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Abstract—Groundnut is an important oilseed crop in the 

world, and India is the second-largest producer of groundnuts. 

This crop is prone to attack by numerous diseases which is one of 

the most important factors contributing to the loss of 

productivity and degradation in the quality; both of these finally 

result in a low agricultural economy. Therefore, it is necessary to 

find better and more reliable automation solutions to recognize 

groundnut leaf diseases. In this paper, a deep learning based 

model with progressive resizing is proposed for groundnut leaf 

disease recognition and classification tasks. Five major categories 

of groundnut leaf diseases namely leaf spot, armyworms effect, 

wilts, yellow leaf, and healthy leaf are considered. The proposed 

model was trained with and without progressive resizing while it 

was validated using cross-entropy loss. The first of its kind 

dataset used for training and validation purposes was manually 

created from the Saurashtra region of Gujarat state of India. The 

created dataset was imbalanced in terms of a different number of 

samples for each category. To handle the imbalanced dataset 

problem, the extended focal loss function was used. To evaluate 

the performance of the proposed model, different performance 

measures including precision, sensitivity, F1-score, and accuracy 

were applied. The proposed model achieved state-of-the-art 

accuracy of 96.12%. The model with progressive resizing 

performed better than the traditional core neural network-based 

model built on cross-entropy loss. 

Keywords—Groundnut leaf disease recognition; progressive 

resizing; deep learning; neural network 

I. INTRODUCTION 

The groundnut crop plays an important role in the 
agricultural export commodity and edible oilseed economy of 
India. In the year 2019 alone, total groundnut acreage and 
production in India were 3.931 million hectares and 6.862 
million MT respectively (IOPEPC, 2019)[1], but still, the 
average yield is low. Disease attack is a major factor 
contributing to the loss of productivity, quality, and early death 
of the leaves (Konate et.al., 2020)[2]. Therefore, it is necessary 
to take steps toward developing a fast and accurate groundnut 
leaf disease recognition methodology to increase productivity 
sustainably. This will be of great significance to the various 
stakeholders. Till now almost no commercial tools are 
available for accurate recognition of groundnut leaf disease and 
very less quality research articles are published for the same. 
One of the key reasons behind this might be a lack of 

benchmark datasets available for groundnut leaf disease 
recognition research and experiments. 

In this research, the groundnut leaf dataset was created 
manually from the Saurashtra regions of Gujarat. Initially, all 
images were captured in fixed background squared format with 
the size of 3000x3000 pixel (3 color channels), and then final 
datasets were prepared in different sizes of images including 
32x32, 64x64, 128x128, and 256x256. Based on the thorough 
review of the literature and a comprehensive review carried out 
by (Ngugi et al., 2020; Chouhan et al., 2020; Kaur et al., 2019) 
[3-5] on methods used in leaf disease recognition using image 
processing, machine learning, and deep learning techniques, it 
was derived for the current research work that very few 
researchers have worked on groundnut leaf disease recognition. 
Chen et al. (2019) [6] used spectral index and disease index 
based on their correlation in leaf spectrum range between 
325nm to 1075nm. Their results showed that near-infrared 
regions’ canopy spectral reflectance decreased as the disease 
index increased. In the regression model, normalized difference 
spectral indexes were R938, R761 with the value of R2 up to 
0.68 for peanut leaf spot disease detection. Based on the index 
model high fit between estimated and observed values, they 
concluded that the model could be used for peanut leaf spot 
disease detection. For groundnut disease classification 
(Chaudhary et al., 2016)[7] proposed an improved Random 
Forest Classifier using instance Filter-Resample and attribute 
evaluator methods for balancing the class distributions of the 
multi-class dataset. The proposed method was also applied on 
five different datasets such as Diabetes, Soybean, Audiology, 
Vote, and Breast Cancer, and obtained the value of the F1-
measure in the range between 0.89 and 0.97. They advocated 
that the result of their method was effective when the dataset is 
unbalanced in terms of the number of samples varying among 
different classes. Ramakrishnan and Sahaya (2015) [8] applied 
a backpropagation algorithm for groundnut leaf disease 
detection and classification. Initially, RGB was converted into 
HSV and then plane separation and color features extraction 
steps were carried out. Dong et al. (2019)[9] applied a capsule 
network for peanut leaf disease recognition with the use of 
dynamic routing to overcome the problem of rotational 
invariance and spatial relationships. Their empirical 
observations showed that the recognition accuracy of the 
capsule network is 82.17% which is better than the 
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corresponding value of 81.14% of the convolutional neural 
network. It is notable to mention here that the capsule network 
was originally proposed by Sabour et al. (2017) [10]. 
Vaishnnave et al. (2020)[11] used a convolutional network for 
groundnut disease classification and claimed higher accuracy 
for training and testing on the PlantVillage dataset, but the fact 
is, till now no benchmark image dataset for groundnut diseases 
is released or published by PlantVillage (PlantVillage, 2020) 
[12]. 

Since the introduction of Deep learning, many state-of-the-
art benchmark architectures such as DenseNet (Huang et al., 
2017) [13], Deep residual learning (He et al., 2016) [14], 
Inception-v4 (Szegedy et al., 2017) [15], GoogLeNet (Szegedy 
et al., 2015) [16], VGG (Simonyan and Zisserman, 2014) [17] 
and AlexNet (Krizhevsky et al., 2012) [18] have been found to 
give an incredible performance for object detection and various 
computer vision tasks. Many researchers have also used these 
architectures for transfer learning for plant disease recognition 
e.g. (Fuentes et al., 2018) [19] have used R-CNN, AlexNet, 
GoogLeNet for the identification of tomato leaf disease, (Liu et 
al., 2018)[20] have used AlexNet for apple leaf disease 
detection, (Kaya et al., 2019; Barbedo 2019; Brahimi et al., 
2018; Mohanty et al., 2016)[21-24] have used multiple 
benchmark architectures for multiple plant disease recognition. 

In recent times, convolutional neural network-based 
methods are great in demand for plant leaf disease recognition 
due to automatic deep feature extraction. For corn leaf disease 
recognition and classification (Waheed et al., 2020) [25] 
proposed an optimized dense convolutional neural network 
model. Ji et al. (2020) [26] proposed a Convolutional Neural 
Network-based architecture for multi-label learning for crop 
leaf diseases recognition and severity estimation. To overcome 
the problem of the unbalanced dataset (Zhong and Zhao, 2020) 
[27] have proposed DenseNet-121 as the backbone network 
and used three methods regression, multi-label classification, 
and focus on loss function to identify apple life disease and 
obtained test accuracy of 93.51%, 93.31% and 93.71% 
respectively which was better than the accuracy of 92.29% 
obtained by traditional multi-classification method with a 
cross-entropy loss function. Sethy et al. (2020) [28] used 
different CNN architectures based on deep features using a 
support vector machine to identify rice leaf disease. 

Self-attention CNN-based architecture was proposed by 
(Zeng and Li, 2020) [29] for crop leaf disease recognition. 
Zhang et al. (2019) [30] have used global pooling dilated 
convolutional neural network for cucumber leaf disease 
identification. Karlekar and Seal (2020) [31] proposed CNN-
based SoyaNet for soybean leaf disease classification. Their 
proposed network obtained higher precision, recall, and f1-
score value compared to the other nine state-of-the-art models. 

Almost all the existing CNN-based architectures designed 
for leaf disease recognition and classification perform well at 
some level in terms of precision, recall, f1-score, and accuracy. 
However, the time complexity and model generalization are 
major problems when CNN-based architecture is trained and 

optimized on the high volume of small and large images or in a 
real-time environment due to the range of features and number 
of layers in the architecture. In this paper, a CNN-based 
architecture with progressive resizing for model generalization, 
optimization, and performance improvement is proposed. 

II. MATERIALS AND METHODS 

A. Dataset 

Based on the best knowledge of related literature, almost no 
benchmark dataset of groundnut leaf disease is publicly 
available for research. The dataset for the current research was 
created manually and comprised of five major groundnut leaf 
classes, viz. leaf spot, armyworm effects, wilts, yellow leaf, 
and healthy leaf. All major types of symptomatic leaves were 
plucked manually from the plants and put onto the fixed 
background to capture the images. Initially, all the images are 
captured in squared format with the size of 3000x3000 (3 color 
channels), and then later all the captured images are resized in 
different sizes of 32x32, 64x64, 128x128, and 256x256 for 
model development using progressive resizing. The created 
dataset was divided into a ratio of 80:20 for training and 
testing. All the classes and corresponding labels considered for 
this research are shown in Table I. 

The distribution of training and testing datasets is depicted 
in Fig. 1 which also indicates that the dataset is imbalanced as 
the distribution is not in equal proportion for each class. This 
was solved using the Focal loss function and is discussed in 
section 2.4 in detail. According to the data presented in Fig. 1, 
the most commonly occurring leaf disease in the groundnut 
crop is Leaf Spot which contributes the largest proportion, 
except healthy leaf, in the dataset. Similarly, the least 
proportion in the dataset is comprised of groundnut wilts. 
Notably, it is also a more harmful disease. 

B. Proposed Network Architecture 

The well-known terminologies used in CNN such as a 
convolutional layer, pooling layer, filters, fully connected 
layer, etc., are not addressed here to rule out redundancy. 

Model built on the standard convolutional neural network 
works well when input images are fixed in size. The model 
gives good accuracy when feeding larger images but it takes a 
long time and uses more computation power during the training 
phase. Scale-up and scale-down are required during training 
when input images are very small and large, respectively. 

TABLE I. GROUNDNUT LEAF DISEASE CLASSES AND CORRESPONDING 

LABEL 

Class Name Class Label 

Groundnut Yellow Leaf 0 

Groundnut Wilts 1 

Groundnut Leaf Spot 2 

Groundnut Healthy Leaf 3 

Groundnuts ArmywormsEffect 4 
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(a) Training Dataset.      (b) Testing Dataset. 

Fig. 1. Data Distribution for Training and Testing. 

In this research, we have considered progressive-resizing 
methodology (originally proposed by Jeremy Howard, 2018) 
[32] for training a model to improve the recognition rate and 
for the model generalization. The workflow of progressive 
resizing for the proposed work is as follows: 

Phase-1: The first model was trained on small images with 
the size of 32x32 with 3 color channels. 

Phase-2: The next model was trained on upscaled images 
with the size of 64x64. Here, the layers and weights used in the 
previous smaller scale model were incorporated during 
training. 

Phase-3: The third model was trained on 128x128 images; 
the output of phase-2 was fed as the input of phase-3. Each 
model is responsible to find some new features and patterns 
which were hidden in a previous smaller-scale model. 

Phase-4: The final architecture was built and trained using 
the size of 256x256 images. Each larger scale model 
incorporates the previous smaller scale model in its 
architecture. 

The proposed model was started to be built on 32x32 sizes 
and then scaled up to 4X, where X was the initial size of input 
images. Each phase of the proposed network was trained on the 
specific size of images and extracted some features. The 
trained model was saved with their weights and the weight was 
not changed in further training. Each subsequent phase was 

responsible to extract additional findable features which were 
hidden and not found in the previous phase of the network. 
Models built on small-size images generalize well to larger 
input sizes and they take less time in processing (Howard, 
2018) [33]. The proposed combined architecture is depicted in 
Fig. 2. 

In order to introduce nonlinearity into the model, Rectified 
Linear Unit (ReLU) was used in each convolution operation 
The ReLU function, F(x) = max(0, x), returns x for all values 
of x > 0, and returns 0 for all values of x ≤ 0. 

C. SoftmaxLoss 

Here, the Softmax loss is categorical cross-entropy loss 
which is computed based on class probability generated by 
Softmax activation and using cross-entropy loss function. It has 
been referred to as f(si) and defined as follows: 

      
   

∑     
 

 

Where si, is a network score of each class i in C. 

In this research specifically disease classification, labels are 
considered as one-hot, which means only positive class Cp 
were considered in cross-entropy loss which can be defined as 
follows: 

Cross-Entropy =   ∑   
 
             

 

Fig. 2. Proposed CNN based Architecture [Image by Author]. 
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Target vector t only contained non-zero elements. We can 
write the following equation for cross-entropy loss after 
discarding the elements of summation which are zero because 
of target labels, so ti=tp. 

Cross-entropy =     (
   

∑  
   

 

) 

Where sp is a score of positive class in CNN. 

D. Focal Loss 

The proposed classification also involved the problem of 
the imbalanced dataset. Some classes have a very small 
number of samples whereas some other classes contained 
almost double the number of samples. The network trained 
using an imbalanced dataset makes the network biased towards 
learning in favor of the classes having a higher number of 
samples while the remaining classes go under-looked. To 
tackle the class imbalance problem, a focal loss function with 
the multiplication of cross-entropy loss function with 
modulating factors was used. The Focal Local loss function is 
an improved version of cross-entropy loss which is made by 
adding focusing and balancing parameters in the cross-entropy 
loss function. This enhances the efficiency of the network and 
improves the results of misclassified observations. The focal 
loss function was originally proposed by Facebook AI 
Research (Lin et. al., 2017) [33] for binary classification in the 
object detection task. We have extended the concept of focal 
loss for multi-class classification. The general form of the focal 
loss function is: 

                  
          

The focal loss for multi-class classification can be derived 
as follows: 

                     
             

Where gamma (    is focusing parameter and       is 
softmax used for multi-class classification in cross-entropy. If 
   , then this equation is equivalent the equation of cross-
entropy loss. Tunable focusing parameter   should be   . 
Gamma (   controls the shape of the curve. The higher value 
of gamma     reduces the loss of well-classified observations 
at some level. In this equation          

  is considered as 
modulating factor. 

Finally, focal loss function can be defined with balancing 
parameter for imbalanced data as follows: 

                      
             

Where, alpha ( ) is a balancing parameter. In this case, 
alpha refers to the weights used in the network, and small 
weights were assigned to dominating class while higher 
weights were assigned to the rare class. 

III. RESULT AND DISCUSSION 

The training parameters used for the proposed model are 
shown in Table II. The model was trained on different sizes of 
images starting from 32x32x3and the final model was trained 
on 256x256x3 images. After doing many experiments, the final 
batch size and learning rate were set to 32 and le-3 
respectively. Optimizer Adam was used with the decay of le-5. 

TABLE II. TRAINING PARAMETERS 

Parameter Settings 

Final Input size (256,256,3) 

Batch size 32 

Learning Rate 1e-3 

Optimizer Adam with decay of 1e-5 

The distribution of testing data for each category is shown 
in Table III. 

TABLE III. DISTRIBUTION OF TEST DATASET 

Class Number of Samples 

Groundnuts Healthy Leaf 333 

Groundnuts Armyworms Effect 263 

Groundnuts Wilts 160 

Groundnuts Leaf Spot 293 

Groundnut Yellow Leaf 240 

The core CNN-based model without progressive resizing 
was evaluated using cross-entropy loss with different statistical 
measures, as shown in Table IV. The maximum and minimum 
F1 scores obtained were 0.934773 and 0.853771 for leaf spot 
and Wilts categories respectively. The average accuracy was 
reported to be 0.918823. The evaluation of the proposed model 
with progressive resizing and cross-entropy loss is shown in 
Table V. The result shows that the accuracy of 0.949381 
obtained in progressive resizing is better than the accuracy of 
0.918823 obtained with the core CNN model. 

TABLE IV. CROSS ENTROPY LOSS WITHOUT PROGRESSIVE RESIZING 

  
Precision 

(%) 

Sensitivity 

(%) 

F1 score 

(%) 

Groundnuts Healthy Leaf 0.929509 0.919712 0.924585 

Groundnuts Armyworms Effect 0.929019 0.937031 0.933008 

Groundnuts Wilts 0.857722 0.849856 0.853771 

Groundnuts Leaf Spot 0.938732 0.930847 0.934773 

Groundnut Yellow Leaf 0.919686 0.928934 0.924287 

Weighted avg 0.920766 0.918823 0.919774 

TABLE V. CROSS ENTROPY LOSS WITH PROGRESSIVE RESIZING 

  
Precision 

(%) 

Sensitivity 

(%) 
F1 score (%) 

Groundnuts Healthy Leaf 0.963758 0.958712 0.961228 

Groundnuts Armyworms Effect 0.961034 0.960001 0.960517 

Groundnuts Wilts 0.913827 0.901834 0.907791 

Groundnuts Leaf Spot 0.962093 0.959823 0.960957 

Groundnut Yellow Leaf 0.942003 0.943748 0.942875 

Weighted avg 0.952575 0.949381 0.950971 

The results of the proposed model without progressive 
resizing using focal loss (γ=2) is shown in Table VI. The 
average accuracy of 0.930404 was reported which is better 
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than the accuracy of 0.918823 achieved in cross-entropy loss. 
The training-validation accuracy and training validation loss 
using the focal loss function are depicted in Fig. 3(a) and 
Fig. 3(b) respectively. Here, focal loss down-weighted the easy 
observations and focused training on hard observations of 
imbalanced classes. 

The evaluation results of the proposed CNN-based model 
with progressive resizing using focal loss function is shown in 
Table VII. The obtained average accuracy was 0.961229 which 
is better than the accuracy obtained in all other cases. 
Basically, setting the value of γ> 0 reduces the relative loss for 
well-classified observations, for the proposed model we 
obtained a higher accuracy when γ=2 set. The minimum F1 
score was reported for the Groundnuts Wilts class and the 
maximum F1 score was reported for the Groundnuts 
Armyworms Effect class. The training and validation accuracy 
and loss for CNN-based model with progressive resizing using 
focal loss function is depicted in Fig. 4(a) and 4(b), 
respectively. 

TABLE VI. FOCAL LOSS (Γ=2) WITHOUT PROGRESSIVE RESIZING 

Categories 
Precision 

(%) 

Sensitivity 

(%) 

F1 score 

(%) 

Groundnuts Healthy Leaf 0.937483 0.929594 0.933522 

Groundnuts Armyworms Effect 0.932743 0.942032 0.937364 

Groundnuts Wilts 0.896029 0.88 0.887942 

Groundnuts Leaf Spot 0.9488 0.948921 0.948860 

Groundnut Yellow Leaf 0.926023 0.929782 0.927899 

Weighted avg 0.931809 0.930404 0.931088 

 
(a) Training and Validation Accuracy. (b) Training and Validation Loss. 

Fig. 3. Training and Validation of Core CNN Model with Focal Loss. 

TABLE VII. FOCAL LOSS (Γ=2) WITH PROGRESSIVE RESIZING 

Categories 
Precision 

(%) 

Sensitivity 

(%) 

F1 score 

(%) 

Groundnuts Healthy Leaf 0.978302 0.9702 0.974234 

Groundnuts Armyworms Effect 0.972003 0.98 0.975985 

Groundnuts Wilts 0.92904 0.92893 0.928985 

Groundnuts Leaf Spot 0.97 0.9610212 0.965490 

Groundnut Yellow Leaf 0.958003 0.95 0.953985 

Weighted avg 0.965235 0.961229 0.963217 

 
(a) Training and Validation Accuracy. (b) Training and Validation Loss. 

Fig. 4. Training and Validation with Progressive Resizing and Focal Loss. 

IV. CONCLUSION 

CNN-based architecture with progressive resizing was 
proposed to classify groundnut leaves into classes, namely, 
healthy leaf, armyworm effect, groundnut wilts, yellow leaf, 
and leaf spot which happen to be the most occurring disease in 
groundnut leaves. The proposed architecture with and without 
progressive resizing was evaluated using cross-entropy loss 
and focal loss functions. The obtained results of the proposed 
model without progressive resizing were 91.88% and 93.04% 
using cross-entropy loss and focal loss respectively while the 
average accuracy of the proposed model with progressive 
resizing using focal loss was 96.12%. Based on the empirical 
results, it is concluded that the progressive resizing-based 
model is a more generalized model and it was trained on 
different scales starting from the small-scale images of 32x32 
size while the final model was built using 256x256 size 
images. The results obtained on different scenarios show that 
the CNN-based model with progressive resizing outperforms 
the core CNN-based architecture while the focal loss function 
helped out to deal with the imbalanced dataset problem. In the 
future, we plan to implement the proposed concept to 
recognition of diseases in real-time farm fields by combining 
computer vision technologies. 
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