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Abstract—This paper presents a modified Gradient-based 
method to directly compute the noise subspace iteratively from 
the received Orthogonal Frequency Division Multiplexing 
(OFDM) symbols to estimate Channel State Information (CSI). 
By invoking the matrix inversion lemma which is extensively 
used in Recursive Least Square (RLS) algorithms, the proposed 
computationally efficient method enables direct computation of 
noise subspace using the inverse of the autocorrelation matrix of 
the received OFDM symbols. In the case of a vector input, the 
modified Gradient algorithm uses rank one update to calculate 
noise subspace recursively. For an input in the matrix form, the 
modified Gradient algorithm uses a full rank update. The 
validity, efficacy, and accuracy of the proposed modified 
Gradient algorithm have been substantiated through a relative 
comparison of the results with the conventional Singular Value 
Decomposition (SVD) algorithm, which is in wide use in the 
estimation of the subspaces. The simulation results obtained 
through the modified Gradient algorithm show a satisfactory 
correlation with the results of SVD, even though the 
computational complexity involved in modified Gradient is 
relatively less. Apart from the results encompassing various 
power levels of the multipath channel, this paper also discusses 
the adaptive tracking of CSI and presents a comparative study. 
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Decomposition (SVD); Channel Impulse Response (CIR);  BPSK; 
QPSK; QAM  

I. INTRODUCTION  
Radio systems based on Orthogonal Frequency Division 

Multiplexing (OFDM) are increasingly being adopted by many 
wireless communication standards [1]. With the ability of 
OFDM systems to effectively handle impairments of wireless 
channels, communication engineers and system designers can 
use standards for broadband digital data communication 
standards such as IEEE 802.11 [a, b, j, n], IEEE 802.15.3a, etc. 
OFDM is adopted as the waveform in IEEE 802.16 [d, e], 
IEEE 802.120, digital video broadcasting, digital audio 
broadcasting and cellular [3G, 4G]. Additionally, in high-speed 
wireless data communication using OFDM waveforms, the 
effects of multipath and the delayed spread of channels have a 
significant impact on data throughput. Figure 1 describes a 
typical OFDM transmitter and Receiver operating in a 
multipath wireless channel. For efficient operation and 

throughput of the OFDM system, it is important to estimate the 
multipath wireless channel (Channel State Information) at the 
receiver end. 

In summary, accurate estimation of Carrier Frequency 
Offset (CFO) and CSI is essential for ensuring the satisfactory 
performance of the OFDM system. The attainment of time 
synchronization between OFDM symbols is assumed to be 
present. The emphasis of this paper is on CSI which deals with 
the estimation of the multipath wireless channel. Instead of 
conventional SVD, this paper presents a computationally 
efficient modified gradient algorithm to estimate the noise 
subspace directly (Instead of signal subspace first and then 
through it, the noise subspace). The noise subspace is then 
utilized for the estimation of CSI. 

This paper is structured as follows. Section II presents the 
review of CSI estimation techniques. Section III presents the 
OFDM system model. Section IV deals with the second-order 
statistics and the blind CSI estimation process of the subspace. 
Section V discusses the proposed modified Gradient based 
noise subspace. Section VI presents the formulation for the 
estimation of CSI using the proposed modified gradient 
algorithm. Section VII analyses the performance of modified 
Gradient based CSI estimator, to substantiate its efficacy and 
ability in improving the estimation accuracy of CSI. Section 
VIII presents the conclusions of the paper. 

 
Fig. 1. OFDM System Block Diagram. 

II. RELATED WORK 
This section presents a comprehensive review of research 

studies pertaining to OFDM in general and estimation of CSI 
in particular. 

The authors in [2] propose an Integrated OFDM (I-OFDM) 
system to meet the BER performance of Enhanced Long-Term 
Assessment (LTE-A). For the pilot-aided CSI estimation 
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technique, pilot arrangement of comb type as well as 
convolution (Channel) encoder with best-known bounds of 
Coding Bounds are used. “Maximum A Posteriori (MAP)” 
decoder for the convolution encoder is at the receiver. The 
evaluation of BER performance was through convolution 
codes of Recursive systematic and non-systematic nature. The 
proposed I-OFDM showed significant improvement in the 
system performance combining traditional IM and multiple-
mode IM in [3]. To achieve the varied diversity order and 
spectral efficiency required next-generation wireless 
communication networks, CIM techniques (subcarrier-wise 
and subblock-wise) are presented. 

To achieve higher data bandwidth in such systems, it is of 
greater importance to estimate the CSI, the transfer function of 
the wireless channel. Author in [4] addresses the clustering 
strategy for heterogeneous wireless sensor networks. The 
clustered heads are chosen based on the CSI, the nodes' 
residual energy, and the network's average energy. Author 
proposes periodic transmission of a data packet containing the 
information about the energy dissipation of the wireless sensor 
nodes using Bluetooth low energy, ZigBee, and ANT protocols 
for the appropriate choice for the protocol selection. 

The authors in [5] propose the OFDM/OFDMA system’s 
improved performance by introducing closed-loop rotate 
modulation schemes involving BPSK, QPSK, and QAM. The 
method utilizes the feedback of the complex-valued CSI. The 
rotate modulation serves the role of channel equalizer and does 
not need the guard interval insertion. With BPSK and QPSK, 
the proposed method does not degrade BER performance with 
feedback delay. However, with QAM, the feedback delay 
degrades BER performance. 

The authors of [6] discuss the potential demands and 
challenges of the emerging 6G wireless communication 
network. The authors address system capacity requirements, 
data rate, latency, enhanced security, and the improved quality 
of service of 6G relative to 5G. The paper also dwells on the 
potential applications of mm-wave, terahertz communications, 
and massive MIMO systems in 6G. 

This paper [7] addresses the issue of Pilot contamination in 
a massive MIMO system. The authors proposed a scheme for 
reducing pilot contamination by combining time-shifting 
protocol, the directional pilot scheme, and a greedy algorithm-
based pilot allocation scheme for channel estimation. The 
simulation results show the significantly enhanced 
performance of a massive MIMO system with the proposed 
combinatorial scheme compared to the individual constituents 
of the combination. 

The receiver improves the overall bandwidth efficiency of 
the system by detecting CSI accurately and efficiently. CSI 
acquisition is generally performed using pilot or non-pilot 
techniques. To estimate CSI, pilot-based techniques typically 
use significant bandwidth to train the channel estimator at the 
receiver and send the training sequence. Paper [7] addresses the 
issue of pilot contamination in large-scale MIMO systems. The 
authors proposed a scheme to reduce pilot contamination by 
combining a time-shift protocol, a directional pilot scheme, and 
a pilot allocation scheme based on a greedy channel estimation 
algorithm. The simulation results show that the performance of 

large MIMO systems using the proposed combination scheme 
has improved significantly. 

For non-pilot assisted methods, CSI estimation requires 
statistical information about the data received. In addition, non-
pilot assistive techniques (often referred to as blind techniques) 
are more bandwidth efficient because they do not require a 
unique training sequence. 

The authors in [8,9] proposed pilot aided technique for 
channel estimation. The authors investigated the performance 
of block type and comb type pilot insertion technique in 
estimation of the channel. Comb time pilot insertion scheme is 
found to be more appropriate to track time varying channel. 
The technique involves the pilot insertion on the estimation. 
The frequency domain interpolations are carried in case of the 
block type pilot insertions and time domain interpolation is 
carried in case of the comb type pilot insertions. 

In [10], the authors presented the pilot aided technique for 
channel estimation in OFDM. The performance of two pilot 
based estimators performance is evaluated at different SNRs. 
Bayesian based Minimum Mean Square Estimator (MMSE) 
performs better at low SNR when compared to the Maximum 
Likelihood (ML) estimator. Both MMS and Bayesian 
estimators require a prior information about the channel 
statistics. The estimator requires more number of pilot tones as 
compared to the Channel Impulse Response (CIR) length. 

Linear Redundancy Precoding (LRP) uses either cyclic 
prefixes (CPs) or zero pads (ZPs) in OFDM systems [11, 12]. 
LRP is one of the categories of blind techniques for estimating 
the CSI of OFDM systems. The estimation accuracy of the 
LRP technique depends on the CP / ZP length of the OFDM 
symbol. The second category of blinding techniques relies on 
the subspace of the secondary statistics of the received sample 
to estimate the CSI of the OFDM system. The performance of 
the subspace-based method depends heavily on the accuracy in 
estimating the autocorrelation matrix of the received sample. 
This paper focuses on a subspace-based approach with 
improved stability in CSI numerical estimation and improved 
channel bandwidth efficiency. 

In [12] and [13], the underlying method for estimating CSI 
is based on the singular vector of the covariance matrix. CSI 
estimation requires a noise subspace of the autocorrelation 
matrix. Computing the required noise subspace with traditional 
algorithms such as SVD requires extensive computation. A 
zero padded OFDM system is explored in [14] for CSI 
estimation based on subspace. 

Numerical methods for calculating noise subspaces are not 
as common as signal subspace estimators. In addition, most 
algorithms for estimation [15] that combine signal and noise 
subspaces are available with high complexity. The estimation 
algorithm exists exclusively for the signal subspace, but there 
seems to be no algorithm dedicated to the noise subspace. 

This paper presents a Gradient [16] based method for 
iteratively calculating noise subspaces from received OFDM 
symbols. The method proposed in this paper directly calculates 
the noise subspace required to estimate the CSI. In the 
proposed method, the calculation of the noise subspace 
requires the inverse of the autocorrelation matrix of the 
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received OFDM symbols. In addition, this paper employs the 
matrix inversion lemma, which is very commonly used in 
recursive least squares algorithms (RLS) [17], to overcome the 
high computational cost of direct inversion of autocorrelation 
matrices. 

Also, the noise subspace of the autocorrelation matrix is 
just the signal subspace of the inverse autocorrelation and is 
calculated using the numerically stable Gradient algorithm. In 
this paper, the modified Gradient refers to fitting the inverse 
matrix to compute the inverse of the autocorrelation matrix and 
using the numerically stable Gradient algorithm to estimate the 
noise subspace. This paper also shows two schemes of 
modified gradient based on whether the underlying input to the 
modified Gradient algorithm is a vector or a matrix. For vector 
inputs, the modified Gradient recursively calculates the noise 
subspace using rank one updates. On the other hand, modified 
Gradient algorithm recursively computes the noise subspace 
using a full-rank update if the input is in the form of a matrix. 
Without loss of generality, this paper assumes channel matrix 
to be a full-rank Hankel matrix. 

The emphasis of this paper is on CSI which deals with 
estimation of multipath wireless channel. Instead of 
conventional direct SVD, this paper presents a computationally 
efficient modified gradient algorithm to estimate the noise 
subspace directly. The noise subspace is then utilized for the 
estimation of CSI. The application of the new algorithm has 
been substantiated in the estimation of CFO using MUSIC 
algorithm [18], which also requires the noise subspace. This 
paper extends the utility of the modified gradient algorithm for 
the estimation of CSI. It is envisaged that the modified gradient 
algorithm proposed by the authors [18] is new way of 
estimating CFO and CSI, since modified Gradient algorithm is 
computationally efficient compared to the conventional direct 
SVD[19]. 

III. OFDM SYSTEM MODEL 
In this section, the basic OFDM symbol is formed by N 

carriers. The basic OFDM symbol is followed by L zeros. 
Where L ≥ LH (length of channel impulse response). In this 
document, the zero-pad OFDM system eliminates ISI. 
Equation (1) represents the nth received OFDM symbol Yn 
after full time synchronization. 

𝑌𝑛 = 𝐻𝐹𝐻𝑥𝑛 + 𝑤𝑛             (1) 

𝑌𝑛 is nth Received OFDM symbol with L zero padding of size 
(N+L) x 1 

𝐻 is channel convolution matrix of size N+L x N. 

 𝐹𝐻is the orthonormal IIFT matrix. 

 𝑥𝑛 is nth i.i.d unit norm data vector of size N x 1. 

  𝑤𝑛 is i.i.d additive white Gaussian noise of variance σ2. 

 𝐻 =

⎣
⎢
⎢
⎢
⎢
⎡
ℎ(0) 0 ⋯ 0
⋮ ℎ(0) ⋱ ⋮

ℎ(𝐿𝐻) ⋮ ⋱ 0
0 ℎ(𝐿𝐻) ⋱ ℎ(0)
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ℎ(𝐿𝐻)⎦

⎥
⎥
⎥
⎥
⎤

 

H is a full-rank non-negative Toeplitz channel convolution 
matrix. The element of matrix H is the normalized channel 
impulse response of length LH. The channel is assumed to be 
time-invariant and frequency-selective over the symbol period. 
To overcome the effects of ISI, the length of the selected ZP 
will be L ≥ LH. The CSI estimate assumes carrier frequency 
offset (CFO) cancellation introduced by the Doppler or local 
oscillator of the received OFDM symbol Yn. 

IV. BLIND CSI ESTIMATION 
The blind CSI estimation algorithm in this document uses 

the noise subspace calculated from the quadratic statistics of 
the received OFDM symbols [14]. The quadratic statistics 
(autocorrelation) of the received OFDM symbols contain only 
the information about the transmitted OFDM symbols and the 
convoluted channels. However, due to the orthonormal nature 
of the inverse Fast Fourier Transform (IFFT) and the nature of 
the independent identical distribution and unit norm of the 
transmitted data Xn, the autocorrelation matrix can be used to 
estimate the CSI [14]. 

𝑅𝑛 = 𝐸{𝑌𝑛𝑌𝑛𝐻}              (2) 

𝑅𝑛 = 𝐻𝐻𝐻 + 𝜎𝑛𝑜𝑖𝑠𝑒2 𝐼𝑁+𝐿             (3) 

Where Rn is the autocorrelation matrix and E is the 
expected value operator. The matrix HHH is the Hermitian 
positive semi-finite matrix, IN+L is the identity matrix, and 
σ2

noise is the noise power of the channel. The size of the 
resulting autocorrelation matrix Rn is N+L x N+L. The identity 
matrix can diagonalize the resulting Rn by applying the 
spectral theorem. SVD is used to diagonalize Rn. 

𝑅𝑛 = 𝑈∑𝑉𝐻              (4) 

𝑈 = [𝑈𝑠𝑖𝑔𝑛𝑎𝑙𝑈𝑛𝑜𝑠𝑖𝑒]             (5) 

𝑉𝐻 = [𝑈𝑠𝑖𝑔𝑛𝑎𝑙𝑈𝑛𝑜𝑖𝑠𝑒]𝐻             (6) 

∑ = �
𝛥 + 𝜎𝑛𝑜𝑖𝑠𝑒2 𝐼𝑁 0

0 𝜎𝑛𝑜𝑠𝑖𝑒2 𝐼𝐿
�            (7) 

The orthonormal matrices U and VH contain subspace 
components of signal and noise subspaces. Usignal corresponds 
to the signal subspace of dimension N+L x N of the 
autocorrelation matrix Rn, and Unoise corresponds to the noise 
subspace of dimension N+L x L. ∆ is a diagonal matrix with 
diagonal elements representing the signal power of each N-
subcarrier. Equation (1) shows that the received OFDM symbol 
Yn is basically in the signal space across the channel 
convolution matrix H. A linear combination of the channel 
convolution matrix H multiplied by FH xn yields the received 
OFDM symbol Yn. The channel convolution matrix H is a 
Toeplitz matrix of size N+L x N, so there are N non-identical 
columns and the rank is N. This indicates that the rank of the 
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main subspace (signal subspace) of this matrix H is N, and the 
rank of that subspace (noise subspace) is L. 

𝑈𝑛𝑜𝑖𝑠𝑒𝐻 × 𝑈𝑠𝑖𝑔𝑎𝑛𝑙 = 0             (8) 

Equation (8) states that the Usignal and Unoise are orthogonal 
subspaces. Each vector in the noise space is orthogonal to the 
entire signal space Usignal. Similarly, each vector in the signal 
space is orthogonal to the total noise space Unoise. This special 
property is used to estimate the channel impulse response hn. 
Since the columns of the channel convolution matrix H span 
the entire signal space, the received OFDM symbol Yn is also 
in the signal space across H . Therefore, this space is also 
orthogonal to any vector in the noise space Unoise calculated 
from the SVD on the autocorrelation matrix Rn. 

𝑈𝑛𝑜𝑖𝑠𝑒𝐻 × 𝐻 = 0              (9) 

𝑢𝐻 = [𝑢1 𝑢2 ⋅ ⋅ 𝑢𝑁+𝐿]          (10) 

𝑢𝐻 × 𝐻 = 0            (11) 

if uH in Equation (10) is a vector of length N+L in the noise 
subspace, it is also an orthogonal complement of the channel 
convolution matrix H by equation (11). From Equation (11) to 
Equation (12) rewritten by the Toeplitz structure of the channel 
convolution matrix H. Where V is a Henkel matrix of size L+1 
x N formed using the elements of u, which is the noise vector 
of the noise subspace Unoise. The cost function for estimating 
CSI includes the complex conjugate of equation (12). 

ℎ𝐻 × 𝑉 = 0            (12) 

(ℎ𝐻 × 𝑉) × (ℎ𝐻 × 𝑉)𝐻           (13) 

ℎ𝐻𝑉𝑉𝐻ℎ = 0            (14) 

By using all the noise vectors in the noise subspace Unoise, 
Equation (14) is rewritten as the cost function of Equation (16) 
to estimate the CSI. 

𝑊 = ∑ 𝑉𝑖𝑉𝑖𝐻𝐿
𝑖=0             (15) 

ℎ𝐻𝑊ℎ = 0            (16) 

Vi is a Hankel matrix formed from the individual noise 
vector elements of the noise subspace Unoise. Equation (16) 
means that the vector h, which is a small singular vector of W, 
can minimize the cost function. This small normalized singular 
vector is an estimate of CSI with phase ambiguity. Each 
complex element, when scaled, is a small singular vector that is 
also the solution to the cost function defined in Equation (16). 

Vi is the Henkel matrix formed by using the elements of 
the individual noise vectors of the noise subspace Unoise. 
Equation (16) implies that the vector h, a minor singular vector 
of W, can minimize the cost function. This minor singular 
vector normalized is the estimate of CSI with a phase 
ambiguity. Any complex element, when scaled, a minor 
singular vector, is also a solution to the cost function defined 
by Equation (16). This phase ambiguity is attributed to the 
above. 

Considering the process of CSI estimation from the 
reception of OFDM symbol Yn to the solution of equation (16), 
the calculation of equations (4) and (16) uses a computationally 

intensive algorithm (SVD) in two steps. Analysis of the steps 
involved in the CSI estimation shows that noise space is more 
important in the CSI estimation. In fact, of the results of 
Equations (4) and (16), the noise vector from each calculation 
is used in the subsequent process of the CSI estimation method. 
However, the computational cost of the O((N+L)3) SVD 
method makes this estimation method a non-viable option for 
real-time implementations. In the next section, this paper 
proposes a new algorithm for efficiently estimating the noise 
vectors in Equation (4) (using rank-one updates) and equation 
(16) (using full-rank updates). The proposed algorithm has 
computational advantages over existing algorithms such as 
SVD. 

V. MODIFIED GRADIENT ALGORITHM 
Let x(t) be a column vector in complex vector space Cn 

observed at instant t. In time domain spectral analysis, it is a 
vector of n consecutive samples of summation of r non 
coherent complex sinusoids corrupted by additive complex 
Gaussian noise n(t) with variance σ2. 

𝑥(𝑡) =  ∑ 𝑠𝑘𝑟
𝑘=1 𝑎(𝑤𝑘) + 𝑛(𝑡)          (17) 

𝑥(𝑡) =  𝐴𝑠(𝑡) + 𝑛(𝑡)           (18) 

Where A = [a(w1) a(w2) … a(wr)]  is the deterministic 
matrix of size n x r. a�wp� = [1 ejwp ej2wp … ej(n−1)wp ]T is 
the frequency vector and S(t) = [s1 s2 … sr]  is the random 
source vector. The correlation matrix 𝑅  is formed from the 
snapshot vector x(t). 

𝑅 = 𝐸[𝑥(𝑡) 𝑥𝐻(𝑡)] = 𝐴𝐶𝑠𝐴𝐻 + 𝐼𝜎2         (19) 

Where 𝐶𝑠 = 𝐸[S(t)S𝐻(t)], I denotes the identity matrix and 
E stands for expectation. Taking Eigen decomposition of 
Equation (5). 

𝑅 = 𝑈𝛴𝑈𝐻            (20) 

𝑈 = [𝑈𝑠𝑈𝑛]            (21) 

𝑈𝑠  contains the signal space vectors and 𝑈𝑛 has the noise 
space vector. The first r vectors in U (Equation (21)) form the 
signal subspace vector alias column subspace vectors. The 
remaining (n-r) vectors form the noise subspace vectors alias 
left Null subspace vector. Similarly, ∑ (Equation (20)) is the 
diagonal matrix containing the Eigen values corresponding to 
the signal and noise subspace respectively. It is important to 
note that both the matrices A and 𝑈𝑠 span the same column 
space alias the signal subspace. The 𝑈𝑠  signal subspace vectors 
and 𝑈𝑛 noise subspace vectors are orthogonal and they 
complement each other. The above-mentioned properties are 
exploited in high resolution spectral estimation technique using 
MUSIC [20] and ESPIRIT algorithms [21]. 

It is clear that the matrices A and 𝑈𝑠 span the same column 
space alias the signal subspace. This enables to build a cost 
function to estimate the signal subspace. Let y(t) be a vector in 
the column space of the 𝑈𝑠𝐻 . Then, 

y(t) =  𝑈𝑠𝐻𝑥(𝑡)            (22) 

𝑥(𝑡) = 𝑈𝑠 y(t)             (23) 
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𝑥(𝑡) = 𝑈𝑠𝑈𝑠𝐻𝑥(𝑡)            (24) 

Superscript H denotes the Hermitian transpose. For 
convenience 𝑈𝑠 and 𝑈𝑠𝐻 are rewritten as 𝑊 and  𝑊𝐻  
respectively. The scalar cost function can be arrived as 

𝐽(𝑊) = 𝐸‖𝑥(𝑡) −𝑊𝑊𝐻𝑥(𝑡)‖2            (25) 

𝐽(𝑊) has global minimum only at when the columns of W 
span the signal space of A. 

Global minimum of Equation (25) can be found recursively 
using the Gradient Descent method [16]. As a first step, the 
gradient of the unconstrained cost function with respect to W is 
derived. 

𝛻𝐽 = [−2𝑅 + 𝑅𝑊𝑊𝐻 + 𝑊𝑊𝐻𝑅]𝑊           (26) 

The update on the subspace can be written as  

𝑊(𝑡) = 𝑊(𝑡 − 1) + [2𝑅(𝑡) − 𝑅(𝑡)𝑊(𝑡 − 1)𝑊𝐻(𝑡 − 1) −
𝑊(𝑡 − 1)𝑊𝐻(𝑡 − 1)𝑅(𝑡)]𝑊(𝑡 − 1)          (27) 

The above Equation (27) converges to the signal subspace 
of the correlation matrix 𝑅(𝑡) . This implies that the 
conventional Gradient algorithm facilitates the computation of 
signal subspace only. One has to compute the noise subspace 
after computing the signal subspace. The proposed modified 
Gradient algorithm is aimed for the direct computation of noise 
subspace instead of first computing the signal subspace and 
then computing the noise subspace from the knowledge of auto 
correlation matrix. To obtain the noise subspace, R(t) in 
Equation (27) is to be replaced with Rinv(t), where Rinv(t) is the 
inverse of correlation matrix 𝑅(𝑡 ). With this modification, 
Equation (27) can be rewritten as shown in Equation (28). 

𝑊(𝑡) = 𝑊(𝑡 − 1) + [2𝑅𝑖𝑛𝑣(𝑡) − 𝑅𝑖𝑛𝑣(𝑡)𝑊(𝑡 − 1)𝑊𝐻(𝑡 −
1) −𝑊(𝑡 − 1)𝑊𝐻(𝑡 − 1)𝑅𝑖𝑛𝑣(𝑡)]𝑊(𝑡 − 1)         (28) 

Equation (28) is the modified Gradient Method for the 
noise subspace estimation. The computational complexity of 
Equation (28) is comparatively less when compared to the 
batch based SVD or EVD techniques [19] which is of the order 
of O(n3) operations. 

VI. MODIFIED GRADIENT IN CSI ESTIMATION 
This section presents a unique method for calculating the 

noise vector of Rn, the autocorrelation matrix by altering the 
current Gradient method [16]. The Gradient-based subspace 
estimation method is a member of the iterative power-based 
subspace estimation algorithm class. These categories of 
algorithms estimate and track signal vectors more effectively 
than the noise vector of the subject matrix. In addition, the 
iterative power-based approach predicts the greatest vector in 
the signal space. Typically, signal subspace vectors are 
computed prior to noise subspace estimation. The noise 
subspace created by inverting Rn, the autocorrelation matrix 
eliminates the need to compute the noise subspace following 
the signal subspace. Taking into account the inversion of the 
subjected Rn matrix, the same power-based technique will be 
more effective at directly estimating and tracking the noise 
space vector or minor vectors. 

The inverse of the autocorrelation matrix Rn is calculated in 
the proposed modified Gradient, Xn, by utilizing the 
underlying received OFDM symbol Yn. This is carried out in a 
recursive fashion. The classic matrix inversion lemma is used 
in the recursive least square estimation techniques, and it is 
utilized by the modified Gradient. The underlying matrix that 
will be employed in tracking the noise vectors in Equations (4) 
and (16) of interest for estimating the CSI will be the inverted 
version of Xn, which will have a dimension of N+L x N+L. 
During the process of estimating the CSI, this modified 
Gradient method will be used to calculate and keep track of the 
noise vectors. In terms of the amount of computing power 
required, a technique of this iterative nature is quite effective. 
The comparative performance of blind CSI estimation using 
the proposed modified Gradient algorithm and SVD based 
approach will be described later in section VI with a random 
complex channel. The focus of this section is on the 
performance of blind CSI estimation using modified Gradient 
method. 

This paper describes the procedure for computing the noise 
subspace vectors specified in Equation (4) and (16) using the 
modified Gradient approach. A pseudocode for the CSI 
estimation is also presented. Estimation of CSI begins with the 
OFDM signals that were successfully received. Xn denotes the 
nth estimate of the inverse of the autocorrelation matrix, Rn. 

A brief explanation of pseudo-code is presented here in 
order to estimate the noise subspace vectors making use of 
modified Gradient, with rank one update being performed by 
the underlying OFDM signal Yn. As shown in the Equation 
(31), the rank-one update of the inverse autocorrelation matrix 
Xn is computed using Yn, the received OFDM signal. 

Initialize  

𝑉𝑛𝑜𝑠𝑖𝑒(0) = [𝐼]𝑁+𝐿 𝑋 𝐿 

 
𝑋(0) = [𝐼]𝑁+𝐿 𝑋 𝑁+𝐿 

Where N is the number of carriers and L is the zero-
padding length. 𝑉𝑛𝑜𝑠𝑖𝑒(0) is the initial noise subspace matrix of 
Xn

H , and X(0) is the initial inverse of Rn. 

For n = 1,2,3… , 

𝐾𝑎𝑙𝐺𝑎𝑖𝑛 𝐴(𝑛) = 𝑋(𝑛 − 1)𝑌(𝑛)           (29) 

𝐺𝑎𝑚𝑚𝑎 𝐴(𝑛) =  1−𝜆
𝜆+(1−𝜆)𝑌𝐻(𝑛)𝐾𝑎𝑙𝐺𝑎𝑖𝑛𝐴(𝑛)

          (30) 

𝑋(𝑛) =  

 1
𝜆

(𝑋(𝑛 − 1) − 𝐺𝑎𝑚𝑚𝑎𝐴(𝑛)𝐾𝑎𝑙𝐺𝑎𝑖𝑛𝐴(𝑛)𝐾𝑎𝑙𝐺𝑎𝑖𝑛𝐴𝐻(𝑛))  (31) 

𝑉𝑛𝑜𝑠𝑖𝑒(𝑛) = 𝑉𝑛𝑜𝑠𝑖𝑒(𝑛 − 1) + �2𝑋(𝑛) − 𝑋(𝑛)𝑉𝑛𝑜𝑠𝑖𝑒(𝑛 −
1)𝑉𝑛𝑜𝑠𝑖𝑒

𝐻(𝑛 − 1) −
𝑉𝑛𝑜𝑠𝑖𝑒(𝑛 − 1)𝑉𝑛𝑜𝑠𝑖𝑒

𝐻(𝑛 − 1)𝑋(𝑛)� 𝑉𝑛𝑜𝑠𝑖𝑒(𝑛 − 1)        (32) 

End 

λ is the forgetting factor between 0 and 1. 

𝑉𝑛𝑜𝑠𝑖𝑒 44T, which has the noise vectors corresponding to the 
noise subspace vector of Equation (10). The L noise vectors 
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from 𝑉𝑛𝑜𝑠𝑖𝑒 R construct the Henkel matrix V needed to compute 
W, as shown in Equation (15). The smallest singular vector 
of W is obtained using the procedure listed below. 

A summary of pseudo code for estimating the noise vectors 
using the modified Gradient method is presented with full-rank 
updating of W, which is computed from the 𝑉𝑛𝑜𝑠𝑖𝑒 as described 
in the Equation (15). 

Initialize 

𝑄(0) = �𝐼0�𝑁+𝐿 𝑋 𝐿
 

𝑊𝑖𝑛𝑣(0) = [𝐼]𝐿𝑋𝐿 

for n = 1,2,3…  

𝐾𝑎𝑙𝐺𝑎𝑖𝑛𝐵(𝑛) = 𝑊𝑖𝑛𝑣(𝑛 − 1)𝑊(𝑛)          (33) 

𝐺𝑎𝑚𝑚𝑎𝐵(𝑛) =  1−𝜆
𝜆+(1−𝜆)det (𝑊𝐻(𝑛)𝐾𝑎𝑙𝐺𝑎𝑖𝑛𝐵(𝑛))

          (34) 

𝑊𝑖𝑛𝑣(𝑛) = 
1
𝜆

(𝑊𝑖𝑛𝑣(𝑛 − 1) − 𝐺𝑎𝑚𝑚𝑎𝐵(𝑛)𝐾𝑎𝑙𝐺𝑎𝑖𝑛𝐵(𝑛)𝐾𝑎𝑙𝐺𝑎𝑖𝑛𝐵𝐻(𝑛))  (35) 

𝑄(𝑛) = 𝑄(𝑛 − 1) + [2𝑊𝑖𝑛𝑣(𝑛) −𝑊𝑖𝑛𝑣(𝑛)𝑄(𝑛 − 1)𝑄𝐻(𝑛 − 1) −
𝑄(𝑛 − 1)𝑄𝐻(𝑛 − 1)𝑊𝑖𝑛𝑣(𝑛)]𝑄(𝑛 − 1)            (36) 

End 

Q in Equation (36) contains noise subspace vectors of Winv 
of Equation (35). The first singular vector is the estimate of the 
channel's impulse response. The impulse response estimate is 
normalized to get the estimate of CSI. The estimated 
normalized impulse response will have a phase ambiguity and 
is resolved with the help of a single pilot carrier. 

The Gradient class of subspace estimation algorithms 
typically exhibit a complexity of O((N+L)L) with the 
additional complexity of O((N+L)2) for inversion of matrix 
using matrix inversion lemma of Equation (31). In general, 
computational complexity in the estimation of noise spaces 
through the proposed modified Gradient scheme is 
O((N+L)2+(N+L)L)), instead of O((N+L)3) operations of the 
conventional SVD based methods. This in turn implies a 
reduction in computational complexity of modified Gradient 
method. Table I presents the comparison of computational 
complexity between the direct SVD and modified Gradient 
algorithms in computing the noise subspace with rank one 
update. As shown in Table I, the computational complexity of 
modified Gradient is comparatively less than the direct SVD 
based algorithms for various values of N and L. 

TABLE I. COMPARISON OF COMPUTATIONAL COMPLEXITY OF DIRECT 
SVD AND MODIFIED GRADIENT IN ESTIMATION NOISE SUBSPACE WITH RANK 

ONE UPDATE 

SI. No N L SVD Modified Gradient 

1 128 8 O(136^3) O(26.955^3) 

2 256 16 O(272^3) O(42.788^3) 

3 512 32 O(544^3) O(67.921^3) 

VII. PERFORMANCE ANALYSIS 
This section presents the results of the simulation to 

establish the ability modified Gradient based CSI estimation 
algorithm using the directly computed noise subspace. The 
simulation model assumes the reception of the OFDM symbol 
with 128 carriers and zero-padded to the extent of 1/4th of the 
OFDM symbol. Out of 128 carriers, one carrier is a reference 
carrier to resolve the issue of phase ambiguity. The simulation 
of the Rayleigh channel model mimicking the outdoor channel 
is through 16 tap FIR filter. The subcarriers of the OFDM use 
the modulation scheme of the QPSK constellation. The 
simulation is with 1500 OFDM symbols. The changes in the 
Rayleigh channel model are induced to occur at the time 
instances of 500th and 1000th OFDM symbols. The Channel 
Impulse Response, which is nothing but CSI, is estimated and 
is tracked using a subspace-based technique at various power 
levels. The estimate of CSI is compared with a response of 
modelled ideal Rayleigh channel. Direct SVD and proposed 
modified Gradient techniques are adopted to estimate the noise 
subspace. Noise subspace, in turn, is used to estimate the CSI. 
Fig. 2 to Fig. 4 present the comparative performance and 
analysis of CSI estimates obtained through modified Gradient, 
Direct SVD, and the ideal channel response. 

Fig. 2 to Fig. 4 illustrate the comparative estimation 
performance of the modified Gradient and direct SVD-based 
noise subspace estimators in the estimation of CSI of the 
OFDM system. In the simulation studies presented in this 
paper, 400 OFDM symbols are utilized to reconstruct the 
autocorrelation matrix which is required for noise subspace 
estimation. The results of Fig. 2 correspond to the power level 
(SNR) of the wireless channel at 10 dB. The ideal Rayleigh 
channel shown in Fig. 2, is the reference for comparison and 
has been modeled through 16 tap FIR filter. Fig. 2 depicts the 
estimation of the Rayleigh channel state (at SNR of 10 dB) at 
the 400th OFDM symbol. While Fig. 2(a) depicts the amplitude 
response of the CSI estimation, the corresponding phase 
response is shown in Fig. 2(b). There is an excellent agreement 
between the results obtained through the modified Gradient 
and direct SVD-based blind CSI estimators. The results of Fig. 
2(b) reveal a fixed offset between the results of modified 
Gradient and Direct SVD relative to the ideal Rayleigh 
channel. The referred fixed offset in the phase of estimated CSI 
is attributed to the phase ambiguity (which is already explained 
while discussing Equation (16)). This phase ambiguity is 
resolved or negated using a single reference subcarrier. 

Similarly, Fig. 3(a) and Fig. 3(b) depict the amplitude and 
the phase of the CSI estimation (SNR of 20 dB) at the 400th 
OFDM symbol. At increased power level of the channel 
(SNR), the correlation between the CSI estimation by the blind 
CSI estimators and the ideal channel improves. 

The analogous results at SNR of 30 dB are shown in 
Figures 4a and 4b. The results on amplitude response of CSI 
estimation shown in Figure 4a show perfect agreement among 
the blind CSI estimators and ideal channel. It is pertinent to 
note that modified Gradient requires relatively lesser 
computational effort compared to direct SVD. 

Fig. 5 depicts the channel tracking performance of the 
proposed modified Gradient algorithm with direct SVD at SNR 
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of 10 dB. It also illustrates the Relative Error Norm 
performance of the proposed modified Gradient and direct 
SVD-based blind CSI estimators. Whenever there is a change 
in the state of the Rayleigh channel, the blind CSI estimator 

takes around 100 OFDM symbols for attaining the steady state. 
Post 100 symbols, the Relative Error Norm falls to around -6 
dB at 1000th and 1500th OFDM symbols. 

  
(a)       (b) 

Fig. 2. (a) Amplitude Response: CSI Estimation for Rayleigh Channel at 400th OFDM Symbol (SNR of 10 dB), (b) Phase Response: CSI Estimation for Rayleigh 
Channel at 400th OFDM Symbol (SNR of 10 dB). 

  
(a)       (b) 

Fig. 3. (a) Amplitude Response: CSI Estimation for Rayleigh Channel at 400th OFDM Symbol (SNR of 20 dB), (b) Phase Response: CSI Estimation for Rayleigh 
Channel at 400th OFDM Symbol (SNR of 20 dB) 

  
(a)       (b) 

0 20 40 60 80 100 120
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10
Amplitude Response of Wireless Multipath Channel at 10 dB SNR and 400th OFDM Symbol

Subcarrier Index

M
ag

ni
tu

de
 (d

B
)

 

 
Ideal
Modified Gradient
SVD

0 20 40 60 80 100 120
-30

-25

-20

-15

-10

-5

0

5
Phase Response of Wireless Multipath Channel at 10 dB SNR and 400th OFDM Symbol

Subcarrier Index

P
ha

se
 (D

eg
re

e)

 

 
Ideal
Modified Gradient
SVD

0 20 40 60 80 100 120
-35

-30

-25

-20

-15

-10

-5

0

5
Amplitude Response of Wireless Multipath Channel at 20 dB SNR and 400th OFDM Symbol

Subcarrier Index

M
ag

ni
tu

de
 (d

B
)

 

 
Ideal
Modified Gradient
SVD

0 20 40 60 80 100 120
-35

-30

-25

-20

-15

-10

-5

0

5
Phase Response of Wireless Multipath Channel at 20 dB SNR and 400th OFDM Symbol

Subcarrier Index

P
ha

se
 (D

eg
re

e)

 

 
Ideal
Modified Gradient
SVD

0 20 40 60 80 100 120
-35

-30

-25

-20

-15

-10

-5

0

5
Amplitude Response of Wireless Multipath Channel at 30 dB SNR and 400th OFDM Symbol

Subcarrier Index

M
ag

ni
tu

de
 (d

B
)

 

 
Ideal
Modified Gradient
SVD

0 20 40 60 80 100 120
-30

-25

-20

-15

-10

-5

0

5
Phase Response of Wireless Multipath Channel at 30 dB SNR and 400th OFDM Symbol

Subcarrier Index

P
ha

se
 (D

eg
re

e)

 

 
Ideal
Modified Gradient
SVD

255 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 6, 2022 

Fig. 4. (a) Amplitude Response: CSI Estimation for Rayleigh Channel at 400th OFDM Symbol (SNR of 30 dB), (b) Phase Response: CSI Estimation for Rayleigh 
Channel at 400th OFDM Symbol (SNR of 30 dB) 

 
Fig. 5. CSI Tracking of Rayleigh Channel at SNR of 10 dB. 

Similarly at the higher SNR value of 20 dB (Fig. 6), the 
Relative Error Norm shows decreasing trend (as low as -16 
dB). 

 
Fig. 6. CSI Tracking of Rayleigh Channel at SNR of 20 dB. 

The results of Fig. 7 reveal that for a channel power level 
(SNR of 30 dB), the Relative Error Norm is as low as -22 dB. 
As the power level increases, the difference in the Relative 
Error Norm continuously decreases leading to very good 
agreement between the results of direct SVD and the modified 
Gradient method. This substantiates the ability of modified 
Gradient algorithms to accurately estimate the CSI of the 
wireless multipath channel at a lower computational cost. 

Fig. 8 presents the comparison of the Mean Square 
Estimate (MSE) of CSI estimation performed through 
Modified Gradient algorithm and with that of Cramer Rao 
Lower Bound (CRLB). The subspace-based techniques which 
are blind in nature are formulated to perform the estimation of 
CSI without the knowledge of complete information. The 
proposed modified Gradient algorithm compares favorably 
with CRLB at high SNR. At SNR of about 15 dB and above, 
the modified Gradient algorithm requires about 2 to 3 dB 
additional power gain to attain the limits of CRLB. Indeed, it is 

exhibiting a good performance in spite of complete blind 
operation. 

 
Fig. 7. CSI Tracking of Rayleigh Channel at SNR of 30 dB. 

 
Figure 8: CRLB Comparison. 

VIII. CONCLUSION 
This paper presents a modified Gradient based method to 

directly compute the noise subspace iteratively from the 
received OFDM symbols to estimate CSI. The proposed 
method enables direct computation of noise subspace using the 
inverse of the autocorrelation matrix of the received OFDM 
symbols. This paper adopts a matrix inversion lemma to 
overcome the heavy computational efforts in the direct 
inversion of an autocorrelation matrix. This paper also 
introduced two schemes of modified Gradient based on 
whether the underlying input to the algorithm is a vector or 
matrix. In the case of a vector input, the modified Gradient 
algorithm uses rank one update to calculate noise subspace 
recursively. For the matrix input, modified Gradient algorithm 
uses full rank update. The validity, efficacy and the accuracy of 
the proposed modified Gradient algorithm have been 
substantiated through a relative comparison of the results with 
the conventional SVD algorithm, which is in wide use in 
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estimation of the subspaces. The results of performance 
analysis obtained through modified Gradient algorithm show 
satisfactory correlation with the results of SVD, even though 
the computational complexity involved in modified Gradient 
method is relatively less. This enables to adopt the noise 
subspace-based CSI estimation in realistic scenario of OFDM 
system. The reduced computation complexity in the estimation 
of the noise subspace estimation by the proposed modified 
Gradient can be of potential utility for the use of a subspace-
based technique in the estimation of CSI for coherent 
demodulation in OFDM systems. Through simulation studies, 
this paper also has illustrated the ability of the blind CSI 
estimator in tracking the changes in the wireless channel state 
at various time instants. 

The focus of this paper is on CSI estimation assuming the 
presence of perfect carrier frequency synchronization. 
However, the joint CSI and CFO estimation without the 
assumption of perfect carrier frequency synchronization will be 
of practical relevance from the performance perspective of the 
OFDM system. The joint CFO-CSI estimators based on the 
noise subspace technique is a topic of research interest of the 
authors. 
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