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Abstract—The performance evaluation of motion planning
algorithms for agricultural robotic manipulators is commonly
performed via benchmarking platforms. However, creating a
realistic benchmarking scene that constrains the motion planning
algorithms with the characteristic of a real-work environment
has always been a challenge worthy of research. In this paper,
we present a lab-setup benchmarking platform to evaluate Open
Motion Planning Library (OMPL) motion planners for the
application of a robotic harvester of a palm-like tree using a
real-time 3D occupancy grid map. First, three motion problems
were defined with different levels of complexity based on a real
oil palm fruit harvesting task. To achieve reliable outcomes, the
benchmarking scene was modeled by converting point cloud
data from a stereo-depth sensor into a 3D occupancy grid
map using the Octomap algorithm. Then the benchmarking
was performed, all within a real-time process. According to the
results, a fair performance evaluation was achieved by modeling a
realistic benchmarking scene, which can help in choosing a high-
performing algorithm and efficiently conducting such harvesting
tasks in real practice.
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I. INTRODUCTION

Over the last few decades, intelligent robots for fruit har-
vesting have been actively developed to bridge the increasing
gap between feeding a fast-growing population and limited
labor resources. Moreover, the recent international travel re-
strictions due to the COVID-19 pandemic in 2019-2021 have
exacerbated the limited labor resources issue, leading to the
unavailability of seasonal migrant workers [1]. A robotic
harvester can significantly boost productivity by reducing labor
and production expenses, increasing yield and quality, and
improving environmental management [2]. However, current
harvesting robots are limited in their capabilities in motion
planning, designed for specific plant structures. This limitation
is due to the target crops’ unstructured and dynamic nature
and obstructions within their working environment [3], [4].
Environment obstructions, such as branches and leaves, reduce
the performance efficiency of harvesting robotic manipulators.
In addition, they are likely to collide with those obstacles
when performing harvesting tasks. Therefore, establishing a
benchmarking approach to accurately evaluate a collision-
free motion planning algorithm for a given task is crucial to
increasing the performance of robotic harvesting manipulators.

This study aimed to perform a benchmarking of different

motion planning algorithms based on real-time perception,
i.e., 3D occupancy grid mapping for a robotic harvester
of a palm-like tree application. In general, palm-like trees,
such as oil palm, dates, and coconut trees, have unique
morphological characteristics that challenge motion planning
algorithms differently from other crops. The benchmarking of
motion planning algorithms based on real-time 3D occupancy
mapping should achieve reliable outcomes due to the actual
characteristics of the working environment, which is mimicked
from the real working environment into the benchmarking
scene and constrains the motion planning algorithms. In this
work, four motion planning algorithms from the OMPL li-
brary, namely, RRTConnect, BiTRRT, BFMT, and FMT, were
benchmarked using ROS and MoveIt platform. The process
outlined in this study contributes significantly to performing
the motion planning benchmarking based on realistic envi-
ronmental conditions. Furthermore, it can help adopt a high-
performing motion planning algorithm and effectively execute
such harvesting tasks in actual works.

II. RELATED WORK

In this section, we discuss the role of various benchmarking
platforms in evaluating motion planning algorithms for differ-
ent applications in the literature. In addition, a brief overview
and application of 3D occupancy grid mapping in robotic real-
time perception will also be presented.

A. Motion Planning Benchmarking

Motion planning is a fundamental topic in robotics that
deals with finding an optimal path that satisfies a target speci-
fication subject to constraints [5]. The issue of “which planner
to choose” could be hard to answer, given the wide range of
applications that robotic manipulators are used for [6]. During
the last few years, several works have compared and analyzed
the motion planning algorithms via benchmarking for different
applications during the last few years. Iversen and Ellekilde [7]
presented a benchmark for a set of motion planning algorithms
based on three different scenarios for bin-picking applications.
Despite longer planning time, the algorithms integrated with
optimization outperformed due to faster execution. Morgan et.
al [8] proposed three different robot benchmarking protocols,
namely the Modified Box and Block Test (BBT), Targeted-
BBT, and Standard-BBT, for assessing various aspects of
the system separately and the results compared with human
performance. Chatzilygeroudis et al. [9] represented a new
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benchmarking protocol to evaluate algorithms for bi-manual
robotic manipulation of semi-deformable objects. Therefore,
the work makes the benchmark accessible to various related
fields, from adaptive control and motion planning to learning
the tasks through trial-and-error learning. Jedrzejczyk et al.
[10] have investigated a tomato harvesting application and sug-
gested a benchmark of optimally configured motion planners
available within Robot Operating System (ROS) and MoveIt
platforms. The results indicated a comparison of efficiency
and repeatability of particular planners for a planning scene
imitating conditions in a greenhouse or similar pick-and-place
tasks. Magalhães et al. [11] suggested benchmarking path
planner algorithms from Open Manipulator Planning Library
(OPML) for tree pruning tasks. Thus, the results demonstrated
good agreement for the BiTRRT algorithm compared with
other algorithms from the OMPL library, such as BKPIECE,
LBKPIECE, SBL, and others. Despite the numerous studies
that benchmarked motion planning algorithms for robotic
manipulators in industrial applications, few works focused
on agricultural applications. Accordingly, this paper studied
benchmarking motion planning algorithms for a palm-like tree
harvesting application.

B. 3D Occupancy Grid Mapping

Robotic perception is understood as a system that endows
the robot with the ability to perceive, comprehend, and rea-
son about the surrounding environment. In addition, robotic
perception is crucial for a robot to make decisions, plan,
and operate in real-world environments, through numerous
functionalities and operations ranging from accupancy grid
mapping to object detection algorithms [12]. Fryc et al. [13]
proposed a robust multi-stage pipeline for efficient, collision-
free brick picking given the pose of a target object. In this case,
Octomap represented the realistic simulated environment as
inputs to generate a set of motion plans for the robot. Terasawa
et al. [14] presented a novel framework that combines a
sampling-based planner and deep learning for faster motion
planning, focusing on heuristics. For this purpose, the HM-
TS-RRT algorithm obtained a heuristic map of the environment
information from the Octomap for motion planning and gen-
erating collision-free paths within a reasonable time. Hence,
the results based on HM-TS-RRT outperform the existing
planners, especially in terms of the average planning time with
smaller variance. Gai et al. developed a vision-based system for
under-canopy navigation of agricultural robotic vehicles using
a Time-of-Flight (ToF) camera [15]. A novel algorithm was
used to detect parallel crop rows from occupancy grids taken
under crop canopies. Therefore, the proposed system was able
to map the crop rows with mean absolute errors (MAE) of
3.4 cm and 3.6 cm in corn and sorghum fields, where are
provided lateral positioning data with MAE of 5.0 cm and 4.2
cm owing to the position in corn and sorghum crop rows. Chao
and Chen [16] proposed a framework of visual perception,
scenario mapping, and fruit modeling for robotic harvesters in
orchard environments. The scenario mapping module applied
the Octomap to represent the multiple classes of objects within
the environment. The experiment results were shown that the
localization and pose estimation of fruits, which are obtained
at 0.955 and 0.923 values for the accuracy of visual perception
and modeling algorithm. However, not many studies use real-
time 3D occupancy grid mapping for benchmarking scenes. In

this work, we create a real-time realistic benchmarking scene
based on sensor information. This approach could help the
evaluation of motion planning algorithms more accurately and
obtain more reliable results.

III. METHODOLOGY

The assessment of motion planning algorithms is com-
monly performed using benchmarking platforms for robotic
manipulators [16]. However, the outcomes can be reliable
when the scene is more to reality [17]. Thus, developing
methods for replicating real-work environment specifications
in benchmarking scenes is crucial, e.g., the “sensed represen-
tation” of test scenes which are built from sensor information.
This study established a lab-setup environment as benchmark-
ing scene modeled by converting point cloud data from a
stereo-depth camera into a 3D occupancy grid map using the
Octomap algorithm [18]. The experiment was then conducted
to benchmark the motion planning algorithms for the three
motion problems with different levels of complexity based
on the oil palmtree harvesting task. The process mentioned
above, including generating the 3D occupancy grid map and
the benchmarking task, was implemented sequentially. All
the system components worked together simultaneously in
real-time. Thus the experimental results were obtained for
performance assessment of the motion planning algorithms.
The overall methodology procedure for this study is indicated
in Fig. 1.

Fig. 1. Overall Methodology Procedure.

The methodology procedure of this work was performed
through experimental work, as shown in Fig. 1. First, an
artificial oil palm tree was utilized to establish an oil palm fruit
harvesting scene. Furthermore, a robotic manipulator equipped
with a stereo-depth camera (Intel RealSense D435) was used to
conduct the harvesting task. The harvesting task was performed
using four motion planning algorithms from the OMPL library,
namely RRTConnect, BiTRRT, BFMT, and FMT. Therefore,
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the experimental findings evaluated the motion planning algo-
rithms’ performance via evaluation metrics, namely planning
time, execution time, and total time.

A. Experiment Setup Environment

A laboratory-based experimental setup was established
using an artificial palm-like tree and a four DoF robot ma-
nipulator to mimic the characteristic of a real oil palm tree
harvesting environment, as shown in Fig. 2. In addition, a
stereo-depth vision sensor was mounted on the robot manipu-
lator’s end-effector to model the working environment in the
benchmarking scene.

Fig. 2. (a) Laboratory-Scale Experimental Setup with a Robot Arm Attached
to a Camera and Artificial Tree (b) Real Oil Palm Tree (c) Artificial Tree.

B. Robot Arm Kinematics

This work used an open-hardware robotic manipulator,
model OpenManipulator made by Robotis, as shown in Fig. 3,
to develop a generic and low-cost harvesting platform [19].
This robot platform allows the users to optimize its morphol-
ogy, modify the length of the links, or design the robot for their
specific purposes [20]. Furthermore, the robotic manipulator
has four DoF, which, based on previous studies, met the
minimum requirement in terms of degree of freedom for a
palm-like tree harvesting application [21].

Fig. 3. OpenManipulator Robot Arm from Robotis.

Meanwhile, Fig. 4 illustrates the kinematics model of the
robot manipulator, which was utilized to obtain the Denavit-
Hartenberg parameters convention [22], as depicted in Table I.
Besides, the robot manipulator was also modeled within Robot
Operating System (ROS) platform using a domain-specific
modeling language called Unified Robotic Description Format
(URDF). The robot model was stored in a URDF file to
represent the properties of the robot in the ROS Visualization
(RVIZ) platform [18]. The URDF file format is based on XML
language, which allows for encoding the robot’s components
such as links, joints, shapes, and physical appearance, as shown
in Fig. 5.
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Fig. 4. Kinematic Model of Robotis OpenManipulator Robot Manipulator.

TABLE I. DH PARAMETERS FOR ROBOTIS OPENMANIPULATOR.

Joint θi (◦) di (m) ai (m) αi (◦)

1 θ1 L1 0 90

2 θ2 + (90◦ − θ0) 0 L6 0

3 θ3 − (90◦ − θ0) 0 L4 0

4 θ4 0 L5 90

Fig. 5. Robotis Open-Manipulator Model in RVIZ Software based on its
URDF File.

C. Modeling the Test Scene into a 3D Occupancy Grid Map

This work used an Intel Realsense D435i stereo-depth
sensor, integrated with a point cloud library (PCL), to generate
point cloud data [23] to replicate a real-work environment
for the test scene. The camera is equipped with two left/right
image sensors, OmniVision OV2740, which can produce full-
high-definition (FHD) at 60 frames per second (fps). In
addition, the Octomap library was implemented to convert
the point cloud data of the lab-setup environment into a 3D
occupancy grid map in real-time. Fig. 6 depicts a sample of a
3D occupancy grid map of the scene, including the tree leaves,
which was generated using the Octomap algorithm.

www.ijacsa.thesai.org 879 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

Fig. 6. A Sample of a 3D Occupancy Grid Map Including the Robot
Manipulator and Artificial Oil Palm Tree.

D. Generating the Harvesting Motion Planning Problems

In this benchmarking, three motion problems with different
levels of complexity in terms of collision avoidance were
defined based on a real oil palm harvesting task to measure
the performance of the motion planning algorithms. Each of
the motion problems contains a pair of initial and goal states.
The initial robot arm’s configuration and position are identical
for all three motion problems. The gray-colored robot arm
represents the initial state, while the orange-colored robot
arm indicates the goal state, as shown in Fig. 7a, 7b, and
7c. The use of the gripper was beyond the scope of this
work. Therefore, it is not included in these motion planning
problems.

Fig. 7. Three Different Test Scenarios in this Work.

1) Right-Side Fruit Bunch Problem: The initial state of this
problem is located in a less constrained space than the goal
state, as illustrated in Fig. 8. The goal state is a stretched
robot arm’s configuration with the robot arm’s end-effector
approaching the right side of the fruit bunch from the bottom.
Furthermore, the goal state represents the ‘ready to cut’ pose
of the fruit bunch for the robot arm.

Fig. 8. Right Side of the Fruit Bunch Problem.

2) Left-Side Fruit Bunch Problem: The goal state of this
problem is situated in a more constrained space than the
previous motion problem due to the narrow passage that the
robot arm should pass through to reach the target, as shown
in Fig. 9. As in the previous motion problem, The goal state
is a stretched robot arm’s configuration with the robot arm’s
end-effector approaching the right side of the fruit bunch from
the bottom. In addition, the goal state represents the ‘ready to
cut’ pose of the fruit bunch for the robot arm.

Fig. 9. Left Side of the Fruit Bunch Problem.

3) Left-Side Fruit Bunch to Right-Side Fruit Bunch Prob-
lem: This motion problem defines the left side of the fruit
bunch as the initial state and the right side of the fruit bunch
as the goal state, as shown in Fig. 10. Furthermore, the motion
path needs to be created from a highly constrained space,
traveling through a narrow passage and finally reaching another
highly constrained space, as illustrated in Fig. 10. Thus, a
higher level of complexity in terms of obstacle avoidance is
provided by this motion problem than the previous motion
problems.

Fig. 10. Left Side to the Right Side of the Fruit Bunch Problem

E. Performance Evaluation

The experiment was performed within the ROS MoveIt
platform on a computer with Ubuntu 18.04.6 LTS Operating
System, Intel R© CoreTM i7-9750H CPU, 16 GB Memory,
Nvidia GeForce RTX 2060, and ROS Melodic distribution. The
ROS MoveIt platform integrates a 3D occupancy grid map of
the working environment with motion planning algorithms to
generate feasible paths and solve motion problems for a given
task.

In order to evaluate the performance of the motion planning
algorithms for solving and executing the motion planning
problems, three metrics, namely planning time, execution time,
and total cycle time, were defined. All the metrics were
analyzed individually to demonstrate the higher performance
algorithm within each of them. Planning time is considered
when it takes for a motion planner to find a viable path for
a given motion problem. Furthermore, The time it takes for
the robot arm to move from its initial state to its goal state
for a given motion path is known as execution time. Finally,
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the addition of planning and execution time is considered total
cycle time.

The motion planning algorithms, RRTConnect, BiTRRT,
BFMT, and FMT, were implemented to solve and conduct
the motion problems. For each specific problem, the problem
was solved and executed 10 times by each of the algorithms
for 40 runs per problem. Given the three motion problems,
120 runs were performed to conduct the benchmarking task.
Furthermore, each algorithm was given 5 seconds time-out
to solve the respective motion problem since such harvesting
applications need to be conducted quickly in real practice. The
successful cycles only were used in the analysis.

IV. RESULTS AND DISCUSSION

Fig. 11 illustrates the results of the planning time for the
three motion planning problems solved by the algorithms men-
tioned above. In the first problem, the right-side fruit bunch,
RRTConnect achieves the shortest planning time with the
lowest mean of 0.11 s and also the lowest standard deviation
of 0.0215 s. In contrast, FMT had the worst performance
among the others. This outcome indicates that for straight
forward motion planning problems, with the minimum need
for curvature to avoid colliding with obstacles, RRTConnect
algorithm can be considered a fast algorithm for creating
motion paths.

Fig. 11. Planning Time for the Three Planning Motion Planning Problems.

In the second motion planning problem, the left-side fruit
bunch, more complexity in terms of collision avoidance was
provided by the motion problem to the algorithms. In this prob-
lem, RRTConnect outperformed the other algorithms again
(slightly faster than BiTRRT) with the lowest mean of 0.2414
s and the lowest standard deviation of 0.0568 s. Meanwhile,
in the third motion planning problem, from the left-side fruit
bunch to the right-side fruit bunch, RRTConnect had the
shortest mean. In contrast, BiTRRT, which had a slightly
higher mean, demonstrated a lower standard deviation than
RRTConnect. Again, the FMT had the longest computation
time among all.

Meanwhile, Fig. 12 represents the execution time of motion
planning generated by the algorithms within the three motion
problems. For example, in the first problem, from the initial
position to the right-side fruit bunch, RRTConnect achieved the
fastest execution time with the lowest mean of 4.9455 s and
the lowest standard deviation of 0.1932 s. Meanwhile, FMT
was the slowest, with the highest mean and highest standard
deviation with more outliers than other algorithms.

In the second problem, from the initial position to the left-
side fruit bunch position, RRTConnect achieved the lowest
mean of 5.257 s while obtaining the highest standard deviation

Fig. 12. Execution Time for the Three Planning Motion Planning Problems.

of 0.718 s. In contrast, FMT had the highest mean of 5.441
s and the most significant number of outliers. In the third
problem, from the left side to the right side fruit bunch, the
most complicated motion within this benchmarking work was
provided to the motion planning algorithms. The lowest mean
of 7.893 s and the highest standard deviation of 1.313 s was
achieved by the BFMT. In contrast, FMT obtained the highest
mean of 8.547 s but a lower standard deviation for the motions
execution time.

Furthermore, Fig. 13 shows the results for the total cycle
time, including motion planning times and the respective
motion execution times. In the first problem, the right-side
fruit brunch, RRTConnect achieved the highest performance in
motion planning time and the respective execution time with
the mean of 5.062 s and standard deviation of 0.1889 s. In
contrast, the lowest performance was obtained by FMT with
a mean of 9.702 ) and a standard deviation of 0.803 s.

Fig. 13. Total Cycle Time for the Three Planning Motion Planning Problems.

In the second problem, despite the lowest mean of 4.998 s
for RRTConnect, its standard deviation is significantly higher
than the second-lowest mean, which BiTRRT achieved. To this
extent, BiTRRT can be considered a more consistent algorithm
for such motion problems. In the third problem, where a more
complicated motion problem than the first and the second
one was provided, BiTRRT achieved the highest performance
with the lowest mean and standard deviation of 8.689 s and
0.683 s, respectively. In contrast, FMT demonstrated the lowest
performance concerning its mean of 13.305 s and a number of
outliers.

Due to the smaller size of the palm-like artificial tree,
which was used in our experimental setup, compared to actual
palm-like trees, the Octomap resolution was increased. Thus,
the generated 3D occupancy map contains all the necessary
details of the artificial tree. However, the increase in resolution
would result in high computational cost leading to a rise in
the planning and execution time accordingly. On the other
hand, with regard to the much larger size of real palm-
like trees, which would result in less computational cost for
generating a 3D occupancy map with lower resolution, a
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considerable decrease in motion planning time and execution
time is expected for real palm-like tree harvesting applications.

V. CONCLUSION

In this study, a benchmarking of OMPL motion planning
algorithms for a robotic harvester of a palm-like tree appli-
cation was performed using the ROS and MoveIt platform.
An experimental harvesting application setup was established
using an artificial palm tree and a four DoF robotic manipulator
equipped with a stereo-depth sensor. A 3D occupancy map
was constructed using the Octomap algorithm to replicate the
features and characteristics of the working environment based
on the point cloud data produced by the stereo-depth sensor,
which is imported into the benchmarking scene. The bench-
marking was then performed within three harvesting scenarios,
each including a motion planning problem with different levels
of complexity, all as real-time experimental work. The motion
planning performance was studied by defining three evaluation
metrics: planning time, execution time, and total cycle time.
RRTConnect demonstrated the highest performance in the first
harvesting scenario according to the outcomes. However, for
the second and third scenarios, BiTRRT outperformed the
other algorithms. The work presented in this study can be
extended to include methods for optimally configuring the
OMPL motion planning algorithms based on the features and
characteristics of a palm-like tree harvesting application to
achieve the highest performance for a given motion planning
algorithm.
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