
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

Optimization of Small Sized File Access Efficiency in
Hadoop Distributed File System by Integrating

Virtual File System Layer
Neeta Alange1

Research Scholar
Department of Computer Science and Engineering

Koneru Lakshmaiah Education Foundation
KL Deemed to be University, Vaddeswaram, AP, India

Anjali Mathur2
Associate Professor

Department of Computer Science and Engineering
Koneru Lakshmaiah Education Foundation

KL Deemed to be University, Vaddeswaram, AP, India

Abstract—Storage for large datasets, handling data in
different formats and data getting generated with high speed are
the major highlights of the Hadoop because of which the Hadoop
got invented. Hadoop is the solution for the big data problems as
discussed above. In order to give the improved solution (in terms
of access efficiency and time) for small sized files, this solution is
proposed. A novel approach called VFS-HDFS architecture is
designed in which the focus is on optimization of small sized files
access problems with significant development compared with the
existing solutions i.e. HDFS sequence files, HAR, NHAR. In the
proposed work a Virtual file system layer has been added as a
wrapper over the top of existing HDFS architecture. However,
the research work is carried out without altering the existing
HFDS architecture. In this paper drawbacks of existing
techniques i.e. Flat File Technique and Table Chain Technique
which are implemented in HDFS HAR, NHAR, sequence file is
overcome by using Bucket Chain Technique. The files to merge
in a single bucket are selected using ensemble classifier which is a
combination of different classifiers. Combination of multiple
classifiers gives the better accurate results. Using this proposed
system, better results are obtained compared with the existing
system in terms of access efficiency of small sized files in HDFS.

Keywords—HDFS; Small sizes files; virtual file system; bucket
chain; ensemble classifiers; text classification

I. INTRODUCTION
This Hadoop Distributed File System (HDFS) is a core

component of Hadoop which works at storage layer of Hadoop.
Advantages of HDFS includes varied data sources, availability,
scalable, cost effective, low network traffic, ease of use,
performance, high throughput, compatibility, fault-tolerant,
open source and multiple language support etc. Apart from
these multiple advantages, HDFS have limitations too such as
handling small files, slow processing speed, support for batch
processing, no real time data processing, no Delta Iteration,
latency, not easy to use, security etc. Storing and processing of
large number of small sized files in HDFS is a major problem.
Hadoop Archives provides an efficient way to handle with
small files [20].

Hadoop working is best with respect to big data files; small
sized files are handled inefficiently in HDFS. NameNode
carries the metadata information in memory for the files which
are stored in HDFS. Consider a file which is stored in HDFS

having size as 1 GB and the NameNode is responsible for
storing the information such as filename, offset, length etc.
which are split into 1000 fragments and stored all 1000 small
files in HDFS. It is mandatory for the NameNode to store
metadata information of 1000 small files in memory. This is
not efficient way; first it takes up a lot of memory and second
soon NameNode will become a bottleneck as it is trying to
manage a lot of data [30].

Due to the outbreak of a COVID-19 pandemic, the entire
world is now working in online mode. As a result, a massive
volume of data has been generated, making it extremely
complex to store, analyze and handle. The term big data
generally used for this. The generated large volume of data
which is in the form of structured or unstructured format. There
is an immense need of analyzing and classifying this data in
terms of size. HDFS gives the solution for this, which is
responsible for handling large files in GBs or TBs in size of
unlimited storage. HDFS works closely with the small number
of large files. It is inefficient for handling large number of
small files. Large number of small sized files consume more
memory on the NameNode of the HDFS. Access mechanism of
small sized files concept is a major problem in
HDFS[8],[9],[10].

1) Paper organization: The rest of the paper is organized
as follows: Section II gives the related surveys present in the
existing literature. Section III provides the discussion on
existing solutions on the given problem statement. Section IV
describes the proposed work. Section V focusses on
experimental set up and results produced. Section VI finally
concludes the article.

II. LITERATURE REVIEW
Xiong et al [1] employed a small file usage pattern to

identify candidate files for merging into a single container.
Identified gap in this article as and when the HDFS user
request pattern changes there is a chance of cache missing.

Zhipeng et. al [4] discussed about merge strategy based
hierarchy for improving the small file problem in HDFS, Bing
et.al [5] created a novel approach HDFS:TLB MapFile for
efficient accessing of small files, Sachin et al [6] discussed
about different techniques of dealing with a small files

204 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

problem. Authors discussed about Hadoop Archive i.e.
achieving technique which binds number of small files into
HDFS blocks. Another technique improved HDFS model is
index-based i.e. index is built for each small file to reduce the
waste caused by them which reduces the burden on the
NameNode. EHDFS gives an improved indexing mechanism
and prefetching of index information. Lion Jude Tchaye-Kondi
et al. [13] encouraged using hash functions to create a perfect
file. To get the metadata of a specific file, this approach
removes the requirement of parsing the index file. Xun Cai et
al. [14] improved the access and storage efficiency of small
files. Yanfeng Lyu et al. [15] proposed an efficient merging
method that substantially reduces the access time for small files
by using caching and prefetching methods. X. Fu et al. [16]
proposed a block replica placement technique for effectively
processing small files where files are merged as per the pre-
determined parameters. Qi Mu et al. [17] advised a method for
dealing with small files that is both efficient and effective. T.
Wang et al. [18] suggested a method based on the behavior of
small files access to build association between the small files.
In this article, the concept focusses exclusively on file size. The
gap identified in this, file contents have not been checked. If
there is a mismatch in the file sizes, then cache will be missed.

III. EXISTING METHODS

A. HAR (Hadoop Archives)
HAR files were created to reduce the problem among

several files putting a pressure on the memory of name nodes.
On the HDFS, a layered system has been installed. The
Hadoop archive command is used to create HAR files. It is not
more efficient to read through files in a HAR than it is to read
across files in Hadoop. Each HAR file access needs the reading
of two index files in addition to the data file, which slows
down the process [2],[7],[19],[20]. The flat table technique is
used to implement the HAR.

Limitations of HAR files:

• Hadoop archive file once created is not updatable i.e.
to adding or removing of the file is not possible.

• This archive file will contain a replica of all the
original files when ‘.har’ is created and it will take
more space as the original files.

B. NHAR (New HAR)
For NameNode, processing a large number of small files

takes more time. In fact, the amount of time it takes to access
such data should be minimized. NHAR [2],[7],[11],[12] is a
novel solution that relies on Apache Hadoop’s HAR. The table
chain technique is used to implement NHAR.

C. Spatiotemporal Small File Merging Strategy
In previous work, Lion Xiong et al. [1] employed a small

file usage pattern to identify candidate files for merging into a
single container. They employed file access time stamps to
analyze usage patterns, then grouped files with sequential time
stamps and generated support files for each file group. A single
container is used to store a file group with a high support value.

IV. PROPOSED SYSTEM
In this paper, the proposed technique is implemented by

creating a wrapper over existing HDFS architecture without
altering the HDFS architecture[5]. The Wrapper contains the
Virtual file table which maintains the records of every file
category wise like offset, length etc. Using large number of
small files with different sizes analyzed the experimental
results. Ultimately the time required for accessing files in
HDFS is improved.

A. Bucket Chain Technique
Working methodology of the proposed system is shown in

Fig. 1. The root file table contains the list of files category
wise, in which the information is gained about the existence of
file category. The Bucket or child per category file table
contains the metadata of the per category container which
holds the metadata as Name, Offset and length of the category.
Every child per category file table gives the metadata of the per
category container file where the actual contents of the file can
receive. Then it can directly access the contents of the actual
file as that of reading or getting a file which is working with
HDFS.

The advantages of the technique are if a user tries to access
the same file repeatedly, the cache only gives the information
quickly about the file location reducing the multiple searching
and reading overheads.

B. Methodology
In this method all file’s metadata is stored in a single file,

this file is called File Table. This file contains linked list of
tables, forming a table chain. Another file is used to store
actual contents of files; this file is called Container File. One
container file is used for each category. All these files are
stored on HDFS. File table contains metadata of a file such as
filename, offset, and length.

Fig. 1. Bucket Chain Technique for Proposed System (VFS-HDFS).

205 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

Before storing every file, it is classified using ensemble
classifier to get its category. That file is then stored in container
of that category and corresponding file table is also updated.

On startup, the file table for each category is loaded in
memory. First the latest file table is located in file table and its
contents are added to in-memory file table, then previous file
table is located and the process continues until first file table is
reached. While doing this, a file’s metadata is already found in
in-memory file table, then that entry is discarded (as it has
become old due to updating or deletion of file).

In every run, a new in-memory file table for each category
is created to track new or updated files in that category. At
runtime all metadata is created and updated operations are
performed on this in-memory file table. Actual contents of the
files are appended in container file. On shutdown, the contents
of in-memory file tables are appended to file table in HDFS.
This creates a chain of buckets, each bucket stores list of file
tables which makes it possible to update and delete files.

For reclaiming space used by deleted or updated files, the
technique of pruning used. In this technique new copies of file
tables are creating while skipping the deleted or updated
entries. This will reduce space required for file tables and
containers.

Caching is used to reduce time required for reading files in
already retrieved blocks. Each cache entry stores tuple of
category, file, position, length and its complete block content.
This will reduce time at the cost of increased memory
requirement.

C. Algorithm: Bucket Chain
globals:

 filenametable

 indexfilemap

 containerfilemap

 filetablemap

 newfiletablemap

 classification_model

 categorylist

function intialize()

 filenamemap=load_filenamemap()

 for cat ∈ categorylist

 indexfile=indexfilemap[cat]

 containerfile=containerfilemap[cat]

 filetable=filetablemap[cat]
 file_index_location=get_last_index(indexfil
 while file_index_location != NULL
 indices=read_index(file_index_location)

 filetable = filetable ∪ (indices -
(filetable ∩ indices))

 file_index_location=get_prev_index(file_index_location)

function add_file(filename, content)

 cat = classify(classification_model, content)

 location=append_content(containerfilemap[cat], content)

 add_file_entry(newfiletablemap[cat], filename, location,
len(content))

 add_filenametable(filenametable, filename, cat)

function get_file(filename)

 cat = get_category(filenametable, filename)

 location, length = find_file(newfiletablemap[cat],
filetable[cat], filename)

 data = read_content(containerfilemap[cat], location, length)

 return data

function close()

 for cat ∈ categorylist

 last_index=get_last_index(indexfilemap[cat])

 append_entry_table(indexfilemap[cat],
newfiletable[cat])

 append_prev_index(last_index)

 update_filenametable(filenametable)

D. Advantages of Bucket Chain Technique
1) It has separate category wise containers.
2) It contains cache memory.
3) Pruning is applied to remove unused files in containers

to reduce the memory wastage.
4) Optimal File Table Size.
5) Access time efficiency improved.

E. Text Classification
It is used to classify the text documents automatically into

one or multiple defined categories (Fig. 2). Category of news
article from Reuters-21578 Text Categorization dataset [21] is
taken into consideration for text classification Text
classification consists of main components [23].

1) Dataset Preparation.
2) Feature Engineering.
3) Model Training.
4) Improve Performance of text classifier.

Fig. 2. Text Classification Task.

206 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

F. Datasets Used
Experimentation is done on the Reut2-000.sgm & Reut2-

002.sgm files. of Reuters dataset.

Table I gives information about the datasets used.

TABLE I. DESCRIPTION OF DATASET

Name of
Dataset

Data
Typ
es

Default
Task

Attribut
e Type

No. of
Instanc
es

No. of
Class
es

Yea
r

Reuters-
21578 Text
Categorizati
on
Collection

Text Classificati
on

Categori
cal 1000 70 199

7

G. TF-IDF
The technique stands for Term Frequency- Inverse

Document Frequency which is used to quantify words from
documents; a weight has been assigned to each word which
states the significance of each word in the document and its
collection. TF-IDF score signifies the relative importance of a
keyword or a term in the document and the entire corpus. It is
calculated as the logarithm of the number of the documents in
the corpus divided by the number of documents where the
definite term appears [23].

Formula: idf(t) = log (N/df)

The tf-idf metric is calculated by considering the total
number of documents, dividing it by the number of documents
that which contain a word and calculating the logarithm.

tfidf(t) = tf(t) * idf(t)

H. Classifiers used for Experimentation:
1) J48 classifiers: It deals with issues such as numeric

attributes, missing values, pruning, predicting error rates,
decision tree induction complexity etc[3].

2) Random forest: It determines the outcome based on
decision tree predictions. It estimates an average of the output
of various trees [24].

3) Naive bayes classifiers: It is capable of dealing with
both discrete and continuous data. It can handle a large number
of predictions and data sets [25].

4) Ensemble classifiers: For classification purpose the
ensemble learning method is used. Fig. 3 describes the
architecture of ensemble classifier. These ensembles combine
multiple hypotheses to form a better hypothesis. Ensemble
learning supports to improve machine learning results as
compared to a single model by combining several models.
Basic idea is to learn a set of classifiers and to allow them for
vote. Combination of Random Forest, Naïve Bayes and J48
classifiers are used for experimentation [26].

Advantages: Motivation behind to use ensemble classifier
is to improve the predictive accuracy.

Fig. 3. Architecture of Ensemble Classifier.

V. EXPERIMENTAL SETUP, RESULTS AND ANALYSIS
The proposed system is implemented on top of existing

HDFS architecture. The proposed algorithm is experimented
on Fedora 32.0 Operating System, Hadoop 3.2.0 and Java 1.8.0
Version. It contains 16 GB of RAM and 500 GB of Hard Disk
with i5-5500U CPU @ 2.20GHz processor. Reuters-21578
Text Categorization Collection dataset is used to test the
proposed system.

Table II shows the experimental set up used to execute the
proposed work.

Table III shows how much memory and time is required to
access small sized files in bucket chain algorithm.

TABLE II. EXPERIMENTAL SETUP

Sr. No. Parameters Description

1 No. of Nodes Single Node (Acts as both Master
& Slave)

2 Node Configuration Intel(R) Core(TM) i5-5500U CPU
@ 2.20GHz

3 RAM 16 GB

4 Hard Disk 500GB

5 Operating System Fedora 32.0

6 Execution Platform JDK 1.8.0

7 Hadoop Version 3.2.0

8 Development Tool Net Beans 12.0

9 Dataset Reuters containing TEXT files

10 Number of Files considered 2138

11 File Size Range Average From 1 KB to 100 KB

12 No. of Iterations 1000

13 No. of Classes 70

207 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

TABLE III. MEMORY AND TIME REQUIREMENT FOR PROPOSED SYSTEM
(VFS-HDFS I.E. BUCKET CHAIN TECHNIQUE)

Memory & Time Requirement for Proposed Technique
(VFS-HDFS i.e. Bucket Chain Algorithm)
for 1000 Iterations

Average File Size Memory (in MB) Time (in Seconds)

1K 30.7 39

5K 31 39

10K 35.2 41

50K 40.5 46

100K 55.2 55

Fig. 4. Performance with respect to Time and Memory for Proposed

Technique (VFS-HDFS, using Bucket Chain Algorithm).

The above graph in Fig. 4 indicates the performance of the
proposed technique in terms of time and memory.

Table IV shows the comparative chart of Experimental
results of existing technique and proposed Technique VFS-
HDFS using Bucket chain algorithm. where the memory
requirement is increased due to the cache.

The graph in Fig. 5 shows the comparative chart of
experimental results of existing and proposed technique VFS-
HDFS using Bucket chain algorithm.

Table V shows the comparative chart of Experimental
results of existing technique and proposed technique-VFS-
HDFS using Bucket chain algorithm; where small files access
time efficiency is increased.

TABLE IV. COMPARATIVE CHART FOR MEMORY REQUIREMENT FOR
EXISTING (HAR & NHAR) AND PROPOSED TECHNIQUE (VFS-HDFS USING

BUCKET CHAIN ALGORITHM)

Memory Requirement for 1000 Iterations

Average File
Size HAR (in MB) NHAR (in MB) VFS-HDFS

(in MB)

1K 16.2 19 30.7

5K 16.5 19.1 31

10K 17.1 21.2 35.2

50K 19.3 23.1 40.5

100K 27.4 35.8 55.2

Fig. 5. Memory Requirement Existing and Proposed Technique VFS-HDFS

using Bucket Chain Algorithm.

TABLE V. COMPARATIVE CHART FOR TIME REQUIREMENT FOR EXISTING
AND PROPOSED TECHNIQUES USING BUCKET CHAIN ALGORITHM

Time Requirement for 1000 Iterations

Average
File Size

HAR
(in Seconds)

NHAR (in
Seconds)

VFS-HDFS (in
Seconds)

1K 56 45 39

5K 58 45 39

10K 64 48 41

50K 71 57 46

100K 97 70 55

Fig. 6. Time Requirement for Existing and Proposed Technique VFS-HDFS

using Bucket Chain Algorithm.

Fig. 6. shows the comparative chart of Experimental results
of existing technique and proposed Technique-VFS-HDFS in
terms of time using Bucket chain algorithm.

Classifier Metrics:

Table VI gives the information about different classifiers
used and the corresponding experimental results.

Confusion Matrix for a single class:

Confusion matrix is created for class “earn” from reut2-
002.sgm file.

0

50

100

150

1K 5K 10K 50K 100K

Memory & Time Requirement for Proposed
Technique (VFS-HDFS i.e. Bucket Chain

Algorithm)

Memory(in MB) Time(in Sec.)

0

20

40

60

1K 5K 10K 50K 100KM
em

or
y

 in
 M

B

Average File Size

Memory Requirement for Existing
(HAR & NHAR) and Proposed Method (VFS-

HDFS)

HAR NHAR Proposed (VFS-HDFS)

0

50

100

150

1K 5K 10K 50K 100K

Time Requirement for
Existing Technique (HAR & NHAR)&

Proposed Technique (VFS-HDFS)

HAR NHAR Proposed (VFS-HDFS)

208 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

TABLE VI. DIFFERENT CLASSIFIER METRICS ALONG WITH ENSEMBLES

Parameters Naïve
Bayes J48 Random

Forest

Ensemble (Naïve
Bayes+J48+Rand
om Forest)

Total Instances 962 962 962 962

Correctly Classifies
Instances 684 738 899 922

Incorrectly
Classified Instances 278 224 63 40

Accuracy 71% 77% 93% 96%

TABLE VII. CONFUSION MATRIX

Total Instances N=962 Actually Positive Actually Negative

Predicted Positive 131 40

Predicted Negative 0 791

Table VII shows the confusion matrix [22] of the instances
of the earn class.

Fig. 7. Accuracy of Classification and Predictions.

The above graph in Fig. 7 shows the bubble chart of
accuracy of classification and predictions of total 70 classes. X-
axis indicates the actual class. Y-axis indicates the predicted
class. Instances on 45-degree line are correctly classified
instances. Incorrectly identified instances are randomly shown
in random positions. Size of bubble indicates number of
instances in that position.

VI. CONCLUSION
In this paper, a novel approach called VFS-HDFS

architecture is proposed in which exclusive focus is on
optimization of the access efficiency of small sized files in
HDFS with a significant improvements compared with the
existing techniques i.e. flat table (HAR) and table chain
(NHAR) technique. A new algorithm is proposed called bucket
chain algorithm and the entire work is executed using this
algorithm where memory requirement is increased to store the
files in cache and time required to access the files from the
cache is reduced. The proposed work uses the ensemble
classifiers to classify the data sets. It helps to group the similar
files in same container. Comparison is made between the

experimental results of existing approach-i.e. flat table and
table chain techniques and the proposed technique-bucket
chain technique. In the proposed system it is observed that time
required to access the files is reduced at the cost of memory
required to store the files.

REFERENCES
[1] Lian Xiong et al. “A Small File Merging Strategy for Spatiotemporal

Data in Smart Health”, IEEEAccess Special Section on Advanced
Information Sensing and Learning Technologies for Data-Centric Smart
Health Applications, Volume 7, 2019.

[2] Neeta Alange, Anjali Mathur, “Access efficiency of small sized files in
Big data using various techniques on Hadoop Distributed File System
Platform”, International Journal of Computer Science and Network
Security Volume.21, No.7, July 2021.

[3] N. Saravanan et. al “Performance and Classification Evaluation of J48
Algorithm and Kendall’s Based J48 Algorithm (KNJ48)” International
Journal of Computational Intelligence and Informatics, Vol.7:No.4,
March 2018.

[4] Zhipeng et al “An Effective Merge Strategy Based Hierarchy for
Improving Small File Problem on HDFS” IEEE Proceedings of CCIS
2016, pp. 327-331.

[5] Alam et al. "Hadoop Architecture and its issues." International
Conference on Computational Science and Computational Intelligence
(CSCI), 2014 Vol. 2. IEEE, 2014.

[6] Sachin et al “Dealing with small files problem in hadoop distributed file
system”, Procedia Computer Science Volume 79, 2016.

[7] Ankita et al “A Novel Approach for Efficient Handling of Small Files in
HDFS”, IEEE International Advance Computing Conference (IACC,
2015), pp.1258-1262.

[8] Nivedita et. al “Optimization of Hadoop Small File Storage using
Priority Model”, 2nd IEEE International Conference On Recent Trends in
Electronics Information & Communication Technology (RTEICT), pp.
1785-1789, May 2017.

[9] Awais et al “Performance Efficiency in Hadoop for Storing and
Accessing Small Files” 7th International Conference on Innovative
Computing Technology (INTECH 2017), pp.211-216.

[10] Neeta Alange, Anjali Mathur, “Small Sized File Storage Problems in
Hadoop Distributed File System”, 2nd International conference on Smart
Systems and Inventive Technology (ICSSIT 2019) vol. pp. 1198-1202,
November 2019 proceedings published in IEEE Digital Xplore.

[11] Shubham et. al “An approach to solve a Small File problem in Hadoop
by using Dynamic Merging and Indexing Scheme”, International Journal
on Recent and Innovation Trends in Computing and Communication
[IJRITCC], November 2016, Volume: 4, Issue:11.

[12] Priyanka et al "An Innovative Strategy for Improved Processing of
Small Files in Hadoop", International Journal of Application or
Innovation in Engineering & Management (IJAIEM), Volume 3, Issue 7,
July 2014, pp. 278-280, ISSN 2319 – 4847.

[13] J. Tchaye-Kondi, Y Zhai et al. “Hadoop Perfect File: A fast access
container for small files with direct in disc metadata access”, 2019,
arXiv:1903.05838.

[14] X. Cai, C. Chen et al. “An optimization strategy of massive small files
storage based on HDFS”, in Proc. JIAET, 2018, PP. 225-230.

[15] Y. Lyu, X. Fan, and K. Liu, ``An optimized strategy for small _les
storing and accessing in HDFS,'' in Proc. IEEE Int. Conf. CSE, IEEE
Int. Conf. EUC, Jul. 2017, pp. 611_614.

[16] X. Fu,W. Liu, Y. Cang, X. Gong, and S. Deng, ``Optimized data
replication for small _les in cloud storage systems,'' Math. Problems
Eng., vol. 2016, pp. 1_8, Dec. 2016.

[17] Q. Mu,Y. Jia, and B. Luo, ``The optimization scheme research of small
_les storage based on HDFS,'' in Proc. 8th Int. Symp. Comput. Intell.
Design, Dec. 2015, pp. 431_434.

[18] T. Wang, S. Yao, Z. Xu, L. Xiong, X. Gu, and X. Yang, ``An effective
strategy for improving small _le problem in distributed _le system,'' in
Proc. 2nd Int. Conf. Inf. Sci. Control Eng., Apr. 2015, pp. 122_126.

[19] Online Reference Apache Hadoop, http://hadoop.apache.org/.

209 | P a g e
www.ijacsa.thesai.org

https://www.sciencedirect.com/science/journal/18770509
https://www.sciencedirect.com/science/journal/18770509/79/supp/C
http://hadoop.apache.org/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

[20] Online Reference https://blog.cloudera.com/blog/2009/02/the-small-
files-problem/.

[21] Dua, D. and Graff, C. “UCI Machine Learning Repository Dataset”
[http://archieve.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science, 2019.

[22] Online Reference https://www.dataschool.io/simple-guide-to-confusion-
matrix-terminology/.

[23] Online Reference https://www.analyticsvidhya.com/blog/2018/04/a-
comprehensive-guide-to-understand-and-implement-text-classification-
in-python/.

[24] Online Reference https://www.section.io/engineering-education/
introduction-to-random-forest-in-machine-learning/ random forest
classifier.

[25] Wikipedia contributors. Naive Bayes classifier. In Wikipedia, the Free
Encyclopedia. Retrieved 14:24, September 30, 2021, from
https://en.wikipedia.org/w/index.php?title=Naive_Bayes_classifier&oldi
d=1039393803.

[26] Online Reference https://subscription.packtpub.com/book/data/9
781789955750/7/ch07lvl1sec45/bagging-building-an-ensemble-of-
classifiers-from-bootstrap-samples.

210 | P a g e
www.ijacsa.thesai.org

https://blog.cloudera.com/blog/2009/02/the-small-files-problem/
https://blog.cloudera.com/blog/2009/02/the-small-files-problem/
https://en.wikipedia.org/w/index.php?title=Naive_Bayes_classifier&oldid=1039393803
https://en.wikipedia.org/w/index.php?title=Naive_Bayes_classifier&oldid=1039393803

	I. Introduction
	1) Paper organization: The rest of the paper is organized as follows: Section II gives the related surveys present in the existing literature. Section III provides the discussion on existing solutions on the given problem statement. Section IV describes th

	II. Literature Review
	III. Existing Methods
	A. HAR (Hadoop Archives)
	B. NHAR (New HAR)
	C. Spatiotemporal Small File Merging Strategy

	IV. Proposed System
	A. Bucket Chain Technique
	B. Methodology
	C. Algorithm: Bucket Chain
	D. Advantages of Bucket Chain Technique
	1) It has separate category wise containers.
	2) It contains cache memory.
	3) Pruning is applied to remove unused files in containers to reduce the memory wastage.
	4) Optimal File Table Size.
	5) Access time efficiency improved.

	E. Text Classification
	1) Dataset Preparation.
	2) Feature Engineering.
	3) Model Training.
	4) Improve Performance of text classifier.

	F. Datasets Used
	G. TF-IDF
	H. Classifiers used for Experimentation:
	1) J48 classifiers: It deals with issues such as numeric attributes, missing values, pruning, predicting error rates, decision tree induction complexity etc[3].
	2) Random forest: It determines the outcome based on decision tree predictions. It estimates an average of the output of various trees [24].
	3) Naive bayes classifiers: It is capable of dealing with both discrete and continuous data. It can handle a large number of predictions and data sets [25].
	4) Ensemble classifiers: For classification purpose the ensemble learning method is used. Fig. 3 describes the architecture of ensemble classifier. These ensembles combine multiple hypotheses to form a better hypothesis. Ensemble learning supports to impro�

	V. Experimental Setup, Results and Analysis
	VI. Conclusion
	References

