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Abstract—The internet of things (IoT) is a collection of 

common physical things which can communicate and synthesize 

data utilizing network infrastructure by connecting to the 

internet. IoT networks are increasingly vulnerable to security 

breaches as their popularity grows. Cyber security attacks are 

among the most popular severe dangers to IoT security. Many 

academics are increasingly interested in enhancing the security of 

IoT systems. Machine learning (ML) approaches were employed 

to function as intrusion detection systems (IDSs) to provide 

better security capabilities. This work proposed a novel 

distributed detection system based on machine ML approaches to 

detect attacks in IoT and mitigate malicious occurrences. 

Furthermore, NSL-KDD or KDD-CUP99 datasets are used in the 

great majority of current studies. These datasets are not updated 

with new attacks. As a consequence, the ToN-IoT dataset was 

used for training and testing. It was created from a large-scale, 

diverse IoT network. The ToN-IoT dataset reflects data from 

each layer of the IoT system, such as cloud, fog, and edge layer. 

Various ML methods were tested in each specific partition of the 

ToN-IoT dataset. The proposed model is the first suggested 

model based on the collected data from the same IoT system 

from all layers. The Chi2 technique was used to pick features in a 

network dataset. It reduced the number of features to 20. 

Another feature selection tool employed in the windows dataset 

was the correlation matrix, which was used to extract the most 

relevant features from the whole dataset. To balance the classes, 

the SMOTE method was used. This paper tests numerous ML 

approaches in both binary and multi-class classification 

problems. According to the findings, the XGBoost approach is 

superior to other ML algorithms for each node in the suggested 

model. 

Keywords—Intrusion detection system (IDS); internet of things 

(IoT); ToN-IoT dataset; machine learning (ML) 

I. INTRODUCTION 

The internet of things (IoT) is a network of everyday 
physical objects which can communicate and synthesize data 
utilizing the current network infrastructure by connecting to the 
internet. These things are networked digital appliances or 
sensors that can collect data and transmit it across the internet. 
New applications and services are created as a result of the 
interplay between sensors, connectivity, people, and processes. 
In the IoT, these digital sensors or devices are known as 
"things" [1]. 

As IoT networks become more prevalent, they become 
more prone to security breaches. Cyber security attacks are one 
of the most common serious threats to IoT security. These 
attacks take several forms and target various resources on a 
wide range of IoT devices. These cyberattacks frequently target 
a large number of devices in an IoT network, which may then 
be utilized as a "resource" or "platform" for attacks such as 
distributed-denial-of-service (DDoS) and fraudulent operations 
such as ransomware and password attacks. As a result, securing 
IoT devices and building malicious (intrusion) detection 
models for IoT systems is becoming increasingly vital for 
protecting sensitive data[2]. 

Because the security of broad IoT is vital, it is critical for 
identifying IoT risks and defining current prevention methods. 
This work outline and categorize IoT security threats categories 
and common defense methods to give the reader the security 
foundation they need to understand the work[2]. The following 
are some of the reasons why IoT security procedures vary from 
those used in traditional security systems: 

 IoT systems' computational power, memory capacity, 
battery life, and network bandwidth are all restricted. 
As a result, existing standard security solutions, which 
are often expensive in terms of resources, cannot be 
installed. 

 IoT systems are widely scattered and heterogeneous. 
As a result, traditional centralized solutions may be 
ineffective. Furthermore, the distributed nature of IoT 
introduces new obstacles and restrictions to its security. 

 IoT solutions are employed in an ever-changing 
physical context. Physical attacks, as a result, have 
been added to the list of typical security issues. 

One of the IoT security protection solutions is IDS. An IDS 
[3] is software and/or hardware that monitors a network or 
system for hostile activity and issues quick alarms. Since 1970 
IDSs have been used. They are divided into two categories: 
i) deployment and ii) detecting methods. There are two types of 
IDS deployments: HIDS and NIDS. HIDS (Host-based 
Intrusion Detection System) is an intrusion detection system 
installed on a host machine (i.e., a device or a Thing). They 
keep track of and evaluate system application files and the 
operating system. Insider intrusion detection and prevention 
are best accomplished through HIDS. NIDS (Network-based 
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Intrusion Detection System) captures and analyzes network 
packet traffic. To put it another way, they are sniffing packets. 
NIDSs are effective against external intrusion attacks. After the 
intrusion has occurred, the following situation will explore. An 
exemplary detection system is one that rapidly recognizes the 
compromised condition and minimizes the loss (s). IDSs come 
in many different forms. all categories of IDSs are presented in 
[4]. 

Signature detection(knowledge-based)[5], Anomaly 
detection (behavior-based) [6], and Hybrid detection are the 
different detection types of IDSs. 

An intrusion prevention system (IPS) [7] is used to keep off 
intruders. An IPS reacts quickly and prevents harmful traffic 
from passing through by deleting sessions, restarting sessions, 
blocking packets, or proxying traffic. On the other hand, an 
IDS replied once an attack has been detected. Inline detection, 
layer seven switches, deceptive systems, application firewalls, 
and hybrid switches are all examples of IPS. 

During the study experimentation, the following stages will 
be followed: 

1) Choosing ToN-IoT as a new dataset [8]. The dataset 

was thoroughly analyzed by removing the flow identification 

attributes to eliminate bias and overfitting and preprocessing 

the data. 

2) The ToN-IoT dataset also has many issues, including 

class imbalance, categorical attributes, and missing values. For 

challenges using the ToN-IoT dataset, a hybrid approach was 

provided. 

3) The ToN-IoT dataset was utilized to test several 

machine learning (ML), which are: naïve bias (NB), logistic 

regression (LR), decision tree (DT), k-Nearest Neighbor 

(KNN), support vector machine (SVM), random forest (RF), 

XGBoost, Adaboost. 

The subsequent are the research's major contributions: 

1) Propose a distributed machine learning IDS for IoT with 

comparison to another research. 

2) Most existing detection algorithms are evaluated using 

the NSL-KDD, KDD-CUP99, and UNSW-NB15 datasets. 

These databases are out of date and do not cover current IoT 

threats. However, the effectiveness of the proposed model is 

evaluated using an actual ToN-IoT dataset. As assessment 

measures, accuracy, precision, recall, F1-Score, and false-

positive rate (FPR) are utilized. 

3) Resolving issues with the ToN-IoT dataset, such as 

class imbalance, missing values, and irrelevant attributes that 

impact the IDS model's performance. 

4) The Chi
2
 and correlation matrix were used to select the 

most important attributes. 

5) The class imbalance problem was solved using the 

SMOTE approach. 

The paper organization is as follows: The sections below 
provide a short overview of IDS for IoT. The ToN-IoT dataset 
is briefly described in Section III. In Section IV is described 
the experimental techniques. In Section 5, the findings of the 

experiments are discussed. Finally, in Section VI, the 
conclusion is offered. 

II. RELATED WORK 

Previously, many machine learning methods were used to 
malicious datasets in malicious intrusion detection research. 
IoT devices, as previously stated, are lightweight and low-
powered devices with limited computing ability to run 
traditional antimalware solutions [9]. As a result, research is 
undertaken to address these issues. 

Alhanahnah et al [10] set out to solve this problem by 
developing IoT malware detection technologies that could 
operate effectively on any platform while being lightweight 
despite resource limits. Lightweight signatures were created 
from high-level code to create the suggested solution. The 
investigation proved that the signature generating mechanism 
is effective. The proposed method was found to have an 85.2 % 
detection rate with zero false positives using analytical 
approaches. 

Ngo and Nguyen [11] also investigated the increase of 
malware targeting IoT sensors and enhanced the efficacy of 
current malicious software detection techniques. The research 
looked at several prior studies on IoT security. The pros and 
cons of various malware detection technologies were examined 
and contrasted. The study discovered that the ELF-header 
approach had a low false detection rate of 0.2 % using tabular 
comparisons. Furthermore, employing the coding scheme to 
combine malware samples enhanced detection accuracy to over 
98 %, according to the data. 

Su et al. [12] suggested a lightweight technique to detect 
and classify DDoS malware and normal IoT applications. The 
research used a convolutional neural network to conduct 
experiments, allowing resource-constrained IoT devices to 
function normally. The correctness of the suggested design was 
tested using a five-fold validation technique. With an average 
accuracy of 94 %, the recommended design predicted malware. 

Nguyen et al. [13] also assessed the efficacy of three deep 
learning-based techniques in identifying IoT malicious 
software. The models were developed using attributes 1) fixed-
size-byte series, 2) fixed-size-color image, and 3) variable 
sized-sequence data. The fixed-size byte sequence strategy was 
less accurate than the variable-sized and fixed-size color 
picture approaches, with an accuracy of 90.58 %. However, the 
study was regarded as initial, and the authors recommended 
that further tests be conducted to increase the accuracy. 

Alasmary et al. [14] used multiple datasets to see the 
relationships and variations between malicious software on 
various systems. A method was constructed and utilized for 
categorizing android malware, IoT malware, and non-
threatening samples using control flow graphs. A 10-fold 
validation procedure was used to assess the performance of 
these models. The convolutional neural network (CNN) model 
was shown to have a 99.66 % accuracy in detecting IoT 
malware from normal samples in the study. 

Hasan et al. [15] used artificial neural networks (ANN), 
SVM, and LR as machine learning algorithms to identify 
attacks and abnormalities in IoT sensors at IoT sites. With a 
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99.4 % accuracy, the experiment suggests that CNN is the 
preferable approach to apply in IoT for intrusion detection 
systems. 

Authors [16] suggested a revolutionary real-time, 
distributed, and lightweight IDS, efficiently combining edge, 
fog, and cloud computing. It enables sophisticated data 
processing at the intermediaries' level, decreasing the amount 
of data sent to the cloud. As a result, processing occurs at hubs, 
routers, or gateways. The IDS's AIS architecture is made up of 
three parts: 

A training engine: trains detectors using data from an initial 
learning dataset. Because it necessitates complicated and 
powerful processing units, this stage is handled on the cloud 
layer. 

An analyzer examines abnormalities provided by detectors 
in order to warn and reject false positive signals. To increase 
precision, the authors apply memory cell detectors and genetic 
algorithms. The analyzer engine is installed at the fog layer 
since this stage necessitates a greater connection between the 
infected edge nodes and the main engine. 

Detector sensors: Each node in the network is equipped 
with detecting logic. Various detectors might recognize each 
form of attack in the suggested IDS, which is intelligent and 
distributed. When a threshold is exceeded, the anomaly is 
transmitted to the analyzer engine, resulting in an intrusion 
warning. 

The essential work strengths are as follows: a) Combination 
of innovative analysis in the cloud with lightweight analysis in 
the fog-layer; b) botnet attacks are detected using a smart 
strategy, and c) detection of zero-day attacks and unknown 
attacks based on an online self-training method. The 
lightweight IDS efficiency was evaluated using two datasets: 
SSH Brute Force dataset, and KDD-Cup99. According to 
testing data, the three-layered suggested approach achieves a 
3.51 % false-positive rate (FPR) with 98.35% and 97.83% 
precision. 

A real-time combination of specification-based and 
anomaly-based IoT IDS was proposed by Bostani and 
Sheikhan [17]. It may be used to identify sinkholes and 
selective-forwarding attacks in 6LowPAN networks. This IDS 
operates in two stages: router-level specification detection and 
root-level anomaly detection. First, the routers examine aspects 
of the traffic of a network and host nodes on a local level. The 
first phase's findings are forwarded to the root node for the 
second step and then deleted from routers to save memory and 
CPU resources. At the root node, the second phase is global 
intrusion detection, which involves performing anomaly-based 
analysis on entering data packets. To demonstrate appropriate 
real-time detection, they use three main experimental tests, 
each with ten simulations: the first contracts with assessment 
values, the second with network scale (small and medium-size) 
to confirm independent scale-network IDS, and the third with 
the option to extend detected attacks such as wormhole. 
According to the results of simulated situational experiments, 
the proposed hybrid technique may reach a true positive rate of 
76.19 % and a FPR of 5.92 %. 

Moustafa et al. [9] introduced an ensemble NIDS based on 
existing statistical characteristics to reduce harmful events, 
including botnet cyberattacks against HTTP, MQTT, and DNS 
protocols in IoT systems. The model has three phases: a) Using 
a thorough study of the TCP/IP model, a collection of attributes 
is derived from the network traffic protocols. The authors used 
the Bro-IDS tool for the basic characteristics and created a new 
extractor module (that collaborates with Bro-IDS) to derive 
further statistical aspects of transactional processes. b) The 
correlation coefficient is applied to the result attributes in this 
step-in order to obtain the essential ones. This phase allows 
NIDS's computational cost to be reduced. An ensemble 
technique using the AdaBoost (Adaptive Boosting) algorithm 
disperses the network data. Then, to identify attacks, Decision 
Tree (DT), NB, and ANN ML algorithms are used. When 
compared to individual ML algorithms, the AdaBoost 
technique improves detection performance. It is capable of 
dealing with any situation through the computation of an error 
function, the minor differences of the feature vectors are used 
to learn and select which learners can correctly categorize each 
instance of the input data, and the error function is assigned to 
each occurrence. They used the UNSW-NB15 and NIMS 
botnet datasets. The ensemble approach achieved between 
95.25 % and 99.86 % of DR and 0.01% to 0.72 % of FPR. 

Nguyen et al. [18] presented a self-learning anomaly-based 
IDS (DoT) that was autonomous. Their solution consists of 
Security Gateways that monitor system devices, as well as an 
IoT security service (which might be a service provider) that 
detects abnormalities in a device-type-specific mode. Network 
devices are automatically grouped based on their 
manufacturer's hardware and software specifications. Then, for 
each device type, anomaly models will be created. According 
to the authors, the used algorithm is Gated Recurrent Units 
(GRU), which is a recurrent neural network (RNN) that can 
train efficiently with little training data. As a result, final GRU 
models result from a collective learning process involving 
multiple Security Gateways while maintaining privacy. This 
IDS approach appears to be communication-efficient and ideal 
for distributed systems such as the internet of things. In order 
to identify the Mirai virus, the authors test their approach in a 
real-world smart home deployment. They have a DR with 95.6 
% and no false alarms in 257 ms. 

Illy et al. [19] presented a fog-to-things IDS architecture. 
The detecting method is implemented on two levels: the fog 
and cloud layers of the system. On the one hand, this design 
enables the authors to deal with their computationally 
demanding ML detection induced by ensemble learning (a 
combination of ML algorithms). On the other side, owing to 
fog detection provides for low latency detection and, 
consequently, quick reaction. As a result, anomaly detection is 
conducted first in the fog layer; if the traffic is detected as an 
attack, an alert is delivered to the security administrator. 
Additional analysis is performed in the cloud to categorize the 
kind of attack and provide it to him. They used a multi-expert 
mode and a multi-stage technique to evaluate alternative ML 
combinations. On the NSL-KDD dataset, they achieved 85.81 
% overall accuracy for binary classification and 84.25 % 
overall accuracy for attack classification, respectively. 
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TABLE I. A SUMMARY OF APPROACHES FOR IOT MALICIOUS DETECTION 

Authors Study purpose ML-methods 
Data used for 

Evaluation 

Alhanahnah 

[10] 

Developing IoT malware detection technologies that could operate effectively 

on any platform while being lightweight despite resource limits. 
Statistical technique  

IoT malware 

dataset 

Su [12] Detecting and classifying DDoS CNN 
IoT DDoS 

malware dataset 

Nguyen [13] Identifying IoT malware. Deep learning  
They prepare their 

own data 

Alasmary 

[14] 
Detection of IoT network attacks. 

KNN- ID3- Random Forest- AdaBoost- 

Multi-layer perceptron (MLP)- 

Naïve Bayes (NB) 

Bot-IoT 

Hasan [15] Identifying attacks and anomalies  
Neural Networks (NN), SVM, and 

logistic regression 

Data collected 

from Kaggle  

Hosseinpour 

[16] 
Distributed IDS Artificial Immune System (AIS) 

KDD99 and 

SSH Brute Force 

from ISCX 

Bostani [17] A mixture of specification-based and Anomaly-based IDS  Unsupervised-Optimum Path Forest NSL-KDD 

Moustafa[9] An ensemble NIDS Decision Tree (DT), NB, and ANN  UNSW-NB15 

Nguyen 

[18] 
A self-learning anomaly-based IDS a recurrent neural network 

Real-world 

smart home 

Illy [19] A fog-to-things IDS ensemble learning 
NSL-KDD 

 

Gonzalo et 

al. [20] 
Detecting IoT attacks  CNN, LSTM  

KDD99, NSL-

KDD, CISC2010  

Shafiq [21] A new-feature selection algorithm. 
Decision Tree (C4.5)- 

SVM-RF-NB 
BoT-IoT 

Gonzalo et al. [20] demonstrated an embedded IoT micro-
security that uses a CNN prototype to identify URL-based 
cyberattacks on a client's IoT devices. For botnet detection, the 
add-on works in concert with an RNN-LSTM model housed on 
the back end servers. With an accuracy of 94.30 % and an F-1 
score of 93.58 %, CNN can detect phishing attacks. Botnet 
attacks are detected using LSTM with a 94.80% accuracy when 
all malicious in the dataset are utilized. 

Shafiq et al. [21] demonstrated a malicious intrusion model 
for IoT. this study developed a new feature selection technique 
and tested the newly developed technique on several machine 
learning techniques such as s, C4.5 decision tree, and Random 
Forest classifiers; they got more than 95% accuracy. A 
summary of algorithms that are used to construct IDS for IoT is 
presented in Table I. 

III. STATE-OF-THE-ART DATASETS 

KDD99 and NSL-KDD are the most extensively used 
NIDS/HIDS datasets. For assessment and testing, public attack 
datasets such as CAIDA [22], DEFCON [23], ADFA IDS[24] , 
KYOTO [25], and ISCX 2012 [26] are accessible. The most 
recent are either unlabeled data or unavailable data from 
certain nations, or data exclusive to a domain. 

KDD99 [27] is a dataset used for constructing the robust 
NIDS for detecting "dangerous" connections from "great" ones. 
The dataset is a feature-extracted edition of the DARPA 
dataset. KDD99 comprises data from a military network with 

inserted attacks that are divided into four categories: i) DoS; 
ii) remote to user; iii) user to root; iv) probing. Using the Bro-
IDS tool, KDD99 is based on 41 attributes for each sample+, as 
well as the class label. The attributes are divided into four 
categories [27]: 

 1–9: the fundamental attributes of each TCP 
connection. 

 10-22: attributes suggested by domain knowledge. 

 23-31: a two-second time frame was used to calculate 
traffic attributes. 

 32-42: host capabilities are intended to evaluate 
cyberattacks lasting longer than two seconds. 

KDD99 is common and widely used for experimental 
analysis by security researchers. Various efforts [28, 29] were 
created to minimize the number of characteristics by picking 
the most important ones from the initial 41. However, 
numerous studies, such as [30, 31], have found KDD99 to have 
drawbacks, a few of the most notable ones: 

The probability distributions of the testing and training sets 
diverge. To put it another way, KDD99 has imbalanced 
categorization. 

 The data set is no longer current (1999). 

 New attacks are not available. 

 The data collected are not from an IoT system. 
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NSL-KDD [32] is an improved version of KDD99 that 
addresses its shortcomings. First, duplicate entries are deleted 
from the whole dataset. Second, a range of samples from the 
original KDD99 was chosen to acquire accurate findings from 
classifier systems. Third, the issue of an uneven probability 
distribution is no longer an issue. The lack of current low-
footprint attack scenarios is a fundamental flaw in this 
collection. 

UNSW-NB15 [33] was built by the Australian Centre for 
Cyber Security in 2015. Its purpose is to create a mixture of 
modern real-world activities and synthetic modern attacks 
behaviors. There are around two million and 540,044 records 
in four CSV files. Those records were created from 100GB of 
raw data recorded using the tcpdump utility (in pcap files). 

The IoT dataset by Sivanathan et al. [34, 35]. Deals with 
categorization for IoT sensors based on network traffic 
characteristics. The authors provide a brilliant ecosystem for 28 
IoT sensors, including cameras, lighting, plugs, motion 
sensors, appliances, and health-monitoring devices. They use 
statistical analysis to provide essential insights into network 
traffic patterns utilizing attributes such as port numbers, 
activity cycles, signaling patterns, and encryption suites. They 
also synthesized network traffic traces from their infrastructure 
for six months and provided them to the scholarly community. 

The CICIDS database [36] is a recent Intrusion dataset 
provided by the Canadian Institute for Cyber-security, to 
represent the most recent attacks similar to real-world data. It 
was created using HTTP, HTTPS, FTP, SSH, and e-mail 
protocols to model the abstract behavior of 25 users. CIC-
FlowMeter examines the data, including labeled data based on 
timestamps, starting, and ending IP addresses, ports, protocols, 

and attacks. The authors developed the B-Profile technique to 
describe the behavior of FTP, SSH, HTTP, HTTPS, and e-mail 
protocols in order to simulate realistic traffic. While capturing 
the data, the authors used Brute Force FTP, SSH Heartbleed, 
and DDoS attacks. Unlike current standard IDS datasets, the 
assessment system [37] identified eleven critical attributes 
required to develop a valid benchmark dataset. 

The CSE-CIC-IDS 2018 [38] dataset is a one-of-a-kind IDS 
dataset that has emerged to replace poor datasets that restrict 
IDS/NIDS experimental assessments. CSE-CIC-IDS2018 is an 
anomaly-based dataset containing intrusions in the network to 
overcome the usage of signature datasets: a) dos; 
b) Heartbleed; c) botnet; d) brute-force; e) DDoS; f) and web 
attacks were among the seven attack scenarios mentioned by 
the authors. The attack architecture consists of 50 nodes, 
whereas the target organization is divided into five 
departments, each with 30 servers and 420 hosts. 
CICFlowMeter-V3 was used to extract 80 characteristics from 
network traffic and system logs. 

BoT-IoT [39] The ACCS Cyber Range Lab created a 
network environment based on IoT that includes both regular 
and botnet traffic. The Ostinato and Node-red tools were used 
to create IoT and non-IoT network traffic, respectively. The 
Argus program was used for extracting the dataset's original 42 
attributes from a total of 69.3GB of pcap files. The collection 
comprises 477 normal flows (0.01 %) and 3,668,045 assault 
flows (99.99 %), totaling 3,668,522 flows. The dataset contains 
traffic from DDoS, DoS, OS, Data exfiltration, Keylogging 
attacks, and further DDoS and DoS operations put up on the 
protocol utilized. The main lack in this dataset is that it 
comprises over 99 % botnet traffic but just about 1% regular 
traffic. 

TABLE II. AVAILABLE DATASETS 

Dataset Dataset Advantages Dataset Disadvantages 

KDD99 

KDD99 is the most widely deployed dataset. 

• Data that has been labeled and has 41 attributes for each connection and the 

class description. 

• DOS, remote-to-user, user-to-root, and probing attacks are all used. 

• (PCAP) network traffic is provided. 

• The dataset is out of date, and KDD99 has imbalanced classes. 

• Not for the internet of things (IoT) systems. 

NSL-KDD 

• It is an upgraded version of KDD99 that addresses the limitations of 

KDD99. 

• no duplicated records in the training and test sets. 

•There are not enough current low-footprint attack scenarios. 

• Not for the internet of things (IoT). 

UNSWNB15 

It offers real-world modern regular activities and synthetic modern attack 

behaviors. 

• Network traffic (PCAP) and CSV files are available.  

Because recent attacks and typical network traffic behave 

similarly, it is more complicated than the KDD99 dataset. 

Sivanathan 

Dataset 

• This IoT network traffic dataset is based on a real-world IoT network. 

• CSV and PCAP files are available. 

• Data that has not been tagged. 

• No attack data is required for the IoT device proliferation and 
traffic characterization. 

CICIDS 

•labeled network flows used for building IDS based on machine learning. 

• PCAP and CSV files are available. 

• Brute Force, DoS, Heartbleed, Web-Attack, Botnet, and DDoS 

cyberattacks. 

• Not public. 

• Not for the internet of things (IoT). 

CSE-

CICIDS2018 

• PCAP, CSV, and log files are available. 

 • Brute-force, Botnet, DoS, DDoS, and Web attacks are all implemented. 

• It is a dynamically produced dataset that may be modified, extended, and 

replicated. 

• Not public. 

• Not for the internet of things (IoT). 

BoT-IoT 
• IoT network traffic dataset. 

• PCAP and CSV files are available. 

• The main lack in this dataset is that it comprises over 99 % botnet 

traffic but just about 1% regular traffic. 
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KDD99 is the most often used network dataset, as indicated 
in Table II. Since 1999, it has been in use. It is, unfortunately, 
out of date. NSL-KDD was built to overcome the limitations of 
KDD99. There are no duplicate records, and the data is 
balanced. UNSW-NB15 was proposed as a replacement for 
NSL-KDD, which lacks contemporary attacks. It is a well-
known dataset that has been subjected to recent attacks. 
Meanwhile, when it comes to similarities between new attacks 
and normal activities, it is more complicated than KDD99. The 
Sivanathan et al. dataset, CSE-CIC-IDS 2018, and CICIDS are 
examples of more recent network datasets. Compared to the 
other datasets offered, Sivanathan's work is the only one that 
includes IoT network traffic. It is, however, intended for the 
proliferation of IoT devices rather than intrusion detection. 
CICIDS and CSE-CIC-IDS 2018 have labeled records but do 
not target IoT system security despite having an up-to-date 
attack list. 

IV. TON-IOT DATASET 

The ToN-IoT dataset was used in this investigation. The 
ToN-IoT includes telemetry data from linked devices, Linux 
operating system data, Windows operating system logs, and 
IoT network traffic, among other data sources acquired from 
the entire IoT system. A medium-scale IoT network provides 
diverse data. ToN-IoT was designed by the UNSW Canberra 
IoT Labs and the Cyber Range. The ToN-IoT repository 
contains the ToN-IoT dataset [40]. Furthermore, the ToN-IoT 
was represented in CSV format with a labeled column 
indicating attack or normal and a sub-category attack-type. 
Various types of cyberattacks, such as ransomware, password 
attack, scanning, denial of service (DoS), distributed denial of 

service (DDoS), data injection, backdoor, Cross-site Scripting 
(XSS), and Man-In-The-Middle (MITM) were represented. 
Various IoT and IIoT sensors were targeted in these attacks, 
launched, and gathered across the IIoT network. The dataset's 
details may be found in [40]. 

1) ToN-IoT network dataset: The network ToN-IoT 

dataset contains 44 attributes and a label classified as normal or 

attack for each data point. Fig. 1 shows the statistics for 

network data samples in the train-test ToN-IoT dataset. 

2) ToN-IoT Linux dataset: Linux datasets are partitioned 

into three categories disk, memory, and process CSV files. The 

first CSV file contains attributes for disk usage in normal 

behavior and attack. The second CSV file is related to memory 

activity, containing ten attributes, a label column labeled as 

normal or attack, and an attack-type containing attack type 

(DoS, DDoS). The last file belongs to processes in Linux 

operating system. The Linux process ToN-IoT contains 14 

attributes and an attack type for each data point. Fig. 1 shows 

the statistics for all Linux data records in ToN-IoT. 

3) ToN-IoT Windows dataset: Windows datasets are 

contained records for windows 7 & 10. Windows 7 CSV file 

contains 133 attributes, labeled as normal or attack, and attack-

type containing attack type (DoS, DDoS). Windows 10 CSV 

file contains 125 attributes, labeled as normal or attack and 

attack-type, which contain attack type (DoS, DDoS). The 

statistics for all Windows data in the ToN-IoT were presented 

in Fig. 1. 

 

Fig. 1. ToN-IoT Statistics. 
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V. DISTRIBUTED IDS 

This part of work discusses the architecture of the proposed 
model, system components of the proposed detection model, 
and the various detection nodes in proposed model. 

A. Model Architecture 

The primary purpose of the suggested detection system for 
IoT networks is to make on-demand security services more 
convenient while also preventing attacks. The proposed 
detection system employs a machine learning for detecting 
attacks in the network traffic within the IoT network and in all 
other nodes in IoT systems. As shown in Fig. 2, the proposed 
detection system functions primarily in various stages/phases - 
cloud phase, fog-network-detection phase, and a fog-host 
detection phase. 

B. Machine Learning Methods 

The ToN-IoT dataset has been used to evaluate various 
machine learning (ML) approaches. The chosen algorithms are 
utilized for training, and testing ML approaches with various 
parameters in the preprocessing phase of data for intrusion 
detection. The accuracy, precision, recall, F1-Score, false-
positive rate (FPR), and confusion matrix were used to 
evaluate the different classifiers. The methodologies utilized 
have demonstrated great performance in the production of 
IDSs and have proven to be successful in various industries. 
This study look at the logistic regression (LR), naïve bias 
(NB), support vector machine (SVM), decision tree (DT), 
random forest (RF), k-Nearest Neighbor (KNN), Adaboost, 
and XGBoost techniques, among others [41], [42]. 

C. Model Nodes 

In this section each node in the proposed model will 
discussed. 

1) Malicious network detection node (Cloud layer): The 

framework for malicious/intrusion detection comprises the 

default procedure in machine learning: 

a) Data preprocessing and feature engineering. 

b) Training machine learning models. 

c) Evaluate the selected model. 

The deployed IDS in the cloud was established using 
various feature-engineering techniques discussed in the next 
section. 

 

Fig. 2. The Proposed Detection System. 

ToN-IoT preprocessing: Filtering and preparing are the 
most critical steps before supplying data into machine learning 
in order to achieve high performance. The used dataset has 
numerous obstacles, including missing values, categorical 
characteristics, and class imbalance. Unnecessary attributes 
may impact the performance of the chosen ML algorithms. 
Using permutations of multiple preprocessing and normalizing 
strategies, this work tested the selected ML algorithms using 
several preprocessing techniques. 

 Missing value imputation: Missing values are common 
in the ToN-IoT. These missing values must be 
addressed appropriately. In the proposed model, the 
imputation of missing values is substituted with the 
most frequent value in each feature containing missing 
data. A second an approach was imputed numerical 
features using mean value. 

 Converting categorical attributes to numerical: There 
are various categorical attributes in the ToN-IoT 
dataset. Numerical values must be assigned to the 
category characteristics. One-hot encoding was used to 
achieve this goal. 

 Class-imbalance: The SMOTE technique was utilized 
to balance the classes in the used dataset. The ToN-IoT 
dataset is plagued with class imbalance distributions. 
Solutions to the imbalanced problem, oversampling, 
under-sampling, and hybrid techniques were proposed. 
Oversampling is the practice of duplicating the 
minority class points. Several researchers utilized it. 
However, this approach has the drawback of overfitting 
these spots. Others employ under-sampling, which 
reduces the dominating class's score. The problem with 
this method is that some of the elements that have been 
removed may be necessary for accurately portraying 
the class. A hybrid strategy was used; it duplicates 
minority class points while removing certain majority 
class points. Synthetic Minority Oversampling 
Technique (SMOTE) [43], [44] enhances basic random 
oversampling by providing synthetic minority class 
samples, addressing the overfitting problem that can 
occur with simple random oversampling. SMOTE 
creates new data points instead of replicating old ones. 
A linear combination of two comparable minority 
samples is used to generate extra minority data points. 

 Several attributes such as timestamp, IP-address, 
source-port, and destination_port were removed from 
the dataset since they may cause overfitting. 

The two key steps used during feature-engineering 
development are preprocessing based on the mentioned dataset 
challenges and data normalization. For high performance, ML 
approaches are evaluated using a variety of feature-engineering 
techniques: 

Feature selection: Various aspects must be checked for 
intrusion detection, some of features will be valuable while 
others will be useless. The feature selection procedure is 
assigning a score to each potential feature and picking the best 
(k) attributes. A function of both is obtained by counting the 
frequency of a feature in training for each positive and negative 
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Fog-NIDS 

Fog-HIDS 
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class occurrence separately. Non-essential attributes are 
removed, increasing accuracy, decreasing computation time, 
and reducing the overfitting problem, resulting in better 
performance. The used feature selection technique was Chi

2
, 

which is a filter method.[31], [45]. 

    ∑ ∑
(     )

 

  

 
   

 
                  (1) 

where m indicates the no of attributes, n indicates the no of 
classes,    is the observed frequency, and    is the expected 
frequency. 

 Data normalization: The ToN-IoT contains attributes 
with varying values, and some attributes have larger 
values than others. Because a technique may be slanted 
toward characteristics with larger values, differing 
values out of range might lead to inaccurate results. As 
a result, data normalization is critical in preventing 
outweighing attributes with greater values over 
attributes with smaller values by scaling the feature 
vector. Min-Max is used to scale data between [0:1] as 
presented in Eq. (2). 

  
      

         
               (2) 

where x reflects the feature-value, Z reflects the feature-
value after normalization, the maximum and minimum values 
of the feature are      and     . 

 

Fig. 3. The Procedure to Evaluate Network Dataset [41]. 

The training process: All ToN-IoT datasets are in CSV 
extension; initially, the ToN-IoT dataset was divided into two 
sets. The first set comprises training with 70% of the dataset. 
The second set contains unseen data for evaluating the 
performance of the selected ML algorithms. Before employing 
any preprocessing to the ToN-IoT, the splitting step was 
completed to avoid data leaking. The effectiveness of the 
chosen machine learning algorithms is evaluated using a 
variety of assessment measures, which will be provided in the 
next section. The previous steps associated with evaluating the 
performance of various ML algorithms utilizing ToN-IoT 
datasets are summarized in Fig. 3 and 4. 

Classifier performance evaluation: Based on the ToN-IoT 
dataset, numerous metrics were utilized to assess the efficacy 
of various machine learning approaches. The chosen 
assessment techniques were chosen because they provide a 
detailed explanation of the outcomes for machine learning-
based malicious detection [46]. 

 

Fig. 4. The Overall Process for Malicious Detection. 

The first metric is accuracy, which measures a technique's 
overall efficiency as a proportion of instances accurately 
identified as normal or attacks. The precision metric, which 
shows the proportion of accurately recognized attacks out of all 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. The process to evaluate ML methods on the ToN-IoT dataset. 
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detected attacks, is the second metric. The third metric is recall, 
which represents the proportion of properly recognized attacks 
in the test dataset as a fraction of all attacks. The fourth metric 
is the F1-score. The final metric was the false-positive rate 
(FPR) [46]. These carefully chosen metrics are defined as 
follows: 

         
     

           
               (3) 

          
  

     
              (4) 

       
  

     
               (5) 

              
(                  )

(                  )
            (6) 

     
  

     
                (7) 

Where true positive (TP) is the total number of actual 
attack records that are correctly identified as attacks. True 
Negative (TN) refers to the total number of real records that are 
correctly classified as normal records. False Negative (FN) 
refers to the total number of real attack samples that are 
incorrectly detected as normal. False Positive (FP) refers to the 
total number of normal samples that are incorrectly identified 
as attacks. 

2) Malicious network detection node (Fog layer): In the 

fog computing layer, this work offer an IDS in the proposed 

architecture. Devices in this tier have more effective attributes 

than those on the IoT edge layer. It is feasible to use intrusion\ 

malicious detection to monitor the IoT system without sending 

the data to the cloud, eliminating the latency issue that has 

plagued several studies advocating cloud layer analysis. The 

fog layer has processing nodes nearest to the physical IoT 

system, processing instruments, and edge storage to identify 

threats more quickly. A binary classification approach and a 

multi-class classification method are used in the architecture to 

detect intrusions. 

The process is shown in Fig. 5. 

1) The fog node connects each terminal device to the 

network using various protocols and collects data created by 

each terminal sensor in real-time[47]. 

2) The original data is preprocessed and trained by the 

cloud server: The entire training dataset is collected on the 

cloud server, and the entire training procedure is completed 

there, including the generation, and saving of a training model. 

3) The fog node transmits a detection command: After 

establishing a communication link with the terminal device, 

the fog node gathers a considerable quantity of network data 

and sends a detection instruction to the cloud server. 

4) The cloud server provides the training phase: The cloud 

server sends the data preprocessing pipeline and the trained 

classification prototype to the fog node after receiving the 

detection instruction. 

5) Fog-node detection: The fog-node receives the model 

and utilizes it for data preprocessing and detection, producing 

detection results. 

6) Malicious response: The discovered anomalous data 

are forwarded to the malicious response module, which 

performs the necessary processing [47]. 

In the fog layer, the same malicious network IDS model 
was used, it was trained in the cloud layer. 

3) The host malicious detection node (fog layer): The fog 

layer contains the operating system (OS) devices in the IoT 

system. a malicious detection model was deployed for each 

device in the fog layer in the IoT system. The deployed model 

is called a host intrusion detection system. A host IDS is 

considered to run on a single machine and protect it from 

interruptions or malicious attacks that could harm the device – 

or data. A HIDS uses the measurements in the host 

environment. These supplies are sent into the HIDSs as input. 

Based on the selected ToN_IoT dataset, two operating 
systems (Linux and Windows 10&7) were included in the 
dataset. Based on these data, an intrusion model was designed 
for each partition of data to detect included attacks. 

a) Windows dataset (preprocessing): The correlation 

study significantly influences the applicability of attributes in 

defining security events using machine learning models. We 

built a correlation coefficient function [43] for ranking the 

attributes powers into a range of [-1, 1] in order to estimate the 

correlation coefficient between the attributes without the label 

characteristics on the Windows 7 and 10 datasets. The 

direction of the link is indicated by the sign of the correlation 

coefficient, while the magnitude (i.e., how near it is to -1 or +1) 

reflects the strength of the relationships between the 

characteristics [43]. The correlation matrix was tweaked to find 

the most associated attributes with a cut-off value of 0.85 % or 

above. Table III shows the top ten most associated traits in 

each dataset. As presented in Table III illustrate the most 

linked attributes of the Windows 7 and 10 datasets, 

respectively. Machine/deep learning algorithms would. 

 

Fig. 5. Cloud-Fog Intrusion Detection Scheme. 
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TABLE III. THE TOP TEN ATTRIBUTES 

Attributes ( win_7 ) Attributes ( win_10 ) 

Process _Total _IO 

Other _Bytes_sec 

Network_I.Intel_R.._82574_L_GNC_

Current_Bandwidth 

Network -_I.Intel_R_ Pro- 

_000MT)_Bytes_Received_sec 

Network_I_Intel.R_82574L 

GNC_Packets_Sent_Unicast_sec 

Process_Total _IO_ 

Other_Operations_sec 
Memory_Pool_Paged_Bytes 

Process_Total _IO 

Data_Bytes _sec 

Logical_Disk_Total 

Disk_Read_Bytes.sec 

Process_Total_IO_Read_Bytes 

_sec 
Memory_Page__Reads__sec 

Network I.Intel.R_ 

Pro_1000MT_Bytes_Received_sec 

Network I.Intel.R 

82574L_GNC.Packets_Sent.sec 

Process _Pool_Paged_Bytes Memory.Modified_Page_List_Bytes 

Process _Pool_Paged_Bytes Process _IO _Data_Operations_sec 

Network _I.Intel.RPro_ 

1000MT.Packets_Received_sec 

LogicalDisk_Total._Avg.Disk.Bytes_

Transfer 

Process__Total__IO_Data__Operat

ions_sec 
Processor _pct_Processor _Time 

b) Preprocessing of Linux dataset: Linux datasets are 

partitioned into three categories: disk, memory, and process. 

Timestamp and CMD attributes were eliminated from the 

dataset for obtaining high performance and far away from 

overfitting. The Correlation-matrices of the most critical 

attributes in the Win_7 dataset and Win_10 are extracted from 

another paper [48]. 

VI. DATASET EVALUATION 

In this part, the architecture of the suggested model was 
evaluated; the evaluation is based on binary classification and 
multi-class classification. 

The presented results in this section are based on the best 
outcomes from the experimentations, other outcomes for 
classifiers such LR, NB, Adaboost, and SVM are neglected 
since these classifiers have poor results. 

Malicious detection for network dataset evaluation (cloud 
layer): 

Based on the newly available ToN-IoT dataset, the 
efficiency of the deployed machine learning approaches were 
investigated for malicious identification. The best parameters 
stated in the literature were selected [49], [50]. The 
experiments for this work were carried out in Python 3.8. All 
trials were run on a Windows 10 computer with a Core i7 
processor and 16 GB of RAM. An experimental methodology 
was utilized to evaluate the effectiveness of the selected ML 
algorithms using the ToN-IoT network. 

 Binary classification [41]: The results for the network 
dataset are introduced in this section. In addition to the 
confusion matrix, the accuracy, precision, recall, F1-
score, and FPR are offered to evaluate the chosen ML 
algorithms. In general, the XGBoost produces 
considerable results for binary classification depending 
on multiple feature engineering strategies applied to 
the dataset. 

Using all attributes, for XGBoost, the training accuracy is 
0.992 %, the testing accuracy is 0.991 %, the recall is 0.984 %, 
the precision is 0.991 %, and the F1-score is 0.987 %, 
according to the results. With a significance of 0.007, k-
Nearest Neighbor (KNN) exhibits relevance in the scenario of 
false-positive rate (FPR). The findings for the best ML 
techniques are shown in Table IV. The kNN, on the other hand, 
was the second-best technique. The training accuracy is 0.989 
%, the testing accuracy is 0.988 %, the recall is 0.986 %, the 
precision is 0.979 %, and the F1-score is 0.983 %, according to 
the kNN findings. Naive bias is the poorest technique (NB). 
The heterogeneity of data in ToN-IoT datasets might explain 
the ML technique's performance variances. The findings of RF 
and DT are practically identical. 

As a feature selection strategy, the Chi
2
 was used. After 

using Chi
2
 to evaluate ML algorithms based on a variety of 

criteria, because the optimum assessment measure is obtained 
with only 20 features, the best 20 attributes were selected from 
the total 108 attributes. After Chi

2
, XGBoost provides 

considerable results, almost identical to testing with all 
characteristics. The training accuracy is 0.984 %, the testing 
accuracy is 0.983 %, the recall is 0.984 %, the precision is 
0.967 %, the F1-score is 0.975 %, and the FPR is 0.008 %, 
according to the findings. The KNN approach was the second-
best technique. Naive bias is the poorest technique (NB). ). The 
findings for the ML techniques are shown in Table IV. 

Because ToN-IoT has an issue with class imbalance, 
another testing approach based on SMOTE was used; XGBoost 
and KNN also have the same best outcome with 0.990 % 
accuracies. Recall is 0.976 %, accuracy is 0.997 %, F1-score is 
0.986 %, and FPR is 0.013 % for XGBoost in terms of other 
assessment criteria. KNN has a recall of 0.981 %, accuracy of 
0.990 %, F1-score of 0.985 %, and FPR has the highest score 
of 0.001 % to other ML algorithms. XGBoost is superior to 
KNN since it requires less training and testing time. 

Finally, the selected ML algorithms were assessed using 
Chi

2 
and SMOTE for binary classification. With Chi

2
 and 

SMOTE, KNN produces considerable results. The findings for 
the ML techniques are shown in Table IV. 

 Multi-class classification: The dataset contains an 
attribute type that displays the attack sub-class for 
multi-class classification tasks, as stated before. There 
are ten sub-classes in ToN-IoT. In this part, candidates' 
ML methods will be analyzed for evaluating multi-
classification tasks. When assessing prospective ML 
methods for a multi-class classification task, several 
factors must be considered. To begin, LR is most 
commonly employed to solve binary classification task 
and cannot be immediately used for multi-class 
classifications. As a result, to construct LR for multi-
class classification, the one-vs-rest (OvR) approach is 
applied. Accuracy, precision, recall, F-score, and 
confusion matrix are the assessment measures used to 
compare all models. The multi-classification findings 
are summarized in Table V. When comparing all ML 
algorithms, XGBoost achieves decent results. The 
training accuracy for XGBoost is 0.986 percent, the 
testing accuracy is 0.983 %, the recall is 0.953 %, the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 6, 2022 

558 | P a g e  

www.ijacsa.thesai.org 

F1-score is 0.949 percent, and the FPR is 0.008 %. 
KNN comes in second with scores of 0.981 % for 
training accuracy and 0.979 % for testing accuracy, and 
the AdaBoost classifier has the worst metrics of all 
tested ML methods. SVM is the most time-consuming 
in terms of training and testing. 

The Chi
2
 feature selection methodology after was used 

evaluating all of the specified ML algorithms over the whole 
dataset. Chi

2
 will assess all ML algorithms with the best 20 

attributes from all 108 attributes. XGBoost achieves 
considerable results in binary classification, for example. The 
training accuracy is 0.985 percent, the testing accuracy is 0.982 
%, the recall is 0.950 %, the precision is 0.943 %, the F1-score 
is 0.946%, and the FPR is 0.008 %. Table V. displays the 
results of all ML techniques applied with the Chi2 approach. 

KNN was the second-best approach, AdaBoost is the poorest 
model. 

Another approach based on the SMOTE technique was 
used. As seen in Table V, XGBoost outperforms other 
commonly used ML algorithms. Finally, the selected ML 
algorithms were assessed using the Chi

2
 and SMOTE 

methodologies on the basis of the multi-class classification 
issue. With the Chi

2
 and SMOTE methods, XGBoost achieves 

considerable results. The training accuracy of XGBoost is 
0.980 %, while the FPR is 0.019 %. Table V. displays the 
outcomes of chosen ML approaches using the Chi

2
 and 

SMOTE techniques. 

In the cloud layer, the network intrusion detection was 
suggested to be deployed in the cloud for binary and multi-
class classification problems, as shown in Fig. 6. 

TABLE IV. THE RESULTS OF THE BINARY CLASSIFICATION (NETWORK_DATA) 

Data Models Train Acc Acc Precision Recall F1-score  FPR 
Confusion  

Matrix 

Network 

All attributes  

DT 0.981 0.980 0.960 0.982 0.971 0.022 
[[88032 1966] 

 [ 851 47464]] 

RF 0.980 0.979 0.959 0.984 0.971 0.023 
[[87949 2049] 

 [ 792 47523]] 

KNN 0.989 0.988 0.986 0.979 0.983 0.007 
[[89325 673] 

 [ 995 47320]] 

XGB 0.992 0.991 0.984 0.991 0.987 0.009 
[[89220 778] 

 [ 442 47873]] 

Network 

Chi2 

KNN 0.984 0.982 0.983 0.965 0.974 0.009 
[[89170 828] 

 [1694 46621]] 

XGB 0.984 0.983 0.984 0.967 0.975 0.008 
[[89247 751] 

 [1598 46717]] 

Network 

SMOTE 

KNN 0.991 0.990 0.981 0.990 0.985 0.001 
[[89067 931] 

 [ 504 47811]] 

XGB 0.993 0.990 0.976 0.997 0.986 0.013 
[[88789 1209] 

 [ 125 48190]] 

Network 

Chi2 & SMOTE  

KNN 0.985 0.982 0.959 0.989 0.974 0.023 
[[87960 2038] 

 [ 515 47800]] 

XGB 0.986 0.982 0.954 0.996 0.975 0.026 
[[87670 2328] 

 [ 190 48125]] 

TABLE V. THE OUTCOMES OF THE MULTI-CLASS CLASSIFICATION (NETWORK_DATA) 

DATA  Models Train Acc Acc Precision Recall F1-score  FPR 

Network 

All attributes  

AdaBoost 0.399 0.399 0.339 0.229 0.274 0.505 

KNN 0.981 0.979 0.933 0.925 0.929 0.009 

XGB 0.986 0.983 0.945 0.953 0.949 0.008 

Network 

Chi2 

AdaBoost 0.498 0.497 0.352 0.363 0.358 0.424 

KNN 0.980 0.977 0.929 0.928 0.929 0.014 

Network 
SMOTE 

KNN 0.976 0.976 0.901 0.956 0.928 0.018 

XGB 0.980 0.979 0.907 0.968 0.937 0.018 

Network 

Chi2 & SMOTE  

KNN 0.971 0.976 0.899 0.956 0.927 0.019 

XGB 0.980 0.978 0.911 0.967 0.939 0.019 
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Fig. 6. The Process for Evaluating ML Methods on the OS ToN-IoT Dataset. 

After applying various feature engineering techniques for 
the network ToN_IoT dataset, the XGBoost classifiers obtains 
optimal results using chi2 and SMOTE techniques that were 
used for class balancing and feature selection. 

 Malicious detection for Linux dataset evaluation (fog 
layer): The same intrusion model was deployed in the 
fog layer with the same specification as discussed in 
earlier sections. 

 Linux dataset evaluation (fog layer): This section 
focuses on the effectiveness of the used ML techniques 
for host malicious detection using the newly released 
Linux ToN-IoT dataset. Linux dataset was partitioned 
into three categories process, disk, and memory. 

 Process_Linux (Binary classification): This section 
showed the findings for the Linux ToN-IoT dataset. In 
general, XGBoost is useful for binary classification. 
This experiment begin by impute missing values and 
then use the Min-Max normalization approach. 
Training accuracy is 0.994 %, testing accuracy is 0.993 

%, recall is 0.990 %, precision is 0.991 %, and F1-
score is 0.991 %, according to the findings. In terms of 
false-positive rate (FPR), XGBoost is significant at 
0.005%. Table VI displays the results of all ML 
techniques applied without the SMOTE approach. The 
KNN approach, on the other hand, was the second-best 
methodology. 

Because ToN-IoT has a class imbalance issue, another 
testing methodology based on SMOTE approach was used; RF 
and DT had the same better outcome with 0.992 % accuracies. 
In terms of other assessment measures, F1-score is 0.989 % for 
DT and RF, and FPR is 0.007 % for DT, which is superior to 
RF. Table VI displays the outcomes for several ML algorithms. 

Multi-class classification (Process_Linux): For multi-class 
classification tasks, the Linux ToN-IoT dataset includes a 
feature type that displays the attack sub-category. When 
assessing prospective ML algorithms for a multi-class 
classification issue, several factors must be taken into account. 
The multi-classification findings are summarized in Table VII. 

When compared to other ML algorithms, XGBoost 
achieves decent results. The training accuracy for XGBoost is 
0.962 %, the testing accuracy is 0.954 %, the recall is 0.870 %, 
the precision is 0.909 %, the F1-score is 0.889 %, and the FPR 
is 0.004 %. DT and RF come in second with scores of 0.981 % 
for training accuracy and 0.979 % for testing accuracy, and the 
AdaBoost classifier has the worst statistics of all tested ML 
methods. 

Another procedure was used based on the SMOTE method. 
As stated in Table VII. DT has the greatest outcomes compared 
to other used ML techniques. 

 Memory_Linux (Binary classification): In this section, 
the results for memory-based Linux ToN-IoT dataset 
were presented. In general, RF is significant for binary 
classification. To begin with, the results reveal that the 
training accuracy is 0.999 %, the testing accuracy is 
0.997 %, the recall is 0.993 %, the precision is 0.997 
%, the F1- score is 0.995 %, and the FPR is 0.001 
percent, with XGBoost achieving the best second 
result. Table VIII displays the results of all ML 
techniques applied without the SMOTE approach. NB 
is the worst approach. 

Because ToN-IoT has a class imbalance problem, another 
approach based on SMOTE was used; RF produced the best 
result with 0.997 % accuracy. 

 Multi-class classification (Memory_Linux): For multi-
class classification tasks, the Linux memory ToN-IoT 
dataset includes a feature type that displays the attack 
sub-class. The multi-classification findings are 
summarized in Table IX. 

When compared to other ML algorithms, XGBoost 
achieves decent results. The training accuracy for XGBoost is 
0.986 %, the testing accuracy is 0.982 %, the recall is 0.922 %, 
the precision is 0.965 %, the F1-score is 0.943 %, and the FPR 
is 0.001 %. RF comes in second with scores of 0.988 % for 
training accuracy and 0.982 % for testing accuracy. 
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TABLE VI. THE OUTCOMES OF THE BINARY CLASSIFICATION (LINUX_PROCESS_DATA) 

DATA  Models Train Acc Acc Precision Recall F1-score  FPR 
Confusion  

Matrix 

process 
All attributes  

KNN 0.992 0.990 0.988 0.985 0.986 0.007 
[[29549 215] 

 [ 281 17989]] 

XGB 0.994 0.993 0.991 0.990 0.991 0.005 
[[29606 158] 

 [ 181 18089]] 

process 
SMOTE  

DT 0.997 0.992 0.989 0.989 0.989 0.007 
[[29555 209] 
 [ 192 18078]] 

RF 0.997 0.992 0.988 0.990 0.989 0.008 
[[29540 224] 

 [ 181 18089]] 

XGBOOST 0.994 0.992 0.985 0.995 0.990 0.009 
[[29483 281] 

 [ 88 18182]] 

TABLE VII. THE OUTCOMES OF THE MULTI-CLASS CLASSIFICATION (LINUX_PROCESS_DATA) 

DATA  Models Train Acc Acc Precision Recall F1-score  FPR 

process 

All attributes  

DT 0.969 0.952 0.901 0.889 0.895 0.005 

RF 0.969 0.950 0.875 0.839 0.857 0.006 

XGBOOST 0.962 0.954 0.909 0.870 0.889 0.004 

Process  

SMOTE 

DT 0.943 0.950 0.838 0.881 0.859 0.01 

RF 0.943 0.948 0.831 0.871 0.851 0.011 

XGBoost 0.934 0.949 0.811 0.884 0.846 0.017 

TABLE VIII. THE OUTCOMES OF THE BINARY CLASSIFICATION. (MEMORY_LINUX) 

DATA  Models Train Acc Acc Precision Recall F1-score  FPR 
Confusion  

Matrix 

Memory 

All attributes  

DT 0.999 0.996 0.995 0.991 0.993 0.002 
[[29867 66] 

 [ 104 11997]] 

RF 0.999 0.997 0.997 0.993 0.995 0.001 
[[29891 42] 

 [ 83 12018]] 

XGBoost 0.998 0.997 0.996 0.992 0.994 0.002 
[[29887 46] 

 [ 93 12008]] 

Memory  

SMOTE  

DT 0.999 0.996 0.992 0.993 0.993 0.003 
[[29837 96] 

 [ 79 12022]] 

RF 0.999 0.997 0.995 0.995 0.995 0.002 
[[29867 66] 

 [ 64 12037]] 

XGBoost 0.998 0.996 0.991 0.996 0.993 0.004 
[[29818 115] 

 [ 49 12052]] 

TABLE IX. THE RESULTS OF THE MULTI-CLASS CLASSIFICATION (LINUX MEMORY) 

DATA  Models Train Acc Acc Precision Recall F1-score  FPR 

process 
All attributes  

DT 0.988 0.982 0.947 0.928 0.937 0.002 

RF 0.988 0.982 0.964 0.918 0.941 0.001 

XGBoost 0.986 0.982 0.965 0.922 0.943 0.001 

Process  

SMOTE 

DT 0.972 0.981 0.874 0.947 0.909 0.003 

RF 0.972 0.981 0.878 0.938 0.907 0.003 

XGBoost 0.968 0.978 0.877 0.933 0.904 0.008 

Another approach was used based on the SMOTE method. 
As stated in Table IX, DT has the top outcomes compared to 
other employed ML methods. 

 Malicious detection for windows dataset evaluation 
(fog layer): This work focuses on the efficiency of the 
chosen ML methods for malicious detection using the 

newly released Windows ToN-IoT dataset. The 
Windows dataset was partitioned into two categories, 
Win_10 and Win_7. 

 Win_10 dataset (Binary classification): In this part, the 
outcomes for the Windows ToN-IoT were presented. 
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In general, XGBoost shows significance. Training accuracy 
is 1.0%, testing accuracy is 1.0%, and F1-score is 1.0%, 
according to the results. In the case of false-positive rate (FPR), 
XGBoost shows significance with 0.0. Table X. shows the 
results for the selected ML methods. Since ToN-IoT suffers 
from a class imbalance problem, another testing methodology 
was done based on SMOTE technique, XGBoost has the best 
result. Table X. shows the results for all used ML methods 
using SMOTE technique. 

Another testing technique was based on the best selected 
attributes that were selected from a correlation matrix. 
XGBoost obtains the best result with and without SMOTE. 
Tables X shows the outcomes for all selected ML methods. 

 Multi-class classification (Win_10): For multi-class 
classification issues, the ToN-IoT dataset includes a 
feature type that displays the attack sub-category. The 
multi-classification findings are summarized in 
Table XI. 

When compared to other ML algorithms, XGBoost 
achieves decent results. XGBoost training accuracy is 1.0, its 
testing accuracy, recall, precision, and F1-score are all 1.0%, 
and its FPR is 0.00 %. Another testing approach based on the 
SMOTE technique was used. As seen in Table XI. XGBoost 
outperforms other commonly used ML algorithms. 

 Win_7 dataset (Binary classification (Win_7): In 
general, for binary classification, XGBoost shows 
significant results for windows 7 dataset. Table XII 
displays the outcomes for the selected ML method. 

ToN-IoT has a class imbalance problem, another testing 
methodology was done based on SMOTE technique, XGBoost 
has the best result. 

XGBoost obtains the best result with and without SMOTE 
for multi-class classification. XGBoost shows significant 
outcomes. Table XIII displays the outcomes for the selected 
ML method. 

TABLE X. THE OUTCOMES OF THE BINARY CLASSIFICATION. (WIN_10) 

DATA Models Train Acc Acc Precision Recall F1-score FPR 
Confusion 

Matrix 

WIN_10 

All attributes 
XGBoost 1.0 1.0 1.0 1.0 1.0 0.0 

[[3045 0] 

[ 0 3287]] 

WIN_10 
All attributes 

(SMOTE) 
XGBoost 1.0 1.0 1.0 1.0 1.0 0.0 

[[3045 0] 

[ 0 3287]] 

(10) Selected 
attributes 

XGBoost 1.0 1.0 1.0 1.0 1.0 0.001 
[[3043 2] 

[ 1 3286]] 

(10) Selected 

attributes 
SMOTE 

XGBoost 1.0 0.999 0.999 1.000 0.999 0.001 
[[3042 3] 

[ 1 3286]] 

TABLE XI. THE RESULTS OF THE MULTI-CLASS CLASSIFICATION FOR NORMAL RECORDS AGAINST ATTACK RECORDS (WIN_10) 

DATA Models Train Acc Acc Precision Recall F1-score FPR 

WIN_10 

All attributes 
XGBoost 1.0 1.0 1.0 1.0 1.0 0.0 

WIN_10 

All attributes 

(SMOTE) 

XGBoost 1.0 1.0 1.0 1.0 1.0 0.0 

(10) Selected 

attributes 
XGBoost 1.0 0.989 0.977 0.911 0.943 0.001 

(10) Selected 

attributes 

SMOTE 

XGBoost 1.0 0.986 0.868 0.912 0.890 0.001 

TABLE XII. THE OUTCOMES OF THE BINARY CLASSIFICATION. (WIN_7) 

DATA  Models Train Acc Acc Precision Recall F1-score  FPR 
Confusion  

Matrix 

WIN_7 

All attributes  
XGBoost 1.0 0.999 0.999 0.998 0.999 0.00 

[[3000 1] 

 [ 3 1790]] 

WIN_7 

All attributes 

(SMOTE) 

XGBoost 1.0 1.0 1.0 1.0 1.0 0.0 
[[3000 1] 

 [ 0 1793]] 

(10) Selected attributes  XGBoost 1.0 0.987 0.988 0.977 0.982 0.007 
[[2979 22] 

 [ 42 1751]] 

(10) Selected attributes 

SMOTE 
XGBoost 0.999 0.986 0.979 0.983 0.981 0.012 

[[2964 37] 

 [ 31 1762]] 
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TABLE XIII. THE RESULTS OF THE MULTI-CLASS CLASSIFICATION (WIN_7). 

DATA  Models Train Acc Acc Precision Recall F1-score  FPR 

WIN_7 

All attributes  
XGBoost 1.0 1.0 1.0 1.0 1.0 0.0 

WIN_7 All attributes 

(SMOTE) 
XGBoost 1.0 1.0 1.0 1.0 1.0 0.0 

(10) Selected attributes  XGBoost 1.0 1.0 1.0 1.0 1.0 0.0 

(10) Selected attributes 
SMOTE 

XGBoost 1.0 1.0 1.0 1.0 1.0 0.0 

VII. CONCLUSION 

Based on the ToN-IoT dataset, this study proposed a unique 
malicious detection technique for IoT. The ToN-IoT dataset 
was employed for training and testing, and the suggested 
model incorporates several essential aspects. There is a 
problem with a class imbalance in the ToN-IoT dataset, as well 
as missing values. this work which deal with ToN-IoT can 
cover more attacks than prior work with obsolete datasets like 
KDD-CUP99, NSL-KDD, and UNSW-NB15.The ToN-IoT 
contains nine types of attacks (Scanning, Cross-Site Scripting 
(XSS), Denial of Service (DoS), Distributed Denial of Service 
(DDoS), Backdoor, Injection Attack, Password Cracking 
Attack, Man-In-The-Middle (MITM), Ransomware. 

Exploring, preprocessing, feature selection, class imbalance 
solution, training ML methods, and testing ML methods are the 
various system blocks. In a network dataset, the Chi

2
 approach 

was utilized to select attributes. It lowered the number of 
attributes to 20, resulting in a quicker training time, lower 
model complexity, and the highest performance over the whole 
dataset. Another feature selection methodology was the 
correlation matrix which was used in the windows dataset to 
obtain the most relevant attributes from the whole dataset. The 
SMOTE approach was utilized to balance the classes. It 
improved performance by reducing dominant class bias, 
reducing overfitting, and improving the overall performance. A 
good evaluation metric was achieved by using Chi2, SMOTE, 
and correlation matrix as preprocessing approaches. For 
evaluating the performance of the deployed ML algorithms, 
many evaluation metrics (accuracy, precision, recall, F1-score, 
FPR, and confusion matrix) were used. The results determined 
that XGBoost outperforms all other ML approaches in binary 
classification and multi-class classification tasks after assessing 
the selected ML methods. The main contributions of this work 
are that it uses a new benchmark dataset that is updated with 
new attacks and gathered from a real IoT system. The gathered 
dataset reflects data from each layer of the IoT system, such as 
(the cloud, fog, and edge layers). The proposed model is a 
distributed malicious model based on a multi-layer for IoT 
system. Various ML methods were tested in each specific 
parathion of the ToN-IoT dataset. The prosed model is the first 
suggested model that is based on the collected data from the 
same IoT system from all layers and devices (sensors). 

In the future, Deep learning methods such as (recurrent 
neural network, auto-encoder, and convolution neural network) 
will be used in the ToN-IoT dataset. More work might be done 
in the future to enhance the performance of the baseline 
techniques on the datasets. Advanced parameter optimization 

approaches (for example, Bayesian optimization and the 
genetic algorithm) can be used to optimize the model's 
hyperparameters and get superior outcomes. 
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