiments, the authors proved that using the Noisy
Labeling strategy and their improved Faster R-CNN could help
achieve better results than normal training, original Faster R-
CNN, and other approaches 36.45% AP. Notably, this result
was 7.07% lower than the result obtained via training Faster
R-CNN on the Foggy Cityscapes Dataset.

The author in [21] defined a novel prior-adversarial loss
function that utilized the additional knowledge from images
in foggy, rainy images to correlate the amount of degradation
directly. In detail, the proposed loss was used to train a prior
estimation network to predict condition-specific prior from
features map and minimize the weather information present
in the features. This approach helped the main detection
network features become invariant, decreasing the effects of
adverse weather such as foggy or rainy. Furthermore, to avoid
distortions caused by weather-based degradation, the authors
proposed a set of residual feature recovery blocks in the
detection network for de-distorting features leading to better
performance. The proposed method was evaluated by training
Cityscapes and evaluating on Foggy-Cityscapes dataset, the

highest result was 39.3%, which extremely outperformed the
previous approaches.

B. Condition-based Object Detection Methods

To handle the problem of vehicles in foggy images that
are difficult to recognize, [22] proposed a feature recovery
module, which was considered as a restoration subnet and
integrated with the main backbone of the detection model.
The feature recovery (FR) module was designed by sharing
feature extraction layers with the backbone. So, this proposed
module learned to restore the clean image from the foggy
image via the MSE loss in the training time. Notably, the aim
was not fitting the restored image to the detection model. They
trained the external FR module to help improve the weights in
the main backbone, which helped enhance the quality of the
features extracted from foggy images. The proposed approach
was evaluated on the FOD and Foggy Driving dataset, proving
the effectiveness of other detection methods.

The author in [23] proposed an encoder-decoder U-shaped
network with residual connection from one layer to another for
fog removal. Then, the authors employed the PP-YOLO [24]
detection model for training object detection. The authors also
created a dataset of foggy images by synthesizing them based
on the existing dataset. Their ablation studies proved that the
detection performance increased when including the proposed
fog removal module.

The author in [12] proposed a synthesized foggy dataset
named UIT-DroneFog based on a normal-weather dataset.
Then, they experimented with the existing detectors on the
new dataset to observe the performance. In their study, no fog
removal techniques were recommended or used, but the authors
proposed the combination of Double Heads and Cascade R-
CNN, which achieved better results compared to the other
methods.

C. Discussion

The adaptive domain approaches encourage object detec-
tors to operate well on cross-domain datasets, which is suitable
if we can not collect the images belonging to the domain we
expect. Furthermore, adaptive object detectors also help us not
to retrain the model for the new domain dataset, which is time-
consuming. However, adaptive detectors still have limitations
because they can not perform well as their counterparts trained
and evaluated on the same domain data. Therefore, we suppose
that if we have the images belonging to the domain data we
need, it is unnecessary to employ adaptive detectors. So, in
this study, we focus on exploring the performance of normal
two-stage, one-stage and end-to-end object detection methods
combined with de-hazing methods on the foggy dataset.

III. EXPERIMENTAL METHODS

A. Object Detectors

Object Detection is a complex, challenging problem in
computer vision used to localize and classify objects based on
images and videos. With the surging growth of Deep Learning
in recent years, feature extraction from data is straightforward
to implement and time-efficient, leading to the emergence
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Fig. 1. Illustration of Two-Stage Cascade R-CNN Object Detection Method

of intensive studies of Object Detection. In addition to im-
provements in classification, researchers conduct many in-
depth studies in localization to reduce computational costs and
memory to make the model work more efficiently. Therefore,
the research on the following detection frameworks happens
to meet nowadays’s needs: Two-stage, One-stage, Anchor-free
and End-to-end object detection.

1) Two-Stage Detectors: The framework is also known
as the region-based framework. Region proposals generated
from input images pass through CNN where features are
extracted. Then, based on the extracted features, category-
specific classifiers are used to classify labels for the region
proposals. There are many well-established two-stage methods
that we are going to carry out the experiment on, like Cascade
RCNN and Casdou.

Cascade R-CNN. In 2018, [11] proposed the high-quality
detection model Cascade R-CNN. Multi-stage object detection
architecture with set detectors trained in turn with the current
detector’s output as the input to the next detector used to solve
not only the mismatch in quality between the output and the
detector but also the overfitting problem caused by the sensitive
IoU threshold(when the IoU is large). However, creating a
high-quality detector is not simply increasing the IoU during
the training phase. As we increase the IoU threshold, it also
means that a significant decrease is witnessed in the number
of active training samples. Different heads in the architecture
designed for a particular IoU threshold, from small to large,
are used at different stages (H1, H2, H3). Cascade regression
is a resampling process, providing positive samples for further
processing stages:

f(x, b) = fT ◦ fT−1 ◦ ... ◦ f1(x, b)

T : total number of refining bounding box stages. Each fT re-
gressor in the cascade optimized for the respective distribution
bT . Fig. 1 illustrates the architecture of Cascade R-CNN.

CasDou (Cascade R-CNN and DoubleHead). In the year
2021, [12] proposed Casdou with the combination of Cascade
R-CNN, Double Heads [25], and Focal Loss [3]. The method
tested on the high-quality aerial foggy outdoor vehicle dataset
UIT-DroneFog achieved 34.70% on the mAP score. The author

used the Cascade R-CNN backbone instead of the Faster R-
CNN because it helps the model attain high-quality detection
with structural cascade regression. What’s more, the Double
Heads detector can be flexibly attached to various models to
achieve higher detection results. In addition, based on their
analysis and assumption, the author uses Focal Loss to help the
model converge and have a more apparent distinction between
class objects than Cross-Entropy Loss. Focal Loss is defined
as follows:

LFL(pT ) = −α(1− pT )
γ log(pT )

With (α) is the balanced form of the Focal Loss function, and
(γ) is used to calculate the modulating factor.

Fig. 2 illustrates the architecture of CasDou.

2) One-Stage Detector: Although achieving high accuracy,
the two-stage methods are computationally expensive and have
high resources-consumption. One-stage method - the YOLO
was born for incredible processing speed while maintaining
high accuracy to achieve real-time object detection. One-stage
architecture directly predicts class probabilities and regress
bounding-box offset values with a single feed-forward CNN
network instead of heavily depending on generated region
proposals.

YOLO-v3. (You Only Look Once v3) YOLO-v3 was
proposed by [13] with the help to improve the accuracy of the
object detection problem while keeping the interference time
at the appropriate speed. YOLOv3 uses Darknet-53 (ImageNet
[26] Trained Network) and Residual Network (ResNet)[27]
consisting of 53 convolutional layers built with consecutive
convolutional 3x3, and 1x1 layers, followed by ResNet con-
nection skips to activate propagating through deeper layers
without diminishing the gradient. Finally, the average pooling
layer, 1000 fully connected layers, and Softmax activation
function are added to perform classification. With this robust
structure, DarkNet-53 has a much higher speed than other
platforms like ResNet-101 or ResNet-152. Initially, the image
is passed through a block of convolutional layers to extract
features. Then, it is divided into a grid of size S × S. When
the image is divided into a grid, each cell in the image is
responsible for detecting the object whose center locates on
that cell. After selecting the anchor box, the model uses the
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Fig. 2. Illustration of Two-Stage CasDou Object Detection Method

Direct Position Prediction formula to regress the size of the
true bounding box. The model then predicts the bounding
box’s label using Multiple Classification. The illustration of
the YOLOv3 method is shown in Fig. 3.

3) Anchor-Free Detector: Anchor-free detectors find the
object without the preset anchors. It helps the model become
less dependent on anchor-related hyperparameters and general-
ize more easily. CrossDet stands out to be the effective anchor-
free detector that considers continuous object information and
reduces noise interference.

CrossDet. CrossDet was proposed by [14] in 2021. In-
stead of using anchor-based methods and point-based methods
that are inclined to produce noise feature output, the author
proposed the CrossDet helping extract the information contin-
uously and accurately. CrossDet-an anchor-free detector using
a set of cross lines to represent objects consists of two main
phases: (1) Generating the coarse crossline representation (2)
Refining the crossline representation based on the extracted
features on the horizontal and vertical lines. Based on trained
cross lines features, feature maps I ∈ RC×W×H generated
from backbone FPN are processed to crossline extract module
(CEM). CEM is then trained to extract horizontal and vertical
features. The model uses decoupled regression mechanism to
optimize cross lines growth along with vertical or horizontal
features. CrossDet yields the results on the two data VOC2007
[28] and MS-COCO [29], with the results, are 52.8 and 48.4
respectively on the AP score. Fig. 4 shows the architecture of
CrossDet method.

4) End-to-End Detectors: The End-to-end approach aims to
build a complex deep learning model, removing hand-designed
components like pre-processing (anchor generation) and post-
processing (Non-maximum suppression) and integrating them
into a single model. Today’s famous End-to-end methods are
Deformable DETR or Sparse R-CNN. They work on sparse
candidates which are progressively processed and refined
through various stages.

Deformable DETR. In 2021, [15] proposed the De-
formable DETR method as an improved version of the prior
DETR [30]. However, achieving results as high as Faster R-
CNN, DETR witnesses slow convergences and problems in
detecting small objects due to the limitation of the attention

mechanism in the Transformer. The Deformable DETR is a
combination of a Deformable convolution [31] and a Trans-
former [32]. It combines the effectiveness of the sparse spatial
sampling of Deformable convolution and the relation modeling
capability of Transformers. From there, it was formed into a
Deformable attention module to focus on the part of “sampling
spatial" as a pre-filter to focus on prominent areas instead
of every location on the feature maps. Moreover, thanks to
the fast convergence and flexibility of Deformable DETR, the
authors also experimented with some methods to optimize
the predict bounding box on the MS COCO dataset such
as iterative bounding box refinement mechanism on region
proposals proposed by the model. Experiments show that
Deformable DETR converges faster and gives more accurate
results than DETR with x10 fewer training epochs. Fig. 5
shows the architecture of Deformable DETR method.

Sparse R-CNN. In 2021, the Sparse R-CNN method,
proposed by [16], is a sparse object detection method. Sparse
R-CNN is an End-to-End object detection method because it
eliminates the post-processing mechanism of non-maximum
suppression, which is different from prior R-CNN models.
Object detection methods such as the Dense method in the
YOLO family where locations of anchor boxes densely cover
spatial positions, scales, and aspect ratios in a single-shot way.
A typical Dense-to-sparse approach is Faster R-CNN, which
uses RPN [33] to derive region proposals from the dense
region of candidates and refine those bounding boxes and
class-specific features. The sparse method applied by Sparse
R-CNN replaces RPN with a set of learnable region proposals
and proposal features. Input is an image with a set of region
proposals and proposal features that are randomly initialized
and optimized with other parameters in the whole network.
Features are extracted and fed into the backbone along with
region proposals and proposal features, eventually generating
outputs classification and localization. Sparse R-CNN shows
its accuracy, run-time and convergence in training on the
challenging COCO dataset, yielding a 45.0 AP score at 22
fps using the ResNet-50 FPN backbone. Fig. 6 shows the
architecture of Sparse R-CNN object detection method.
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B. Image Dehazing Methods

1) DW GAN (Discrete Wavelet Transform GAN): DW-GAN
was proposed by [17] in 2021. This method was designed to
tackle two problems that some existing CNN-based dehazing
methods have when working with non-homogeneous cases.
These problems are the loss of texture details when images
are being dehazed due to the complicated haze distribution and
over-fitting problems because of the lack of training data. The
architecture of this method is a novel two-branch generative
adversarial network. For the first branch, called the DWT
branch, they proposed the idea of directly embedding the
frequency domain knowledge into the dehazing network by
utilizing wavelet transform. Therefore more high-frequency
knowledge in the feature map can be retained. In terms of
the knowledge adaptation branch, the Res2Net was employed
with the pre-trained ImageNet weights as initialization in order
to prevent overfitting and improve the generalization ability of
the network. Finally, they add a basic 7 × 7 convolution layer
as a fusion operation to map the features from two branches
to clear images. Furthermore, they also introduced the final
loss blend function shown in Equation 1. (L1) is L1 loss,
(LSSIM ) denotes MS-SSIM [34] loss ,(Lperceptual) represents

perceptual loss [35] and, for the adversarial loss (Ladv), the
discriminator in [36] is employed.

Ltotal = L1 + αLSSIM + βLperceptual + γ4Ladv (1)

Where (α) = 0.2, (β) = 0.001 and (γ) = 0.005 are the
hyper-parameters weighting for each loss functions.

2) Two-Branch Dehazing: [18] proposed another two-
branch neural network for non-homogeneous dehazing via
ensemble learning. The authors found that a carefully built
CNN frequently fails on a non-homogeneous dehazing dataset
introduced by NITRE challenges [37] even though it performs
well on large-scaled dehazing bench-marks. Therefore, they
introduced a two-branch neural network to deal with the afore-
mentioned problems separately, followed by a learnable fusion
tail to map their different features. The first branch, the transfer
learning sub-net, is based on an ImageNet pre-trained Res2Net.
This branch extracts robust global representations from input
images with pre-trained weights and then helps the network
address the problem of lacking training data. In the second
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branch, [18] used residual channel attention network to design
the current data fitting sub-net. This branch has five residual
groups; each has ten residual blocks. However, the second
branch always maintains the input image’s original resolution
and avoids using any downsampling operation. Finally, a fusion
layer generates the entire network’s final output. The fusion
layer, in particular, takes the concatenation of features from
the branches and maps them to clear outputs. Besides, they
also applied the adversarial loss with the discriminator in [36]
because of its effectiveness in helping restore photo-realistic
photos [38], especially for a small-scaled dataset.

IV. EXPERIMENTAL RESULTS

A. Benchmark Suite

In this study, the UIT-DroneFog dataset, which was cre-
ated by [12], was employed to evaluate the performances
of detectors in foggy aerial images. This dataset consists of
15,370 foggy aerial images captured by drones with about 0.6
million bounding boxes of various means of transportation and
pedestrians. This dataset has four classes: Pedestrian, Motor,

Car, and Bus. We also used the default subsets provided
by the authors, which include: Training set (8,580 images),
Validation set (1,061 images), and Testing set (5,729 images).
The numbers of each class are shown in Fig. 7.

There are several reasons why we choose this dataset.
Firstly, the images in this dataset are of high quality, which
helps the detectors work more efficiently. Secondly, the context
of these images is diverse and especially, there is an imbalance
in this dataset with a vast majority of motor objects. This can
be a tough challenge for our detectors.

Example images of this dataset are shown in Fig. 8.

B. Experimental Settings

The experimental processes were conducted on a GeForce
RTX 2080 Ti GPU with 11018 MiB memory. We trained
the models by employing the MMDetection framework
V2.10.0[39]. For each model, we used the highest mAP score
configuration, provided on the MMDetection GitHub website1

1https://github.com/open-mmlab/mmdetection
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or author’s GitHub. We conducted every training process on a
single GeForce RTX 2080 Ti GPU.

To evaluate the detectors, we used the best weights of
each model on the validation set to predict and report the
results on the testing set via the mAP measure to evaluate
the performance of models, which is the same as the object
detection contest on the MS COCO dataset. The AP score was
calculated for 10 IoU varied from 50% to 95% with steps of
5%. Besides, the results of two specified values of 50% and
75% were also reported.

C. Experimental Results

The experimental results are reported in Table I, Table II,
Table III. In Table I, we report the performance of five ex-
perimental object detectors on original foggy images. Overall,
CasDou - a two-stage method - shows the best performance
(34.7% AP) while YOLOv3 performs the worst. These results
reflect the characteristic of two-stage and one-stage detectors
correctly: two-stage methods often perform better than one-
stage methods about accuracy. However, Deformable DETR,
an end-to-end detector, has the highest results on Pedestrian
and Motor class objects, which are 0.5% and 2.8% higher than
CasDou. Moreover, Deformable DETR is exceptionally com-
petitive with CasDou about AP score (33.7% AP compared to
34.7% AP), proving that end-to-end detectors that may have
higher FPS can perform as well as two-stage detectors.

In Table II, we report the results of five object detectors but
use DW-GAN to de-haze images before training. In general,
there is a variation in the order of accuracy between the
methods. Cascade R-CNN, again a two-stage method, becomes
the detector that shows the best performance among the
experimented detectors, but the AP score is not higher than
CasDou trained on original foggy images. However, Cascade
R-CNN trained on images de-hazed by DW-GAN has a no-
ticeable improvement than its counterpart trained on synthetic
hazy images (+1.3% AP, +2.5% AP@50, +1.9% AP@75).
Furthermore, DW-GAN also helps YOLOv3 and Sparse R-
CNN enhance the AP score compared to their results in Table
I (+1.4% AP and +0.3% AP, respectively). Therefore, de-
hazing images using DW-GAN significantly and positively
affect the performance of five object detectors.

Table III reports the results using Two-Branch as the de-
hazing method. It can be seen that this de-hazing method
can not help object detectors improve the results compared to
their counterparts trained on original hazy images. However,
the accuracy between the methods is the same as Table I:
CasDou shows the best performance (33.1% AP) and YOLOv3
performs the worst (20.4% AP); CasDou also indicates the
best AP on Car and Bus classes (57.4% AP and 40.1% AP)
while Deformable DETR shows the best AP on Pedestrian
and Motor (2.7% AP and 35.8% AP). Notably, the CrossDet
detector using the Two-Branch de-hazing method shows a
slight improvement compared to its results in Table I (+0.5%
AP, +0.3% AP@50, +1.3% AP@75).

Through three experimental results, we can notice that two-
stage methods, especially CasDou and Cascade R-CNN, have
the ability to perform better than one-stage and end-to-end
detectors on both original and dehazed datasets. Besides, from
these experiments, it can be seen that resurfacing objects from
hazy aerial images by dehazing them is a tough challenge and
not always effective due to color deviation and the loss of
information compared to haze-free images. In fact, the Two-
branch dehazing method significantly reduces the detection
results of CasDou’s detection result (−1.6% AP), while the
DW-GAN is proved to be more effective when helping Cascade
R-CNN improve its detection results were improved. This could
be explained by the fact that DW-GAN has higher results than
Two-branch dehazing when both of these two methods use the
same dataset [37]. In addition, although the AP result is not
so high, the DETR shows that this method can outperform all
other methods by a large margin when detecting small objects,
which are Pedestrian and Motor, on all three datasets (shown in
Fig. 9. This means that although the small objects are blurred
by fog, this method learns the features of this kind of object
better. On the other hand, when detecting objects in big sizes
such as Bus and Car - many times bigger than Motor and
Pedestrian, a two-stage method will be an appropriate choice
because the AP scores of Car and Bus detected by two-stage
methods in three report tables always ranks top. Fig. 10 and
Fig. 11 show the detection results of CasDou and Cascade R-
CNN methods with and without using de-hazing techniques.

V. CONCLUSION

This study has provided experimental results and a thor-
ough analysis of condition-based approaches to the problem of
vehicle detection on aerial images in foggy weather. In short,
we evaluate the effectiveness of advanced object detectors
on aerial images with and without foggy removal. DW-GAN
and Two-Branch are used for de-hazing. CasDou achieves
the highest performance among experiments when the AP is
recorded at 34.7% on original images. Experimental results
also show that detectors trained on de-hazed methods can
not achieve the best results. Still, with some detectors such
as YOLOv3, CrossDet, Sparse R-CNN, foggy removal help
them slightly improve the detection performance compared to
their counterparts trained on original images. As we reported,
the approaches using a GAN-based model to remove foggy
images somehow can not achieve the results of using original
images. Therefore, in the future, we plan to conduct more
experiments on other recent GAN-based methods to explore
their effectiveness in de-hazing. Besides, we also plan to
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Fig. 8. Example Images of UIT-DroneFog Dataset.

TABLE I. EXPERIMENTAL RESULTS WITH THE DEFAULT CONFIGURATION. THE BEST PERFORMANCE IS MARKED IN BOLDFACE (NOT DEHAZED).

Method Pedestrian Motor Car Bus AP AP@50 AP@75
Cascade R-CNN 2.10 34.50 56.80 38.40 32.90 45.80 38.50
CasDou 2.70 34.20 59.30 42.50 34.70 50.20 40.30
CrossDet 1.60 27.30 51.10 31.80 27.90 45.60 30.30
YOLOv3 1.10 21.50 41.10 15.80 19.90 32.10 21.10
Deformable DETR 3.20 37.00 56.30 38.30 33.70 51.60 38.00
Sparse R-CNN 2.70 23.80 30.80 28.80 21.50 32.90 23.20

TABLE II. EXPERIMENTAL RESULTS ON UIT-DRONE21 DEHAZED BY DWGAN. THE BEST PERFORMANCE IS MARKED IN BOLDFACE.

Method Pedestrian Motor Car Bus AP AP@50 AP@75
Cascade R-CNN 2.20 32.90 58.80 42.80 34.20 48.30 40.40
CasDou 2.30 32.70 58.30 39.60 33.20 47.80 38.10
CrossDet 1.30 27.20 50.60 29.40 27.10 44.00 29.70
YOLOv3 1.20 21.10 41.50 21.30 21.30 33.30 23.60
Deformable DETR 2.10 35.10 55.40 36.20 32.20 48.60 37.30
Sparse R-CNN 2.30 22.70 33.90 28.30 21.80 32.50 24.20

TABLE III. EXPERIMENTAL RESULTS DEHAZED BY TWO-BRANCH. THE BEST PERFORMANCE IS MARKED IN BOLDFACE.

Method Pedestrian Motor Car Bus AP AP@50 AP@75
Cascade R-CNN 1.90 32.40 57.30 38.60 32.60 45.50 38.40
CasDou 1.90 33.00 57.40 40.10 33.10 46.60 39.10
CrossDet 2.00 25.60 51.00 33.50 28.00 44.40 31.00
YOLOv3 8.00 20.20 40.30 20.20 20.40 32.40 22.40
Deformable DETR 2.70 35.80 54.70 32.80 31.50 48.40 35.30
Sparse R-CNN 2.40 23.20 32.20 27.90 21.40 32.70 23.40
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Fig. 9. Visualization Images of Detectors on UIT-DroneFog Dataset. (In Order to See the Image Clearly, Please Zoom in 2×.)

Fig. 10. CasDou on 3 Types of Dataset. The Dark Green Bounding Boxes are Motor, The Purple Bounding Boxes are Car, Light Green Bounding Boxes are
Pedestrian and Bus are Cyan. (In Order to See the Image Clearly, Please Zoom in 2×.)

propose a new approach that can adaptively predict foggy
images using a model trained on original images.
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