
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

Sena TLS-Parser: A Software Testing Tool for
Generating Test Cases

Rosziati Ibrahim1
Department of Software Engineering
Universiti Tun Hussein Onn Malaysia

Parit Raja, Malaysia

Samah W.G. AbuSalim2
Department of Computer Information Sciences

Universiti Teknologi PETRONAS (UTP)
Perak, Malaysia

Sapiee Jamel3
Department of Information Security

Universiti Tun Hussein Onn Malaysia
Parit Raja, Malaysia

Jahari Abdul Wahab4
Engineering R&D Department

SENA Traffic Systems Sdn. Bhd.
Kuala Lumpur, Malaysia

Abstract—Currently, software complexity and size has been
steadily growing, while the variety of testing has also been
increased as well. The quality of software testing must be
improved to meet deadlines and reduce development testing
costs. Testing software manually is time consuming, while
automation saves time and money as well as increasing test
coverage and accuracy. Over the last several years, many
approaches to automate test case creation have been proposed.
Model-based testing (MBT) is a test design technique that
supports the automation of software testing processes by
generating test artefacts based on a system model that represents
the system under test's (SUT) behavioral aspects. The
optimization technique for automatically generating test cases
using Sena TLS-Parser is discussed in this paper. Sena TLS-
Parser is developed as a Plug-in Tool to generate test cases
automatically and reduce the time spent manually creating test
cases. The process of generating test cases automatically by Sena
TLS-Parser is be presented through several case studies.
Experimental results on six publicly available java applications
show that the proposed framework for Sena TLS-Parser
outperforms other automated test case generation frameworks.
Sena TLS-Parser has been shown to solve the problem of
software testers manually creating test cases, while able to
complete optimization in a shorter period of time.

Keywords—Software testing; schema parser; software under
test (SUT); model based testing (MBT); java applications

I. INTRODUCTION
Before a software can be released to consumers, it needs to

pass the software testing phase. Software testing covers the
aspect of testing the software to meet its functional
requirements as well as discovering errors before the software
is released. Two main factors are usually used to determine
whether tests will show failures: test inputs and test oracles [1].
A statement in JUnit test is an example of a test oracle.
Software testing is important not only for the software
company, but also for consumers. Many consumers are
currently worried about how software companies ensure
software quality, the mechanisms used to do so, and so on.
Although the types, frequency and activities of tests vary from
program to program, most of the common activities used in

each test cycle are: requirements testing, test planning, writing
test cases, test execution, testing feedback and defect testing.

The development of test cases is a difficult aspect of
software testing [2]. Creating test cases manually is time
consuming. Creating test cases manually should address the
aspects of the test objective. Therefore, creating test cases
automatically is more efficient and consumes less time. The
techniques for automated test case generation aim to efficiently
identify a limited number of cases that satisfy an adequacy
criterion, reducing the cost and resulting in more effective
software product testing. One of the well-known techniques for
software testing is Model-based testing (MBT). MBT is a
testing technique that creates test cases automatically from
models derived from existing application artifacts [3]. MBT is
a promising approach for automatic testing to increase testing
performance and effectiveness [4]. MBT can perform and
complete test tasks in a more cost-effective and reliable manner
than conventional test methods. A description of the MBT
method is presented in [5]. This paper addresses the problem of
manually creating test cases that consume more time. By
introducing Sena TLSParser, test cases can be automatically
created and generated. Sena TLS Parser can reduce time in
generating test cases manually.

The next section will discuss related works followed by
details of the proposed Sena TLS-Parser Framework.
Subsequently, the implementation of Sena TLS-Parser is
discussed followed by the comparison of the proposed
framework with other frameworks.

II. RELATED WORK
With the development of model-based engineering

technology [6], MBT has attracted more and more interest in
research. In the past few years, several MBT tools have been
developed to support MBT activities [7]. Li et al. [4] proposed
and applied a set of test case generation criteria, as well as
surveying new methods that have not been used in previous
research or have not been analyzed using test case generation
criteria. From 2000 to 2018, a review study on requirement-
based test case generation was presented in [8]. The study was

397 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

conducted to gain information in the areas of requirements-
based test case generation and future studies. In addition,
authors in [9] present a systematic mapping study (SMS) by
analyzing 87 studies in this field. They discovered that the
majority of the studies were devoted to test generation
activities. Utting et al. [10] presented model-based research
literature over the last ten years including MBT methodology
and the industry's current level of MBT adoption. The Unified
Modeling Language (UML) is a diagrammatical modeling
language that enables developers to identify, visualize, create,
analyze and document system features. It is the most popular
and widely accepted language in the software industry, to the
point that its spread and popularity may have reached a point
where it is impossible to imagine a software working without
it. There are many UML diagrams used for this purpose such
as class diagram, use case diagram, activity diagram and
others. One of these diagrams, the UML activity diagram is
used to describe behavior while modeling the sequence of
activities in the system. It is closely related to use case
diagram, which shows the sequence of steps the system
performs in order to carry out a use case. By using it, any
software process is simplified and improved by identifying
complex use cases. Therefore, many research works
concentrate on generating test cases from UML [11 - 16].

Many researchers have created a variety of tools for test
case generation, but the features of these tools vary greatly.
This makes it difficult for the user to identify the right tool for
the testing process. TCG, an open-source LoTuS modelling
tool plugin was developed by Muniz et al. [17] to generate test
cases. EvoSuite [18, 19] is a tool that generates test suites
automatically for Java programs with high code coverage and
assertions. EvoSuite employs a number of innovative
techniques that result in increased structural coverage and
efficient assertion selection based on seeded defects, both of
which are important features that other Java tools are lacking.
Another tool called EPiT was developed by Ibrahim et al. [20],
which is shown to be effective in generating test cases
automatically. With the increase in Android mobile devices,
there is growing interest in automated testing for Android
applications. GUI testing is one of the most used techniques for
detecting errors in mobile applications and for testing app
functionality and usability. Salihu et al. [21] proposed
AMOGA which is an alternative model-based testing approach
for mobile apps. Their proposed method uses a combination of
the UI element's event list and each event to dynamically
exercise event ordering at run time. Another tool called APE is
presented by Gu et al. [22] for Android apps testing.
PLATOOL [23] is another tool that has been proven effective
in creating useful functional tests to deal with events involved
in mobile applications during the automatic testing phase.
More details about various software testing techniques applied
for testing mobile applications are shown in [24].

The Synchronized Depth First Search (SDFS) introduced
by Pinkal and Niggemann [25] to automate test case generation
is proven to efficiently execute testing with less effort and time
compared to other techniques. Based on research, it is possible
to generate test cases automatically using Timed
Synchonizable I/O Automation. Genetic algorithms have been
used successfully in software testing. Mishra et al. [26, 27]

shows how genetic algorithms are used for software testing in
generating random test cases. Du et al. [28] presents a
combination of genetic algorithms with mutation testing to
increase coverage and mutation score within test cases. To
assess output in terms of generating test cases, the proposed
algorithm by Wang and Liu [29] shows that it is capable of
achieving both high performance and low time cost in the
automated generation of software test cases.

One significant approach is the generation of test cases
from UML models. Shin and Lim [30] propose an approach in
reducing time and resources required for testing embedded
software. Ma and Provost [31] suggest a testing process that
ensures that a system’s nominal behavior is fully covered while
still allowing for the consideration of defective behavior.
Elqortobi et al. [32] describe the components of an automated
Modified Condition/Decision Coverage MC/DC Test
Generation Tool (TGT) for avionics software test sequence
generation. Their method incorporates three coverage
parameters to increase the performance and error detection
capacity of the derived tests. The criteria are selected to satisfy
the industrial needs for avionics software certification.

III. SENA TLS-PARSER
Sena TLS-Parser consists of four main steps. Fig. 1 shows

the flowchart for Sena TLS-Parser.

Based on Fig. 1, Sena TLS-Parser can be used to generate
test cases automatically in Eclipse Integrated Development
Environment (IDE). The source code is the input for Sena
TLS-Parser. The schema parser will read the source codes line
by line. The token will be used to detect classes and methods
using code smell. The algorithm for code smell is discussed in
[33]. MBT is used for generating the test cases. The algorithm
for generating the test cases is discussed in [20]. However, for
the time being, Sena TLS-Parser can only generate test cases
for Java applications only. The output for Sena TLS-Parser is
the generated test cases as shown in Fig. 2.

Fig. 1. The Flowchart for Sena TLS-Parser.

398 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

Fig. 2. Test Cases Generated from Sena TLS-Parser.

IV. IMPLEMENTATION OF SENA TLS-PARSER
The tool is executed in four steps and this section discusses

the steps. The first step is importing the java project to an
Eclipse environment as a Plug-in Tool. Fig. 3 shows an
example of how Sena TLS-Parser is imported as a Plug-in
Tool. By clicking the in-help tab menu, Sena TLS-Parser can
be installed as a new software option in Eclipse environment.
Sena TLS-Parser will then analyze the codes by right clicking
the project and selecting the SenaTLSParser-2.0 as shown in
Fig. 4.

Based on Table II, Sena TLS-Parser successfully generated
test cases automatically for each application. The duration also
depends on the line of code (LOC) for the application. If the
LOC is smaller, less time is taken to generate the test cases; for
example the Calculator application. If, however, the LOC is
much bigger, more time is required to generate the test cases.
However, the generation of the test cases also depends on the
complexity of the algorithm and the number of methods the
application has; for example the Elevator application.

Fig. 3. Installation of Sena TLS-Parser as a Plug-in Tool.

Fig. 4. Sena TLS-Parser as a Plug-in Tool.

Fig. 4 shows the second step for selecting Sena TLS-Parser
to analyze source code. The third step is for Sena TLS-Parser
to begin analyzing and detecting all of the classes in the source
code. The class will be detected by the parser node by node.
Sena TLS-Parser then identifies a method within each node.
Sena TLS-Parser will save all detected method classes in a
variable. Finally, for the fourth step, test cases are generated
based on the identified attributes. When Sena TLS-Parser has
finished analyzing the source codes, a success popup menu will
appear. Fig. 5 shows the popup menu appearing, which
indicates the time used to analyze the source code.

Fig. 5. Time Taken to Generate Test Cases from Sena TLS-Parser.

After the code analysis process is complete, the results will
be shown in the Sena TLS-Parser console. The console
contains all project information such as project name, test cases
created for each class, and the time and date of when the test
was conducted. Fig. 2 shows the Sena TLS-Parser console.

V. RESULTS AND DISCUSSION
Case studies are used for testing the performance of Sena

TLS-Parser. The case studies are completed by testing Java
applications only by developing test cases for each case study
to evaluate performance in execution time. For the case studies,
performance evaluation regarding Java applications is tested
using Eclipse IDE Version 4.5. The six case studies were
selected and downloaded from GitHub website [34]. The six
case studies are Calculator [35], ATM Machine [36],
BlackJack [37], Traffic Light Simulation [38], Airline
Reservation [39] and Elevator [40]. Table I describes the case
studies used in this paper by providing a summary of the
number of classes for each application and a description for
each case study.

399 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

TABLE I. THE CASE STUDIES

Application Number
classes Description

Calculator [35] 1
The application contains mathematical
methods like add, subtract, multiply, divide
methods.

ATM Machine
[36] 5

The application has financial transactions
such as cash deposits, withdrawals and
transfer funds.

BlackJack [37] 5

Simple Blackjack implemented in Java.
Creates a random deck of cards, or takes in a
file with a list of cards, and plays a round.
Prints the winner and the resulting hands of
the player and the dealer.

Traffic Light
Simulation [38] 5

A traffic light has three lenses, green, orange
and red mounted in a panel. Simulates a set
of traffic lights (N, S), (E, W) at an
intersection.

Airline
Reservation [39] 7

Provide online ticket and seat booking for
national and international flights as well as
flight departure information.

Elevator [40] 9 A small Java project to simulate the
evolution of an elevator.

The source codes from all applications are uploaded in
Eclipse environment. Subsequently, Sena TLSParser is used as
a Plug-in Tool to generate test cases for each application listed
in Table I. The results for each case study are shown in
Table II. Sena TLSParser shows the duration taken to analyze
the source code and generate test cases based on the number of
classes detected in the LOC for each application. The results
show that the Calculator application is the fastest with 1ms.
Meanwhile, the slowest is the ATM Machine application,
which is 89ms. The comparison is based on the time required
to generate test cases using Sena TLS-Parser.

Based on Table II, Sena TLS-Parser successfully generated
test cases automatically for each application. The duration
taken also depends on the LOC for each application. If the
LOC is smaller, less time is required to generate the test cases;
for example the Calculator application. If, however, the LOC is
much bigger, more time is required to generate the test cases.
However, the generation of the test cases will also depend on
the complexity of the algorithm and the number of methods in
the application; for example the Elevator application.

TABLE II. THE RESULTS USING SENA TLS-PARSER

APPLICATION Number
classes LOC Duration Time

(ms)

Calculator 1 63 1

ATM Machine 5 635 89

BlackJack 5 458 51

Traffic Light Simulation 5 185 46

Airline Reservation 7 154 15

Elevator 9 1150 75

Testing the software manually requires effort and is time
consuming. Automation saves time and money while also
increasing test coverage and accuracy, which is beneficial to
both developers and testers. Choosing the right automation
framework is critical to assist with various types of testing such

as unit, functional, and regression testing. For comparison
purposes, three automated testing frameworks are reviewed
compared to the proposed framework, Sena TLS-Parser. These
frameworks are JUnit [41], TestNG [42] and Epit [20], which
are widely used in the generation of test cases.

A. Junit Testing Framework
JUnit [41] is a well-known Java unit testing framework. It

is easy to understand, simple to integrate, and best of all, it is
open-sourced. For writing test cases, JUnit employs
annotations and assertions. It includes a test-runner for
identifying and running all test methods in a project. The JUnit
process is done through setting fixed states for objects and
running tests by using Fixtures, Test suites, Test runners and
JUnit classes are the main features offered by JUnit. The work
of these Fixtures aims to provide a good environment for the
conduct and implementation of the test. Test suites are a
collection of unit test cases that are compiled together. Before
testing a code, annotations are used in order to run the test
suite. Test runners are used to carry out test cases while JUnit
classes are used for testing and writing JUnits, with assert, test
case, and test result.

B. TestNG Framework
Cédric Beust created TestNG [42], an open-source test

automation framework inspired by JUnit and NUnit for the
Java language. The goal of TestNG's design is to provide more
powerful and easy-to-use functionalities for a broad range of
test categories such as unit, functional, end-to-end, integration,
and so on. TestNG's advanced and useful features make it a
more robust framework than its competitors. In this
framework, the executing of the methods is determined by a set
of codes called annotations. Using these annotations
demonstrates the usage of Java language new features in a real-
world production environment.

C. EPiT Plug-in
EPiT [20] was created to reduce the time spent manually

generating test cases by utilizing code smell technique for
automated test case generation. EPiT begins by reading the
code line by line before applying code smell technique to
detect all classes in the Java application. Following that the
tool determines the method’s name, input parameter, and return
type and stores them in variables for use in generating test
cases. EPiT has demonstrated its ability to optimize automated
test case generation using the code smell technique in a short
period of time and with high efficiency.

D. Comparisons of Results
Each framework is used to test the generation of test cases

for the case studies. Table III presents the result comparison of
the test cases generation framework for each case study based
on execution time.

A JUnit test is a method in a class that is only used for
testing. This is known as a Test class. To indicate that a method
is a test method, @Test annotation is used. This function
executes the code being tested. An assert method is used which
is provided by Junit.

TestNG covers all categories of tests such as unit,
functional, and integration testing. In this research, TestNG has

400 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

been integrated with eclipse to generate the test report and
execute multiple test cases in parallel. TestNG uses various
Annotations for test cases generation, such as @BeforeSuite,
@AfterSuite, @BeforeTest, and @AfterTest. Annotations in
TestNG are lines of code that can control how the method
below them will be executed. Annotations are preceded by
“@” symbol.

TABLE III. THE RESULTS FOR DIFFERENT FRAMEWORKS

Application JUnit TestNG EPiT Sena TLS-
Parser

Calculator 32 9 8 1

Airline Reservation 96 57 59 15

Traffic Light
Simulation 4201 4101 91 46

BlackJack 93 60 111 51

ATM Machine 179 76 94 89

Elevator 339 67 95 75

The comparison between the testing frameworks has been
done based on duration required to generate test cases for each
application. The results demonstrate the effectiveness of the
proposed tool (Sena TLS-Parser) in automatically and quickly
producing test cases. Oshin et al. [43] compared JUnit
framework with TestNG framework. Based on Table III,
TestNG gives better results as compared with JUnit. The
results shown are consistent with the comparison done by [43].
The results show that the Calculator application is the fastest
with 32ms for JUnit, 9ms for TestNG, 8ms for EPiT and 1ms
using Sena TLS-Parser. For Calculator application, Sena TLS-

Parser gives the best result compared to JUnit, TestNG and
EPiT. Meanwhile, for the Traffic Light simulation, both JUnit
and TestNG have more execution time as compared to EPiT
and Sena TLS-Parser. Sena TLS-Parser is an automation
testing tool dedicated for Sena Traffic Light System (TLS)
with MBT embedded in its algorithm. Therefore, the results
show it has better performance. Meanwhile, EPiT with its
technique for code smell [33] improved the generation of test
cases compared to the JUnit and TestNG frameworks.

For more clarification, Fig. 6 shows the graph for the
applications and duration time for each of the frameworks. It is
noticeable that the time taken by each framework to generate
test cases depends on the complexity of the algorithm and the
number of methods of the application. For example, the traffic
light simulation application has more complexity for the
algorithm as compared with the Elevator application.
Therefore, it takes a lot of time to generate test cases using
JUnit and TestNG frameworks. Comparing with EPiT and
Sena TLS-Parser, traffic light simulation application takes less
time than Elevator application in generating test cases. In
addition, the line of codes for the ATM Machine application is
less than the Elevator application, however it takes more time
using EPiT framework when applying code smell algorithm for
the purpose of reducing the redundancy of test cases
generation.

To summarize, there are numerous factors that contribute to
inconsistent results, including project code complexity, CPU
usage, and memory usage. Despite inconsistencies in the
results, the results of the case studies demonstrated that Sena
TLS-Parser is faster than conventional manually generated test
cases and other testing frameworks.

Fig. 6. Comparison of Results from different Frameworks.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Calculator

Airline Reservation

Traffic Light Simulation

BlackJack

ATM Machine

Elevator

Comparison of Results from different Frameworks

Sena TLS-Parser EPiT TestNG JUnit

401 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

VI. CONCLUSION AND FUTURE WORK
During the software testing process, automatic test data

generation is critical. Unit-level testing is more successful
because test cases cover all the essential paths of the software
being tested. The process of creating test cases automatically
by Sena TLS-Parser in an Eclipse setting was discussed in this
paper. Based on the results presented in this paper, it is shown
that Sena TLS-Parser has successfully generated test cases
automatically and has a faster response time than traditional
manual testing as well as JUnit testing and TestNG. Also,
using the MBT technique to create test cases is a very powerful
way to do so. For future work related to this research, Sena
TLS-Parser framework can be extended to work with other
programming languages such as C and C++. Adding other
features would also be an interesting direction for future work
using Sena TLS-Parser. Sena TLS-Parser can also be
generalized to cover mobile applications for software testing. A
convertor can be used to convert the source codes of mobile
application in “.apk” format into source codes of java
programming in “.java” format. By having the convertor, Sena
TLSParser will also be able to generate test cases for mobile
applications.

ACKNOWLEDGMENT
The authors would like to thank Universiti Tun Hussein

Onn Malaysia (UTHM) for supporting this research. The
authors received funding for this study from Industry Grant
under Grant Vote No M081.

REFERENCES
[1] N. Li and J. Offutt, “Test Oracle Strategies for Model-Based Testing,”

IEEE Transactions on Software Engineering, 43(4), 372–395.
doi:10.1109/tse.2016.2597136, 2017.

[2] M. Keyvanpour, H. Homayouni, and H. Shirazee, “Automatic Software
Test Case Generation: An Analytical Classification Framework,”
International Journal of Software Engineering and Its Applications Vol.
6, No. 4, October, 2012.

[3] G. De Cleva Farto and A. T. Endo, “Evaluating the Model-Based
Testing Approach in the Context of Mobile Applications,” Electronic
Notes in Theoretical Computer Science, 314, 3–21.
doi:10.1016/j.entcs.2015.05.002, 2015.

[4] W. Li, F. Le Gall and N. Spaseski, “A Survey on Model-Based Testing
Tools for Test Case Generation,” In: Itsykson V., Scedrov A., Zakharov
V. (eds) Tools and Methods of Program Analysis. TMPA 2017.
Communications in Computer and Information Science, vol 779.
Springer, Cham. https://doi.org/10.1007/978-3-319-71734-0_7.

[5] M. Utting, B. Legeard, F. Bouquet, E. Fourneret, F. Peureux and A.
Vernotte, “Recent Advances in Model-Based Testing,” Advances in
Computers, 53–120, January 2016. doi:10.1016/bs.adcom.2015.11.004.

[6] Model-Based Engineering Forum. [Online]. Available:
http://modelbasedengineering.com/.

[7] R. Marinescu, C. Seceleanu, H. Le Guen, P. Pettersson, “A research
overview of tool supported model-based testing of requirements-based
designs,” In: Advances in Computers, pp. 89–140. Elsevier (2015).

[8] A. Mustafa, W. M. Wan-Kadir, N. Ibrahim, M. A. Shah, M. Younas et
al., “Automated test case generation from requirements: a systematic
literature review,” Computers, Materials & Continua, vol. 67, no.2, pp.
1819–1833, 2021.

[9] M. Bernardino, E. M. Rodrigues, A. F. Zorzo and L. Marchezan,
“Systematic mapping study on MBT: tools and models,” IET Software,
11(4), 141–155. doi:10.1049/iet-sen.2015.0154, 2017.

[10] M. Utting, B. Legeard, F. Bouquet, E. Fourneret, F. Peureux, and A.
Vernotte, “Chapter two - recent advances in model-based testing,” ser.

Advances in Computers, A. Memon, Ed. Elsevier, 2016, vol. 101, pp. 53
– 120.

[11] F. G. C. Ribeiro, C. E. Pereira, A. Rettberg, M. S. Soares, “Model-based
requirements specification of real-time systems with UML, SysML, and
MARTE,” Software & Systems Modeling, vol. 17, no. 1, pp. 343-361,
2018.

[12] M. L. van Eck, N. Sidorova, W. M. van der Aalst, “Guided interaction
exploration and performance analysis in artifact-centric process
models,” IEEE 19th Conference on Business & Information Systems
Engineering, pp. 1-5, 2018.

[13] N. Khurana, R. S. Chhillar, U. A. Chhillar, “A novel technique for
generation and optimization of test cases using use case, sequence,
activity diagram and genetic algorithm,” Journal of Software, vol. 11,
no. 3, pp. 242-250, 2016.

[14] T. A. Alrawashed, A. Almomani, A. Althunibat, A.Tamimi, “An
Automated Approach to Generate Test Cases from Use Case Description
Model,” CMES-Computer Modeling in Engineering & Sciences, 119(3),
409–425, 2019.

[15] Meiliana, I. Septian, R. Alianto, Daniel, & F. Gaol, “Automated Test
Case Generation from UML Activity Diagram and Sequence Diagram
using Depth First Search Algorithm,” ICCSCI, 2017.

[16] M., I. Septian, R. S. Alianto, D. and F. L. Gaol, “Automated Test Case
Generation from UML Activity Diagram and Sequence Diagram using
Depth First Search Algorithm,” Procedia Computer Science, 116, 629–
637. doi:10.1016/j.procs.2017.10.029.

[17] L.L. Muniz, U.C. Nett and P. Maia, “TCG - A Model-based Testing
Tool for Functional and Statistical Testing,” ICEIS, 2015.

[18] J. Campos, A. Panichella and G. Fraser, "EvoSuite at the SBST 2019
Tool Competition," 2019 IEEE/ACM 12th International Workshop on
Search-Based Software Testing (SBST), Montreal, QC, Canada, 2019,
pp. 29-32, doi: 10.1109/SBST.2019.00017.

[19] G. Fraser and A. Arcuri, “EvoSuite: automatic test suite generation for
object-oriented software,” In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of
software engineering, 2011.

[20] R. Ibrahim, AAB. Amin, S. Jamel, J. Abdul Wahab, “EPiT: A Software
Testing Tool for Generation of Test Cases Automatically,” International
Journal of Engineering Trends and Technology, 68(7),8-12, 2020.

[21] I.A. Salihu, R. Ibrahim, B. S. Ahmed, K. Z. Zamli and A. Usman,
“AMOGA: A Static-Dynamic Model Generation Strategy for Mobile
Apps Testing,” IEEE Access, 1–1. doi:10.1109/access.2019.2895504,
2019.

[22] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, … Z. Su, “Practical GUI
Testing of Android Applications Via Model Abstraction and
Refinement,” 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). doi:10.1109/icse.2019.00042.

[23] E. H. Marinho and E. Figueiredo, ”PLATOOL: A Functional Test
Generation Tool for Mobile Applications,” In Proceedings of the 34th
Brazilian Symposium on Software Engineering (SBES '20). Association
for Computing Machinery, New York, NY, USA, 548–553.
DOI:https://doi.org/10.1145/3422392.3422508, 2020.

[24] S.W.G. AbuSalim, R. Ibrahim, J. Abdul Wahab, “Comparative Analysis
of Software Testing Techniques for Mobile Applications,” In: Phys.:
Conf. Ser. 1793 012036, 2020.

[25] K. Pinkal and O. Niggemann, "A new approach to model-based test case
generation for industrial automation systems," 2017 IEEE 15th
International Conference on Industrial Informatics (INDIN), Emden,
2017, pp. 53-58, doi: 10.1109/INDIN.2017.8104746.

[26] D. Mishra, S. Bilgaiyan, R. Mishra, A. A. Acharya, … S. Mishra, “A
Review of Random Test Case Generation using Genetic Algorithm,”
Indian Journal of Science and Technology, 10(30), 1–7.
doi:10.17485/ijst/2017/v10i30/107654, 2017.

[27] D. Mishra, R. Mishra, K. Das and A. Acharya, “Test Case Generation
and Optimization for Critical Path Testing Using Genetic Algorithm,”
SocProS, 2017.

[28] Y. Du, Y. Pan, H. Ao, N. Ottinah Alexander and Y. Fan, “Automatic
Test Case Generation and Optimization Based on Mutation Testing,”
2019 IEEE 19th International Conference on Software Quality,

402 | P a g e
www.ijacsa.thesai.org

https://doi.org/10.1007/978-3-319-71734-0_7

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 6, 2022

Reliability and Security Companion (QRS-C). doi:10.1109/qrs-
c.2019.00105, 2019.

[29] Z. Wang and Q. Liu, “A Software Test Case Automatic Generation
Technology Based on the Modified Particle Swarm Optimization
Algorithm,” 2018 International Conference on Virtual Reality and
Intelligent Systems (ICVRIS). doi:10.1109/icvris.2018.00045, 2018.

[30] K.-W. Shin and D.-J. Lim, “Model-based automatic test case generation
for automotive embedded software testing,” International Journal of
Automotive Technology, 19(1), 107–119. doi:10.1007/s12239-018-0011-
6, 2017.

[31] C. Ma and J. Provost, “A model-based testing framework with reduced
set of test cases for programmable controllers,” 2017 13th IEEE
Conference on Automation Science and Engineering (CASE).
doi:10.1109/coase.2017.8256225.

[32] M. Elqortobi, A. Rahj, J. Bentahar, and R. Dssouli, “Test Generation
Tool for Modified Condition/Decision Coverage: Model Based Testing,”
In Proceedings of the 13th International Conference on Intelligent
Systems: Theories and Applications (SITA'20). Association for
Computing Machinery, New York, NY, USA, Article 38, 1–6.
DOI:https://doi.org/10.1145/3419604.3419628, 2020.

[33] R. Ibrahim, M. Ahmed, R. Nayak and S. Jamel, “Reducing Redundancy
of Test Cases Generation using Code Smell Detection and Refactoring”.
Journal of King Saud University - Computer and Information Science,
Volume 32, Issue 3, March 2020.

[34] GitHub. GitHub Repository. [Online]. Available: https://github.com/
[35] Клуб анонимных айтишников, GitHub repository for calculator-unit-

test-example-java. [Online]. Available: https://github.com/kranonit/
calculator-unit-test-example-java.

[36] Samah AbuSalim. GitHub repository for ATMMachine. [Online].
Available: https://github.com/samahwaleed/ATMMachine.

[37] Danish Mohd, GitHub repository for Blackjack-game-in-java,
https://github.com/DanisHack/Blackjack-game-in-java.

[38] Yvan Martin. GitHub Repository for traffic-light-simulation. [Online].
Available: https://github.com/ymartin/traffic-light-simulation.

[39] Annu Dalal. GitHub Repository for Airline-Reservation-System.
[Online]. Available: https://github.com/annudalal/Airline-Reservation-
System.

[40] Khesualdo Condori. GitHub Repository for Elevator-Scheduling-
Simulator. [Online]. Available: https://github.com/00111000/Elevator-
Scheduling-Simulator.

[41] JUnit. JUnit4. [Online]. Available: https://junit.org/junit4/.
[42] Cédric Beust and Hani Suleiman. “Next Generation Java Testing:

TestNG and Advanced Concepts.” Addison-Wesley Professional, 2007.
[43] Oshin and V. Chaudhary, “Comparison Analysis of TestNG and JUnit

frameworks for Automation with Java,” Journal of Emerging
Technologies and Innovative Research (JETIR), June 2018, Vol 5. Issue
6.

403 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. Sena TLS-parser
	IV. Implementation of Sena TLS-parser
	V. Results and Discussion
	A. Junit Testing Framework
	B. TestNG Framework
	C. EPiT Plug-in
	D. Comparisons of Results

	VI. Conclusion and Future Work
	Acknowledgment
	References

