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Abstract—Today, kidney medical imaging has become the 
backbone for health professionals in diagnosing kidney disease 
and determining its severity. Physicians commonly use 
Computerized Tomography (CT) and Magnetic Resonance 
Imaging (MRI) scan models to obtain kidney disease 
information. The significance and impact of kidney tumor 
analysis drew researchers to semantic segmentation of kidney 
tumors. Traditional image processing methodologies, in general, 
require more computational power and manual assistance to 
analyze kidney medical images for tumor segmentation. Deep 
Learning advances are enabling less computational and 
automated models for kidney medical image analysis and tumor 
lineation. Blobs (regions of interest) detection from medical 
images is gaining popularity in kidney disease diagnosis and is 
used widely in detecting tumors, glomeruli, and cell nuclei, 
among other things. Kidney Tumor segmentation is challenging 
compared to other segmentation models due to morphological 
diversity, object overlapping, intensity variance, and integrated 
noise. In this paper, It have proposed a kidney tumor semantic 
segmentation model based on CU-Net and Mask R-CNN to 
extract kidney tumor information from abdominal MR images. 
Initially, It trained the Custom U-Net architecture on abdominal 
MR images with kidney masks for kidney image segmentation. 
The Mask R-CNN model is then used to lineate tumors from 
kidney images. Experiments on abdominal MR images using 
Python image processing libraries revealed that the proposed 
deep learning architecture segmented the kidney images and 
lined up the tumors with high accuracy. 

Keywords—Kidney tumor (Blob) detection; custom U-Net; mask 
R-CNN; semantic segmentation; deep learning; medical image 
processing 

I. INTRODUCTION 
Medical imaging provides high resolution and coverage 

for the visualization of specific body organs. X-Ray, CT, 
MRI, and PET-CT scans are some frequently used medical 
imaging [1] technologies. In general, physicians will manually 
analyze the content of medical images to identify disease 
information. Image processing [2] and deep learning 
technologies [3] have been providing disease diagnosis 
models for over a decade, removing human errors in disease 
prediction. Deep learning for medical image analysis has 
attracted researchers and medical analysts because it requires 
less human intervention in data labeling and depth processing 
models than traditional image processing methods. Diseased 

regions (biomarkers) in a medical image differ in properties 
(i.e., the contrast in brightness) from their neighbor pixels and 
appear as blobs in nature. These biomarkers or blobs are the 
regions of interest (ROI) in medical image diagnosis, and they 
must get identified, segmented, classified, and labeled to 
predict disease. Image analysis models based on deep learning 
will assist in detecting biomarkers in medical images and 
provide spatial information such as location, shape, scale, 
inertia, and convexity. The Blob (or image ROI) detection [4] 
allows disease diagnosis in many instances of the medical 
image diagnosis such as brain tumors, kidney glomeruli, eye 
retina, breast lesions, and cell nuclei detection, among others. 
Medical image biomarkers detection models are becoming 
prominent applications for physicians in disease conformation, 
staging, and treatment planning. 

Due to the importance of biomarkers detection in medical 
image analysis, many former researchers were focused on this 
topic and proposed various deep learning models for medical 
image blobs detection. Although many scholars have worked 
on medical image diagnosis, some prominent literature aided 
us in selecting the objectives and designing the proposed 
system using deep learning technologies. Parvathi et al. [5] 
integrated deep learning and image processing algorithms to 
execute the blob detection and classification operations on 
kidney 3D MRI images. They used the ECLAHE and IMBKM 
models to segment the blobs from the input images and later 
the deep learning IMBKM and EDCNN classifiers to classify 
the blobs into the selected disease categories. Xu et al. [6] 
created a hybrid model that used a deep U-Net model and 
hessian analysis to detect small blobs in 3D MRI images for 
kidney glomeruli detection. They designed a superset of blobs 
using the hessian analysis to distinguish the real-convex blobs 
from the noisy ones. Their custom deep learning model UH-
Net integrated the hessian superset information and the U-Net 
pre-training knowledge to find the glomeruli through small 
blobs detection from the 3D kidney MRI images. Peng et al. 
[7] proposed a multi-scale blob detection model for automated 
stem cell segmentation from the underlying microscopic 
image set. The cell boundaries are delineated with high 
accuracy using blob and centerline detection. 

In the literature survey, it went through many research 
articles as part of the medical image disease prediction and 
identified some research gaps, which are as follows: Because 
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of the morphological diversity, segmenting the kidney object 
from the multi-organ medical image using shape and location 
information yields less accuracy. The traditional semantic 
segmentation approach, which may detect object categories in 
medical images, is insufficient because the medical image 
contains many instances of the same object type. Therefore, 
the instances must be categorized as it will. 

Since kidney cancer became a major cause of kidney 
failure in people, our primary research goal was to detect 
kidney tumors from MRI images. To achieve this goal, it 
planned to segment the kidney objects from the MR first, and 
the lineation of the tumors from the kidneys is later. Image 
processing models (such as SIFT [8] and SURF [9]) and deep 
learning models (such as DNNs [10], CNNs [11], and Res-Net 
[12], among others) are the two different technologies used to 
segment the kidneys from CT images. Although each model 
has its pros and cons for kidney segmentation, it is interested 
in deep learning models because they are computationally 
cheaper and allow for high-level automation of the 
segmentation process. Unlike commonly performed object 
segmentation from images, kidney segmentation is a unique 
and challenging task, as shown in Fig. 1, because diseased 
kidneys segmentation has issues due to morphological 
diversity, object overlapping, intensity variance, and 
integrated noise. 

Kidney tumor segmentation from MR images is a two-step 
process that includes kidney object (with tumor) segmentation 
and tumor object lineation. To accomplish the kidney tumor 
segmentation task and address segmentation issues (research 
gaps), in this paper, it proposed an efficient and optimal 
kidney tumor segmentation architecture using the custom U-
Net and Mask R-CNN [13] deep learning models. The custom 
U-Net model is used first for kidney segmentation, and the 
Mask R-CNN model is used to lineate tumors from the 
segmented kidney images. The custom U-Net model is used 
first for kidney segmentation, and the Mask R-CNN model is 
used to lineate tumors from the segmented kidney images. To 
demonstrate the efficiency of the proposed kidney tumor 
segmentation model, a set of MR images collected from the 
TCGA-KIRC dataset and a python prototype is implemented 
to conduct the experiments. 

 
Fig. 1. Abdominal MR Scan Images. (a) Kidney with no Tumor; (b) Kidney 
with Mild Tumor; (c) Kidney with Moderate Tumor (Kidney Tumors Marked 

with Red Line in b and c). 

II. RELATED WORK 
In this section, it will discuss the Key technologies that 

have been used in our kidney tumor semantic segmentation 
processes like CNNs [14], U-Net [15] and Mask R-CNN [13]. 

A. CNNs 
Recent advances in high-speed internet and mobile 

technology have resulted in a digital multimedia world with 
tons of images and videos. Computer vision is an emerging 
future domain, which is responsible for video and image 
manipulation as needed. Extracting useful information from an 
image is a complicated task because that needs to process a 
high volume of pixels. For over a decade, multi-layered deep 
learning models have made image processing easier than 
traditional methods. Because of their high accuracy and fully 
connected layers, Convolutional Neural Networks (CNNs) 
have proven to be the dominant deep learning model among 
the various deep learning models. As a descendant of 
Artificial Neural Networks (ANNs) [16], CNNs [14] will 
automatically train the feature maps from pixel arrays and 
identify the receptive fields through backpropagation using 
Key methods like convolution, pooling, and fully connected 
networks (FCN) [17]. 

1) Convolution: In general, the image is a collection of 
pixels, and these pixels will get converted into the respective 
intensity (RGB and grayscale) values for representation in a 
binary matrix model, which is feasible for manipulations. To 
manipulate the images with less computational overhead, they 
should be resized to a small size (down sampling) while 
retaining their receptive field (context) information. 
Convolution [18] is an affine transformation model in which 
the selected kernel matrix (filter) elements are iteratively 
multiplied against the input image matrix elements to generate 
the small-sized output convolved matrix. Fig. 2(a) represents 
the convolutional model with an input image (5x5x1) and the 
kernel (3x3x1) with a stride value of 2, and also the output 
convolved image (3x3x1). When it comes to the 3D images 
with RGB values, three color channels map with three 
different kernels for computations, and the final summation 
value is added with the bias to generate the convolved output 
image. 

 
Fig. 2. Input Image Convolution and Pooling Model. 
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2) Pooling: In CNN, the convolution is followed it by a 
pooling [19] process, which mimics the behavior of the 
convolution process to reduce the convolved image spatial 
size at a high rate. Using either the max or average pooling 
method reduces computational overhead while learning and 
regulates over-fit issues. In Fig. 2(b), the average pooling 
method with a 2x2 filter and stride value of 2 is applied on a 
convolved image (4x4x1) to generate a pooled feature map 
(2x2x1). Like the convolution process, the pooling does not 
support the zero-padding at input feature map borders. 

3) FCN: The FCN [17] is a feed-forward neural network 
model for multilayer perceptron that enables the 
backpropagation to learn the key features for classification 
across the epochs. The high-level features generated by the 
final convolution/pooling process are encoded using a single 
(flattened) vector and fed into the FCN. The FCN calculates 
the loss-entropy value for decision-making against 
classification uncertainty to reduce false positives in 
classification. 

B. U-Net 
Ronneberger [15] designed U-Net, as it knows deep 

convolutional network architecture, for the semantic 
segmentation of objects from images, with high speed and 
precision. Extraction of the ROI is frequently required task in 
biomedical images, particularly for organ segmentation, 
objects localization. An efficient deep learning-based semantic 
segmentation model, such as U-Net, is required to achieve this 
ROI extraction. Compared to other CNN architectures [20], 
the U-Net is the most adaptive for medical image 
segmentation because of additional benefits such as pixel-
level segmentation, limited training data, end-to-end training, 
pixel padding support, de-convolutions, and elastic 
deformation. 

The two sections of the U-Net architecture are the 
contracting path (encoder part) and the symmetric expanding 
path (decoder part). The encoder part of U-Net, like 
convolutional networks, is continuous with convolutions and 
pooling methods to make the context more precise and 
sharper. This encoder reduces the dimensionality of the input 
feature without losing context, allowing the process to 
complete with less computation. The encoder performs the 
3x3 convolutions iteratively till the pivot point. And after each 
convolution process, the batch normalization and the 
activation function [21] (Rectified Linear Unit (ReLU)) are 
applied with pooling strides for down-sampling, which helps 
in the précised context making. In contrast, the U-Net has a 
decoder part with a transposed convolution mechanism on the 
other side, making the U-Net an end-to-end FCN model. The 
encoder output is up-sampled [22] by the decoder using 
convolutions, batch normalizations, and ReLU activations. 
The decoder is intended to return the output with precise 
localization using the up-sampling process and transposed 
convolution. 

C. Mask R-CNN 
As part of their research on AI, the Facebook AI Research 

Team (FAIR) introduced the instance segmentation 
framework called Mask R-CNN [10] as an extension to the 
Faster R-CNN [23] by adding the ROI segmentation masks. 
Compared to the other models, the Mask R-CNN is fast, 
simple, flexible, and accurate in instance segmentation is 
proven by the COCO - 2016 challenge. Mask R-CNN can 
segment the multiple instances precisely from the images, 
using image localization, object detection, and segmentation 
methods. Mask R-CNN architecture was designed by joining 
the Faster R-CNN with FCN model [24] for instance 
segmentation process. 

Initially, a set of input images with different class objects 
are selected for instance segmentation. Deep CNN 
architectures [20] with convolution and pooling operations 
will extract the ROI bounding boxes from the input images. 
Unlike the Region-based CNN model, the Mask R-CNN had 
the ROI alignment phase, in which the exact spatial ROI 
volumes are identified from input images based on the input 
masks, using the pixel to the pixel alignment process. Mask R-
CNN evaluates the ROIs from ROI-Pool and in parallel 
performs the target object detection to overcome the 
performance issues. Mask R-CNN evaluates the ROIs from 
ROI-Pool and in parallel performs the target object detection 
to overcome the performance issues. The bounding boxes are 
scaled using the Intersection over Union (IoU) metrics [25] 
after completing the ROI alignment process, and 
misinterpretations get eliminated using the feature matching 
threshold value. At this point, various class masks are applied 
to the coarse-grained bounding boxes to find the fine-grained 
segmentation. Finally, these fine-grained segmentations are 
precisely lineated and masked. 

III. KIDNEY TUMORS SEGMENTATION ARCHITECTURE 
USING CU-NET AND MASK R-CNN MODELS 

In recent times, kidney tumor diagnosis from the medical 
images becomes a focusable research area due to its impact 
and importance in disease diagnosis and staging. The 
contribution of tumor detection is invaluable in cancer disease 
staging and treatment (especially in targeted therapy) 
planning. Researchers are interested in medical image analysis 
using deep learning models over traditional image processing 
techniques to reduce the computational (i.e., hardware) 
difficulties [26] in medical image processing. It is discussed in 
Section I that the kidney tumor diagnosis from MRI images 
faces several issues since this process differs slightly from the 
regular object segmentation and lineation process. To address 
the issues involved with the kidney tumor semantic 
segmentation process, It designed an efficient and optimal 
deep learning architecture (shown in Fig. 4) using the Custom 
U-Net [10] and Mask R-CNN models for kidney image 
segmentation and the tumor instance lineation from medical 
MR images. Kidney tumors can be segmented [27] from the 
medical MR images in two phases: Kidney(s) segmentation 
from MR images and tumors boundary lineation from kidney 
images. 
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A. Kidney Segmentation Phase 
The process of extracting kidney images (with tumors) 

from MR scan images is known as kidney segmentation [28]. 
Later these extracted kidney images are used for tumor 
detection and its boundary lineation. For this, it selected a set 
of abdominal MR images and their associated ground truth 
values (masks) as a training dataset (shown in Fig. 3) for the 
experimental analysis. However, extracting the kidney context 
from the MR images is a complex process due to several 
reasons. Because of the cancer disease [29], the shape of the 
kidneys is inconsistent in nature and different from one other, 
which will make the network's training process difficult. 
Because the MR scan images are collected from different MR 
scanners, the intensity of the input images varies, which is 
incompatible with many deep learning networks. In addition 
to kidneys and other organs, noisy data is often present in MR 
scan images, making the object detection process more 
complex. 

1) Custom U-Net: To solve these challenges in the kidney 
extraction process, it used the custom U-Net [10] model, a 
trained convolutional neural network that is suited for medical 
image segmentation. U-Net model [15] was selected over the 
other CNNs [21] because the U-Net supports the classification 
at pixel level and is suitable for the multi-class instance 
labeling if required. Due to the systematic hurdles [30] 
involved in data collection and processing, obtaining a dataset 
with tons of images and masks is impossible related to 
medical images. U-Net is a light-tight model because it can 
train efficient models with limited training datasets. Unlike 
trained nets [20] such as LeNet-5 and Dense DNN, the U-Net 
is free from dense layers and thus accepts input data with 
intensity variance. 

It designed a custom U-Net model with additional features 
by extending the traditional U-Net to support kidney object 
segmentation with high accuracy. Our custom U-Net model is 
designed with a validation set to ensure test accuracy. By 
adjusting the hyper-parameters at validation time, the custom 
U-Net tunes the deep model to achieve high accuracy in test 
results. CU-Net was enhanced with data augmentation 
techniques such as image flips and others to double the size of 
the input dataset to generalize the training model. Dropout 
regularization functions it added to CU-Net during the training 
phase after each max-pooling operation to randomly replace 
neurons (pixels) with zero values and train the model with 
alternative neural networks to minimize overfitting. 

 
Fig. 3. An Abdominal MR Image (356 x 356) with Kidney Tumor (Left) and 

its Ground Truth Image for Training (Right). 

2) Dataset model: A set of total ′𝑛′  MR scan abdomen 
images Ḭ = {𝐼1,  𝐼2, 𝐼3 … 𝐼𝑛 }  containing multiple organs with 
dimensions 𝐷 = [𝑑1,𝑑2], pixels 𝑃 = (𝑝1, 𝑝2), are presented in 
a binary matrix model 𝑀 = [𝑚𝑝 𝑥 𝑚𝑞 ] . In our dataset, an 
image 𝐼1 is having the greyscale pixel (𝑖1(𝑃)) with its pixel 
value is represented as 0 ≤ 𝑖1(𝑃) ≤ 255 . Mask image set Ḿ 
is a set of total ′𝑛′ masks with information about kidneys with 
tumors segmentation, and it maps with their original MR 
images for training. The mask image set 
Ḿ = {𝑀1,𝑀2,𝑀3 … 𝑀𝑛} along with its label information 𝐿 is 
presented as 𝑀𝑘 = {(𝑀𝑘 , 𝐿) ∈ 𝐼𝑘  & 𝐿 = 1}. 

3) Training Custom U-Net: Once the data is defined and 
available in hand, the next immediate step in Custom U-Net is 
the data preparation. It classifies the data into a training set Ḭ𝛼, 
validation set Ḭ𝛽, and test set Ḭ𝛾. It used the validation set  Ḭ𝛽 in 
the training phase to assess the model accuracy and to detect 
the overfitting problems [31] at the training phase itself. After 
partitioning the data set into train and test sets, a custom U-
Net model with a contracting path and an expensive path was 
designed. The U-Net model is symmetric, with four layers of 
processing at each path. The 2D_convolution, max pooling, 
and dropout functions are implemented in the contracting 
path, whereas the transpose convolution, concatenate, and 
dropout functions are implemented in the expensive path, as 
shown in Algorithm 1. In U-Net, the contracting path's four 
layers are executed first, with convolution, max pooling, and 
dropout functions, and the results are passed to the next layer 
in the path. The convolution function increases the context of 
the input image Ḭ𝑖𝑛, which helps in target feature extraction, 
using the neurons (𝑧), kernel (𝑘𝑚∗𝑛), stride  (𝑠𝑚∗𝑛), activation 
function 𝜑 , an array of 4 channels 𝜇 = [1, 2, 4, 16] , and 
padding 𝑝 elements. 

Down sampling [22] is a spatial dimensionality reduction 
method that reduces image height and width to make the 
image computationally feasible. After executing the 
convolution process twice, the resulted image volume is given 
as input to the max-pooling function to reduce the 
dimensionality of the image without losing the context. The 
ideal pool size (𝑒𝑚∗𝑛) is selected and evaluated against the 
convolved image 𝐶𝑖 to create the max pooled image 𝑄𝑖 . After 
max pooling, dropout functions with a frequency rate (𝑓𝑟𝑎𝑡𝑒) 
(0.0 - 1.0) are executed during the training phase. This 
function randomly sets the input pixels to zero, which helps to 
prevent values from dropping during the training phase and 
keeps the model from overfitting. This step completes a layer 
of the contracting path, and it will take four repeats to 
complete the entire contracting path. Soon after the 
contracting path completes, the convolution process will be 
repeated twice with the double neurons (𝜇) of the contracting 
path's last layer to build the connection (𝐶𝑚) it has two paths. 

Like the contracting path, the expensive path had four 
layers with transposed convolution, concatenation, dropout, 
and convolution functions but executed in backward direction. 
The Con2DTrans function performs the de-convolution 
process to reverse the convolution processes using the 
specified stride  𝑠𝑚∗𝑛 , kernel 𝑘𝑚∗𝑛 , and other attributes. The 
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de-convolved image 𝐷𝑖  is concatenated with its counterpart 
convolution image 𝐶𝑖  to increase the dimensions. Dropout 
function can by the convolutions restores the image with equal 
dimensions of its counterpart contracting path layer. The same 
process will be repeated four times to conclude the expensive 
path execution. Finally, the single neuron and the 1x1 kernel-
based convolution process will be executed to return the 
output image 𝐼𝑜𝑢𝑡  with sharpened target context. In this 
manner, our proposed custom U-Net model is trained against 
the input image set to obtain the segmentation knowledge, 
which helps in validation and testing operations. 

Algorithm-1: Custom U-Net Model Algorithm 
Input: 𝐼𝑖𝑛, 𝑘, 𝑠, 𝑝, 𝑧, 𝜑, 𝑒𝑚∗𝑛  
Output: 𝐼𝑜𝑢𝑡 
Method: 
𝑐𝑛1, 𝑐𝑛2, 𝑐𝑛3, 𝑐𝑛4, 𝜇 = [𝑣1, 𝑣2, 𝑣3, 𝑣4]  
// contracting path 
for i=1 to 4 do 
 𝐶𝑖 = 𝑐𝑜𝑛2𝐷( (𝑧 ∗ 𝜇 [𝑖 − 1]), 𝑘𝑚∗𝑛,𝜑,𝑝)( 𝐼𝑖𝑛)  
 𝐶𝑖 = 𝑐𝑜𝑛2𝐷( (𝑧 ∗ 𝜇 [𝑖 − 1]), 𝑘𝑚∗𝑛,𝜑,𝑝, )(𝐶𝑖) 
 𝑐𝑛𝑖 =  𝐼𝑖𝑛  
 𝑄𝑖 =  𝑀𝑎𝑥_𝑃𝑜𝑜𝑙(𝑒𝑚∗𝑛,𝐶𝑖) 
 𝑄𝑖 = 𝐷_𝑂𝑢𝑡(𝑓𝑟𝑎𝑡𝑒)(𝑄𝑖) 
 𝐼𝑖𝑛 =  𝑄𝑖 
end // for 
// connected layers 
 𝐶𝑚 = 𝑐𝑜𝑛2𝐷( (𝑧 ∗  𝜇 [3] ∗ 2), 𝑘𝑚∗𝑛,𝜑, 𝑝)( 𝐼𝑖𝑛) 
 𝐶𝑚 = 𝑐𝑜𝑛2𝐷( (𝑧 ∗  𝜇 [3] ∗ 2), 𝑘𝑚∗𝑛,𝜑, 𝑝)( 𝐶𝑚) 
 𝜇 = [𝑣4, 𝑣3,𝑣2, 𝑣1] 
// expensive path 
for i=4 to 1 do 
 𝐷𝑖 = 𝑐𝑜𝑛2𝐷𝑇𝑟𝑎𝑛𝑠( (𝑧 ∗ 𝜇𝑖−1), 𝑘𝑚∗𝑛,  𝑠𝑚∗𝑛 ,𝜑, 𝑝)( 𝐶𝑚)  
 𝐷𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐷𝑖 ,𝐶𝑖) 
 𝐷𝑖 = 𝐷_𝑂𝑢𝑡(𝑓𝑟𝑎𝑡𝑒)(𝐷𝑖) 
 𝐷𝑖 = 𝑐𝑜𝑛2𝐷( (𝑧 ∗ 𝜇 [𝑖 − 1]), 𝑘𝑚∗𝑛,𝜑, 𝑝)( 𝐷𝑖) 
 𝐷𝑖 = 𝑐𝑜𝑛2𝐷( (𝑧 ∗ 𝜇 [𝑖 − 1]), 𝑘𝑚∗𝑛,𝜑, 𝑝, )(𝐷𝑖) 
 𝐶𝑚 =  𝐷𝑖   
end //for 
 𝐼𝑜𝑢𝑡 = 𝑐𝑜𝑛2𝐷( 1,𝑘1∗1,𝜑, 𝑝, )(𝑐𝑛1) 
return 𝐼𝑜𝑢𝑡 

Regular classification models treat the validation set as an 
optional activity because it consumes more time for 
validations. But in our custom U-Net segmentation process, it 
generated the validation set Ḭ𝛽  to monitor the model 
performance and hyper parameters tuning [32] according to 
the requirements. After the training process designed a 
segmentation model 𝜔 , the validation set Ḭ𝛽  assesses the 
model performance at the training phase itself and fine-tunes 
the parameters through the backpropagation method if 
required. At the test phase, these fine-tuned models will assure 
the précised ROI segmentation. Due to the complexity 
involved in pixel-level processing, the medical image training 
may encounter the overfitting [31] problem, which arises 
when the trained segmentation model performance is specific 
and bounded to the training dataset only. In this case the 
trained model yields the best results on training data Ḭ𝛼 but it 
fails to segment the test data Ḭ𝛾. To overcome this over fitting 
issue in segmentation, it customized the U-Net to compare the 
trained model segmentation accuracy on both the training and 
validation datasets. The precision difference between both 

datasets will be compared against the over-fit threshold(𝛿) to 
confirm the overfit or the difference in performance 𝔻  is 
shown below. 

𝔻 =  
1
𝑘
�𝜔(Ḭ𝛼) −  𝜔�Ḭ𝛽�
𝑘

𝑖=1

 { 𝑖𝑓 𝔻 ≥  𝛿 𝑡ℎ𝑎𝑛 𝑜𝑣𝑒𝑟𝑓𝑖𝑡 } 

 
Fig. 4. Kidney Tumor Blob Instance Segmentation Architecture using CU-

Net and Mask R-CNN Models. 

B.  Tumor Segmentation and Boundary Lineation 
Because the kidney images (including tumors) it used to 

train the Custom U-Net based kidney segmentation model 
(shown in Fig. 4), the trained U-Net model returns segmented 
kidney images with tumors as a result. The tumor instances 
from the kidney images should be lineated and masked to find 
the tumor instance boundaries. Some prominent solutions 
include threshold-based segmentation, edge detection 
segmentation, feature clustering, bounding box, and ROI 
extraction. Among them, it selected Mask R-CNN [13], a fast, 
simple, and generalized ROI-based segmentation model for 
the target tumor object selection and precise segmentation 
(lineation) process. Stones, glomeruli, and tumors, etc. may 
appear as blobs in kidney imaging. Mask R-CNN detects a 
variety of blob objects on existing kidney images using the 
bounding boxes, and then the target tumors are identified 
using the shaded masks. 

Convolution is used to extract feature maps from kidneys 
with tumor instances, and the Region Proposal Network 
(RPN) [23] is applied to the feature maps to generate 
bounding boxes for the target tumor blob. Based on the ROI 
volume, the bounding boxes are selected for further 
processing. ROI volume is evaluated using the Intersection 
over Union (IoU) approach, which compares the bounding 
boxes with the ground truth labels for ROI presence 
estimation. FCN has been used to detect the blob structures 
and mask them with the selected bounding boxes. Compared 
to the other segmentation models, this Mask R-CNN is lighter, 
faster, and reliable for pixel-level semantic segmentation. 

IV. EXPERIMENTAL ANALYSIS 
To conduct the experiments on the proposed kidney tumor 

semantic segmentation architecture with CU-Net and Mask R-
CNN models, it collected a set of 30 kidney MR images from 
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the TCGA-KIRC dataset [33]. Images with 360x360 pixels 
and their corresponding masks (shown in Fig. 2) are extracted 
from these MR images for training and testing. The proposed 
Custom U-Net and Mask R-CNN based tumor segmentation 
architecture was implemented using the Keras-2.4.3 python 
interfaces on the TensorFlow-2.3.0 platform. 

First, the MR image dataset is preprocessed and 
partitioned into train and test datasets, as explained in 
Section III. Train dataset images are transformed into two-
dimensional binary arrays using the pixel data transformation 
methods for further processing. The images are now resized to 
320x320 pixels for process compatibility with the custom U-
net model. The contracting path and expensive path of the 
CU-Net are designed using convolutional and max-pooling 
methods respectively from the Kera’s library. The proposed 
Custom U-Net model with the input layer and output layer 
uses the binary cross-entropy [34] as loss function and 
Adam’s optimizer [35] for accuracy calculation with the 
prediction results. The dataset was augmented using image 
flips and other techniques to generate a set of synthetic data 
images derived from the core MR images. This step will 
increase the training data size by 2x more than the actual size 
to handle the overfitting issue in the classification process. 
Along with the data augmentation techniques, early stopping 
feature is also introduced to stop the training process at the 
appropriate time to avoid the over fit and under fit issues in 
training. To regularize the learning rate across multi epochs 
the learning rate reducing techniques also applied with CU-
Net model. By specifying the epochs and the batch sizes for 
training process, the CU-Net model is trained on MR images 
to generate the efficient model for kidney image detection and 
segmentation. 

The kidney segmentation binaries obtained from the 
Custom U-Net have been used as input to the Mask R-CNN 
model, which extracts tumor data. Mask R-CNN extracts 
objects from input images using bounding boxes and aligns 
the extracted objects using ROI information. Soon after the 
object localization using the bounding boxes alignment 
process, Mask R-CNN starts the pixels level comparison using 
the FCN to lineate the objects with specified shade masks. In 
Fig. 5, the kidney tumor segmentation results are shown along 
with the input images, masks, CU-Net kidney segments, and 
Mask R-CNN tumor lineation. 

 
Fig. 5. Kidney Tumor Segmentation Results from the Experiments on 

Custom U-Net and Mask R-CNN Model. 

Finally, the proposed model results have been evaluated 
using the loss and accuracy metrics from the prediction results 
on the test dataset. It adjusted the training and validation 
dataset proportions to test the accuracy and IoU metrics, and 
the results from the proposed architecture with CU-Net and 
Mask R-CNN are shown in Table I. 

TABLE I. KIDNEY TUMOR SEGMENTATION ACCURACY AND IOU 
RESULTS 

Data Partition IOU Accuracy 

TD-70% and VD-6% 0.875 0.912 

TD-75% and VD-8% 0.913 0.941 

TD-65% and VD-15% 0.849 0.877 

TD-60% and VD-20% 0.831 0.819 

Fig. 6 depicts the generated validation results accuracy and 
loss value across multiple epochs for the proposed Custom U-
Net model. The experimental results show that the proposed 
Custom U-Net and Mask R-CNN model is optimal, and it 
efficiently lineated blobs like kidney tumors with high 
lineation precision and segmentation accuracy. 

 
Fig. 6. Proposed Segmentation Model Results Accuracy and Loss Values 

across the Epochs. 

V. DISCUSSION 
For starters, this model allows for the use of global 

location and context at the same time. Second, it works with 
fewer training samples and outperforms other segmentation 
algorithms. Mask R-CNN outperforms all existing single-
model entries on every task. Faster R-CNN is extremely 
efficient, with only a minor overhead added. Mask R-CNN 
can be easily adapted to other tasks. 

VI. CONCLUSION 
In this paper, it proposed the kidney tumor segmentation 

architecture with Custom U-Net and Mask R-CNN models. U-
Net model is customized to overcome the kidney object 
segmentation issues like morphological diversity, object 
overlapping, intensity variance, and training overfit. Mask R-
CNN is chosen to accurately lineate the tumor boundaries and 
segment (mask) the instances. The proposed architecture is 
used to train a set of MR scan images of kidney cancer, and 
the results are presented with the metrics IoU and accuracy. 
The experiments yielded high accuracy and IoU in kidney 
tumor segmentation and masking. 
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