
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

548 | P a g e

www.ijacsa.thesai.org

A Distributed Intrusion Detection System using

Machine Learning for IoT based on ToN-IoT Dataset

Abdallah R. Gad
1
, Mohamed Haggag

2
, Ahmed A. Nashat

3
, Tamer M. Barakat

4

Department of Communication

and Electronics Engineering

October High Institute for Engineering & Technology, 6th of October City 12596, Egypt
1

Department of Electronics and Communication Engineering

Misr University for Science and Technology, 6th of October City 12566, Egypt
2

Electrical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum, 63514, Egypt
1, 3, 4

Abstract—The internet of things (IoT) is a collection of

common physical things which can communicate and synthesize

data utilizing network infrastructure by connecting to the

internet. IoT networks are increasingly vulnerable to security

breaches as their popularity grows. Cyber security attacks are

among the most popular severe dangers to IoT security. Many

academics are increasingly interested in enhancing the security of

IoT systems. Machine learning (ML) approaches were employed

to function as intrusion detection systems (IDSs) to provide

better security capabilities. This work proposed a novel

distributed detection system based on machine ML approaches to

detect attacks in IoT and mitigate malicious occurrences.

Furthermore, NSL-KDD or KDD-CUP99 datasets are used in the

great majority of current studies. These datasets are not updated

with new attacks. As a consequence, the ToN-IoT dataset was

used for training and testing. It was created from a large-scale,

diverse IoT network. The ToN-IoT dataset reflects data from

each layer of the IoT system, such as cloud, fog, and edge layer.

Various ML methods were tested in each specific partition of the

ToN-IoT dataset. The proposed model is the first suggested

model based on the collected data from the same IoT system

from all layers. The Chi2 technique was used to pick features in a

network dataset. It reduced the number of features to 20.

Another feature selection tool employed in the windows dataset

was the correlation matrix, which was used to extract the most

relevant features from the whole dataset. To balance the classes,

the SMOTE method was used. This paper tests numerous ML

approaches in both binary and multi-class classification

problems. According to the findings, the XGBoost approach is

superior to other ML algorithms for each node in the suggested

model.

Keywords—Intrusion detection system (IDS); internet of things

(IoT); ToN-IoT dataset; machine learning (ML)

I. INTRODUCTION

The internet of things (IoT) is a network of everyday
physical objects which can communicate and synthesize data
utilizing the current network infrastructure by connecting to the
internet. These things are networked digital appliances or
sensors that can collect data and transmit it across the internet.
New applications and services are created as a result of the
interplay between sensors, connectivity, people, and processes.
In the IoT, these digital sensors or devices are known as
"things" [1].

As IoT networks become more prevalent, they become
more prone to security breaches. Cyber security attacks are one
of the most common serious threats to IoT security. These
attacks take several forms and target various resources on a
wide range of IoT devices. These cyberattacks frequently target
a large number of devices in an IoT network, which may then
be utilized as a "resource" or "platform" for attacks such as
distributed-denial-of-service (DDoS) and fraudulent operations
such as ransomware and password attacks. As a result, securing
IoT devices and building malicious (intrusion) detection
models for IoT systems is becoming increasingly vital for
protecting sensitive data[2].

Because the security of broad IoT is vital, it is critical for
identifying IoT risks and defining current prevention methods.
This work outline and categorize IoT security threats categories
and common defense methods to give the reader the security
foundation they need to understand the work[2]. The following
are some of the reasons why IoT security procedures vary from
those used in traditional security systems:

 IoT systems' computational power, memory capacity,
battery life, and network bandwidth are all restricted.
As a result, existing standard security solutions, which
are often expensive in terms of resources, cannot be
installed.

 IoT systems are widely scattered and heterogeneous.
As a result, traditional centralized solutions may be
ineffective. Furthermore, the distributed nature of IoT
introduces new obstacles and restrictions to its security.

 IoT solutions are employed in an ever-changing
physical context. Physical attacks, as a result, have
been added to the list of typical security issues.

One of the IoT security protection solutions is IDS. An IDS
[3] is software and/or hardware that monitors a network or
system for hostile activity and issues quick alarms. Since 1970
IDSs have been used. They are divided into two categories:
i) deployment and ii) detecting methods. There are two types of
IDS deployments: HIDS and NIDS. HIDS (Host-based
Intrusion Detection System) is an intrusion detection system
installed on a host machine (i.e., a device or a Thing). They
keep track of and evaluate system application files and the
operating system. Insider intrusion detection and prevention
are best accomplished through HIDS. NIDS (Network-based

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

549 | P a g e

www.ijacsa.thesai.org

Intrusion Detection System) captures and analyzes network
packet traffic. To put it another way, they are sniffing packets.
NIDSs are effective against external intrusion attacks. After the
intrusion has occurred, the following situation will explore. An
exemplary detection system is one that rapidly recognizes the
compromised condition and minimizes the loss (s). IDSs come
in many different forms. all categories of IDSs are presented in
[4].

Signature detection(knowledge-based)[5], Anomaly
detection (behavior-based) [6], and Hybrid detection are the
different detection types of IDSs.

An intrusion prevention system (IPS) [7] is used to keep off
intruders. An IPS reacts quickly and prevents harmful traffic
from passing through by deleting sessions, restarting sessions,
blocking packets, or proxying traffic. On the other hand, an
IDS replied once an attack has been detected. Inline detection,
layer seven switches, deceptive systems, application firewalls,
and hybrid switches are all examples of IPS.

During the study experimentation, the following stages will
be followed:

1) Choosing ToN-IoT as a new dataset [8]. The dataset

was thoroughly analyzed by removing the flow identification

attributes to eliminate bias and overfitting and preprocessing

the data.

2) The ToN-IoT dataset also has many issues, including

class imbalance, categorical attributes, and missing values. For

challenges using the ToN-IoT dataset, a hybrid approach was

provided.

3) The ToN-IoT dataset was utilized to test several

machine learning (ML), which are: naïve bias (NB), logistic

regression (LR), decision tree (DT), k-Nearest Neighbor

(KNN), support vector machine (SVM), random forest (RF),

XGBoost, Adaboost.

The subsequent are the research's major contributions:

1) Propose a distributed machine learning IDS for IoT with

comparison to another research.

2) Most existing detection algorithms are evaluated using

the NSL-KDD, KDD-CUP99, and UNSW-NB15 datasets.

These databases are out of date and do not cover current IoT

threats. However, the effectiveness of the proposed model is

evaluated using an actual ToN-IoT dataset. As assessment

measures, accuracy, precision, recall, F1-Score, and false-

positive rate (FPR) are utilized.

3) Resolving issues with the ToN-IoT dataset, such as

class imbalance, missing values, and irrelevant attributes that

impact the IDS model's performance.

4) The Chi
2
 and correlation matrix were used to select the

most important attributes.

5) The class imbalance problem was solved using the

SMOTE approach.

The paper organization is as follows: The sections below
provide a short overview of IDS for IoT. The ToN-IoT dataset
is briefly described in Section III. In Section IV is described
the experimental techniques. In Section 5, the findings of the

experiments are discussed. Finally, in Section VI, the
conclusion is offered.

II. RELATED WORK

Previously, many machine learning methods were used to
malicious datasets in malicious intrusion detection research.
IoT devices, as previously stated, are lightweight and low-
powered devices with limited computing ability to run
traditional antimalware solutions [9]. As a result, research is
undertaken to address these issues.

Alhanahnah et al [10] set out to solve this problem by
developing IoT malware detection technologies that could
operate effectively on any platform while being lightweight
despite resource limits. Lightweight signatures were created
from high-level code to create the suggested solution. The
investigation proved that the signature generating mechanism
is effective. The proposed method was found to have an 85.2 %
detection rate with zero false positives using analytical
approaches.

Ngo and Nguyen [11] also investigated the increase of
malware targeting IoT sensors and enhanced the efficacy of
current malicious software detection techniques. The research
looked at several prior studies on IoT security. The pros and
cons of various malware detection technologies were examined
and contrasted. The study discovered that the ELF-header
approach had a low false detection rate of 0.2 % using tabular
comparisons. Furthermore, employing the coding scheme to
combine malware samples enhanced detection accuracy to over
98 %, according to the data.

Su et al. [12] suggested a lightweight technique to detect
and classify DDoS malware and normal IoT applications. The
research used a convolutional neural network to conduct
experiments, allowing resource-constrained IoT devices to
function normally. The correctness of the suggested design was
tested using a five-fold validation technique. With an average
accuracy of 94 %, the recommended design predicted malware.

Nguyen et al. [13] also assessed the efficacy of three deep
learning-based techniques in identifying IoT malicious
software. The models were developed using attributes 1) fixed-
size-byte series, 2) fixed-size-color image, and 3) variable
sized-sequence data. The fixed-size byte sequence strategy was
less accurate than the variable-sized and fixed-size color
picture approaches, with an accuracy of 90.58 %. However, the
study was regarded as initial, and the authors recommended
that further tests be conducted to increase the accuracy.

Alasmary et al. [14] used multiple datasets to see the
relationships and variations between malicious software on
various systems. A method was constructed and utilized for
categorizing android malware, IoT malware, and non-
threatening samples using control flow graphs. A 10-fold
validation procedure was used to assess the performance of
these models. The convolutional neural network (CNN) model
was shown to have a 99.66 % accuracy in detecting IoT
malware from normal samples in the study.

Hasan et al. [15] used artificial neural networks (ANN),
SVM, and LR as machine learning algorithms to identify
attacks and abnormalities in IoT sensors at IoT sites. With a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

550 | P a g e

www.ijacsa.thesai.org

99.4 % accuracy, the experiment suggests that CNN is the
preferable approach to apply in IoT for intrusion detection
systems.

Authors [16] suggested a revolutionary real-time,
distributed, and lightweight IDS, efficiently combining edge,
fog, and cloud computing. It enables sophisticated data
processing at the intermediaries' level, decreasing the amount
of data sent to the cloud. As a result, processing occurs at hubs,
routers, or gateways. The IDS's AIS architecture is made up of
three parts:

A training engine: trains detectors using data from an initial
learning dataset. Because it necessitates complicated and
powerful processing units, this stage is handled on the cloud
layer.

An analyzer examines abnormalities provided by detectors
in order to warn and reject false positive signals. To increase
precision, the authors apply memory cell detectors and genetic
algorithms. The analyzer engine is installed at the fog layer
since this stage necessitates a greater connection between the
infected edge nodes and the main engine.

Detector sensors: Each node in the network is equipped
with detecting logic. Various detectors might recognize each
form of attack in the suggested IDS, which is intelligent and
distributed. When a threshold is exceeded, the anomaly is
transmitted to the analyzer engine, resulting in an intrusion
warning.

The essential work strengths are as follows: a) Combination
of innovative analysis in the cloud with lightweight analysis in
the fog-layer; b) botnet attacks are detected using a smart
strategy, and c) detection of zero-day attacks and unknown
attacks based on an online self-training method. The
lightweight IDS efficiency was evaluated using two datasets:
SSH Brute Force dataset, and KDD-Cup99. According to
testing data, the three-layered suggested approach achieves a
3.51 % false-positive rate (FPR) with 98.35% and 97.83%
precision.

A real-time combination of specification-based and
anomaly-based IoT IDS was proposed by Bostani and
Sheikhan [17]. It may be used to identify sinkholes and
selective-forwarding attacks in 6LowPAN networks. This IDS
operates in two stages: router-level specification detection and
root-level anomaly detection. First, the routers examine aspects
of the traffic of a network and host nodes on a local level. The
first phase's findings are forwarded to the root node for the
second step and then deleted from routers to save memory and
CPU resources. At the root node, the second phase is global
intrusion detection, which involves performing anomaly-based
analysis on entering data packets. To demonstrate appropriate
real-time detection, they use three main experimental tests,
each with ten simulations: the first contracts with assessment
values, the second with network scale (small and medium-size)
to confirm independent scale-network IDS, and the third with
the option to extend detected attacks such as wormhole.
According to the results of simulated situational experiments,
the proposed hybrid technique may reach a true positive rate of
76.19 % and a FPR of 5.92 %.

Moustafa et al. [9] introduced an ensemble NIDS based on
existing statistical characteristics to reduce harmful events,
including botnet cyberattacks against HTTP, MQTT, and DNS
protocols in IoT systems. The model has three phases: a) Using
a thorough study of the TCP/IP model, a collection of attributes
is derived from the network traffic protocols. The authors used
the Bro-IDS tool for the basic characteristics and created a new
extractor module (that collaborates with Bro-IDS) to derive
further statistical aspects of transactional processes. b) The
correlation coefficient is applied to the result attributes in this
step-in order to obtain the essential ones. This phase allows
NIDS's computational cost to be reduced. An ensemble
technique using the AdaBoost (Adaptive Boosting) algorithm
disperses the network data. Then, to identify attacks, Decision
Tree (DT), NB, and ANN ML algorithms are used. When
compared to individual ML algorithms, the AdaBoost
technique improves detection performance. It is capable of
dealing with any situation through the computation of an error
function, the minor differences of the feature vectors are used
to learn and select which learners can correctly categorize each
instance of the input data, and the error function is assigned to
each occurrence. They used the UNSW-NB15 and NIMS
botnet datasets. The ensemble approach achieved between
95.25 % and 99.86 % of DR and 0.01% to 0.72 % of FPR.

Nguyen et al. [18] presented a self-learning anomaly-based
IDS (DoT) that was autonomous. Their solution consists of
Security Gateways that monitor system devices, as well as an
IoT security service (which might be a service provider) that
detects abnormalities in a device-type-specific mode. Network
devices are automatically grouped based on their
manufacturer's hardware and software specifications. Then, for
each device type, anomaly models will be created. According
to the authors, the used algorithm is Gated Recurrent Units
(GRU), which is a recurrent neural network (RNN) that can
train efficiently with little training data. As a result, final GRU
models result from a collective learning process involving
multiple Security Gateways while maintaining privacy. This
IDS approach appears to be communication-efficient and ideal
for distributed systems such as the internet of things. In order
to identify the Mirai virus, the authors test their approach in a
real-world smart home deployment. They have a DR with 95.6
% and no false alarms in 257 ms.

Illy et al. [19] presented a fog-to-things IDS architecture.
The detecting method is implemented on two levels: the fog
and cloud layers of the system. On the one hand, this design
enables the authors to deal with their computationally
demanding ML detection induced by ensemble learning (a
combination of ML algorithms). On the other side, owing to
fog detection provides for low latency detection and,
consequently, quick reaction. As a result, anomaly detection is
conducted first in the fog layer; if the traffic is detected as an
attack, an alert is delivered to the security administrator.
Additional analysis is performed in the cloud to categorize the
kind of attack and provide it to him. They used a multi-expert
mode and a multi-stage technique to evaluate alternative ML
combinations. On the NSL-KDD dataset, they achieved 85.81
% overall accuracy for binary classification and 84.25 %
overall accuracy for attack classification, respectively.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

551 | P a g e

www.ijacsa.thesai.org

TABLE I. A SUMMARY OF APPROACHES FOR IOT MALICIOUS DETECTION

Authors Study purpose ML-methods
Data used for

Evaluation

Alhanahnah

[10]

Developing IoT malware detection technologies that could operate effectively

on any platform while being lightweight despite resource limits.
Statistical technique

IoT malware

dataset

Su [12] Detecting and classifying DDoS CNN
IoT DDoS

malware dataset

Nguyen [13] Identifying IoT malware. Deep learning
They prepare their

own data

Alasmary

[14]
Detection of IoT network attacks.

KNN- ID3- Random Forest- AdaBoost-

Multi-layer perceptron (MLP)-

Naïve Bayes (NB)

Bot-IoT

Hasan [15] Identifying attacks and anomalies
Neural Networks (NN), SVM, and

logistic regression

Data collected

from Kaggle

Hosseinpour

[16]
Distributed IDS Artificial Immune System (AIS)

KDD99 and

SSH Brute Force

from ISCX

Bostani [17] A mixture of specification-based and Anomaly-based IDS Unsupervised-Optimum Path Forest NSL-KDD

Moustafa[9] An ensemble NIDS Decision Tree (DT), NB, and ANN UNSW-NB15

Nguyen

[18]
A self-learning anomaly-based IDS a recurrent neural network

Real-world

smart home

Illy [19] A fog-to-things IDS ensemble learning
NSL-KDD

Gonzalo et

al. [20]
Detecting IoT attacks CNN, LSTM

KDD99, NSL-

KDD, CISC2010

Shafiq [21] A new-feature selection algorithm.
Decision Tree (C4.5)-

SVM-RF-NB
BoT-IoT

Gonzalo et al. [20] demonstrated an embedded IoT micro-
security that uses a CNN prototype to identify URL-based
cyberattacks on a client's IoT devices. For botnet detection, the
add-on works in concert with an RNN-LSTM model housed on
the back end servers. With an accuracy of 94.30 % and an F-1
score of 93.58 %, CNN can detect phishing attacks. Botnet
attacks are detected using LSTM with a 94.80% accuracy when
all malicious in the dataset are utilized.

Shafiq et al. [21] demonstrated a malicious intrusion model
for IoT. this study developed a new feature selection technique
and tested the newly developed technique on several machine
learning techniques such as s, C4.5 decision tree, and Random
Forest classifiers; they got more than 95% accuracy. A
summary of algorithms that are used to construct IDS for IoT is
presented in Table I.

III. STATE-OF-THE-ART DATASETS

KDD99 and NSL-KDD are the most extensively used
NIDS/HIDS datasets. For assessment and testing, public attack
datasets such as CAIDA [22], DEFCON [23], ADFA IDS[24] ,
KYOTO [25], and ISCX 2012 [26] are accessible. The most
recent are either unlabeled data or unavailable data from
certain nations, or data exclusive to a domain.

KDD99 [27] is a dataset used for constructing the robust
NIDS for detecting "dangerous" connections from "great" ones.
The dataset is a feature-extracted edition of the DARPA
dataset. KDD99 comprises data from a military network with

inserted attacks that are divided into four categories: i) DoS;
ii) remote to user; iii) user to root; iv) probing. Using the Bro-
IDS tool, KDD99 is based on 41 attributes for each sample+, as
well as the class label. The attributes are divided into four
categories [27]:

 1–9: the fundamental attributes of each TCP
connection.

 10-22: attributes suggested by domain knowledge.

 23-31: a two-second time frame was used to calculate
traffic attributes.

 32-42: host capabilities are intended to evaluate
cyberattacks lasting longer than two seconds.

KDD99 is common and widely used for experimental
analysis by security researchers. Various efforts [28, 29] were
created to minimize the number of characteristics by picking
the most important ones from the initial 41. However,
numerous studies, such as [30, 31], have found KDD99 to have
drawbacks, a few of the most notable ones:

The probability distributions of the testing and training sets
diverge. To put it another way, KDD99 has imbalanced
categorization.

 The data set is no longer current (1999).

 New attacks are not available.

 The data collected are not from an IoT system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

552 | P a g e

www.ijacsa.thesai.org

NSL-KDD [32] is an improved version of KDD99 that
addresses its shortcomings. First, duplicate entries are deleted
from the whole dataset. Second, a range of samples from the
original KDD99 was chosen to acquire accurate findings from
classifier systems. Third, the issue of an uneven probability
distribution is no longer an issue. The lack of current low-
footprint attack scenarios is a fundamental flaw in this
collection.

UNSW-NB15 [33] was built by the Australian Centre for
Cyber Security in 2015. Its purpose is to create a mixture of
modern real-world activities and synthetic modern attacks
behaviors. There are around two million and 540,044 records
in four CSV files. Those records were created from 100GB of
raw data recorded using the tcpdump utility (in pcap files).

The IoT dataset by Sivanathan et al. [34, 35]. Deals with
categorization for IoT sensors based on network traffic
characteristics. The authors provide a brilliant ecosystem for 28
IoT sensors, including cameras, lighting, plugs, motion
sensors, appliances, and health-monitoring devices. They use
statistical analysis to provide essential insights into network
traffic patterns utilizing attributes such as port numbers,
activity cycles, signaling patterns, and encryption suites. They
also synthesized network traffic traces from their infrastructure
for six months and provided them to the scholarly community.

The CICIDS database [36] is a recent Intrusion dataset
provided by the Canadian Institute for Cyber-security, to
represent the most recent attacks similar to real-world data. It
was created using HTTP, HTTPS, FTP, SSH, and e-mail
protocols to model the abstract behavior of 25 users. CIC-
FlowMeter examines the data, including labeled data based on
timestamps, starting, and ending IP addresses, ports, protocols,

and attacks. The authors developed the B-Profile technique to
describe the behavior of FTP, SSH, HTTP, HTTPS, and e-mail
protocols in order to simulate realistic traffic. While capturing
the data, the authors used Brute Force FTP, SSH Heartbleed,
and DDoS attacks. Unlike current standard IDS datasets, the
assessment system [37] identified eleven critical attributes
required to develop a valid benchmark dataset.

The CSE-CIC-IDS 2018 [38] dataset is a one-of-a-kind IDS
dataset that has emerged to replace poor datasets that restrict
IDS/NIDS experimental assessments. CSE-CIC-IDS2018 is an
anomaly-based dataset containing intrusions in the network to
overcome the usage of signature datasets: a) dos;
b) Heartbleed; c) botnet; d) brute-force; e) DDoS; f) and web
attacks were among the seven attack scenarios mentioned by
the authors. The attack architecture consists of 50 nodes,
whereas the target organization is divided into five
departments, each with 30 servers and 420 hosts.
CICFlowMeter-V3 was used to extract 80 characteristics from
network traffic and system logs.

BoT-IoT [39] The ACCS Cyber Range Lab created a
network environment based on IoT that includes both regular
and botnet traffic. The Ostinato and Node-red tools were used
to create IoT and non-IoT network traffic, respectively. The
Argus program was used for extracting the dataset's original 42
attributes from a total of 69.3GB of pcap files. The collection
comprises 477 normal flows (0.01 %) and 3,668,045 assault
flows (99.99 %), totaling 3,668,522 flows. The dataset contains
traffic from DDoS, DoS, OS, Data exfiltration, Keylogging
attacks, and further DDoS and DoS operations put up on the
protocol utilized. The main lack in this dataset is that it
comprises over 99 % botnet traffic but just about 1% regular
traffic.

TABLE II. AVAILABLE DATASETS

Dataset Dataset Advantages Dataset Disadvantages

KDD99

KDD99 is the most widely deployed dataset.

• Data that has been labeled and has 41 attributes for each connection and the

class description.

• DOS, remote-to-user, user-to-root, and probing attacks are all used.

• (PCAP) network traffic is provided.

• The dataset is out of date, and KDD99 has imbalanced classes.

• Not for the internet of things (IoT) systems.

NSL-KDD

• It is an upgraded version of KDD99 that addresses the limitations of

KDD99.

• no duplicated records in the training and test sets.

•There are not enough current low-footprint attack scenarios.

• Not for the internet of things (IoT).

UNSWNB15

It offers real-world modern regular activities and synthetic modern attack

behaviors.

• Network traffic (PCAP) and CSV files are available.

Because recent attacks and typical network traffic behave

similarly, it is more complicated than the KDD99 dataset.

Sivanathan

Dataset

• This IoT network traffic dataset is based on a real-world IoT network.

• CSV and PCAP files are available.

• Data that has not been tagged.

• No attack data is required for the IoT device proliferation and
traffic characterization.

CICIDS

•labeled network flows used for building IDS based on machine learning.

• PCAP and CSV files are available.

• Brute Force, DoS, Heartbleed, Web-Attack, Botnet, and DDoS

cyberattacks.

• Not public.

• Not for the internet of things (IoT).

CSE-

CICIDS2018

• PCAP, CSV, and log files are available.

 • Brute-force, Botnet, DoS, DDoS, and Web attacks are all implemented.

• It is a dynamically produced dataset that may be modified, extended, and

replicated.

• Not public.

• Not for the internet of things (IoT).

BoT-IoT
• IoT network traffic dataset.

• PCAP and CSV files are available.

• The main lack in this dataset is that it comprises over 99 % botnet

traffic but just about 1% regular traffic.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

553 | P a g e

www.ijacsa.thesai.org

KDD99 is the most often used network dataset, as indicated
in Table II. Since 1999, it has been in use. It is, unfortunately,
out of date. NSL-KDD was built to overcome the limitations of
KDD99. There are no duplicate records, and the data is
balanced. UNSW-NB15 was proposed as a replacement for
NSL-KDD, which lacks contemporary attacks. It is a well-
known dataset that has been subjected to recent attacks.
Meanwhile, when it comes to similarities between new attacks
and normal activities, it is more complicated than KDD99. The
Sivanathan et al. dataset, CSE-CIC-IDS 2018, and CICIDS are
examples of more recent network datasets. Compared to the
other datasets offered, Sivanathan's work is the only one that
includes IoT network traffic. It is, however, intended for the
proliferation of IoT devices rather than intrusion detection.
CICIDS and CSE-CIC-IDS 2018 have labeled records but do
not target IoT system security despite having an up-to-date
attack list.

IV. TON-IOT DATASET

The ToN-IoT dataset was used in this investigation. The
ToN-IoT includes telemetry data from linked devices, Linux
operating system data, Windows operating system logs, and
IoT network traffic, among other data sources acquired from
the entire IoT system. A medium-scale IoT network provides
diverse data. ToN-IoT was designed by the UNSW Canberra
IoT Labs and the Cyber Range. The ToN-IoT repository
contains the ToN-IoT dataset [40]. Furthermore, the ToN-IoT
was represented in CSV format with a labeled column
indicating attack or normal and a sub-category attack-type.
Various types of cyberattacks, such as ransomware, password
attack, scanning, denial of service (DoS), distributed denial of

service (DDoS), data injection, backdoor, Cross-site Scripting
(XSS), and Man-In-The-Middle (MITM) were represented.
Various IoT and IIoT sensors were targeted in these attacks,
launched, and gathered across the IIoT network. The dataset's
details may be found in [40].

1) ToN-IoT network dataset: The network ToN-IoT

dataset contains 44 attributes and a label classified as normal or

attack for each data point. Fig. 1 shows the statistics for

network data samples in the train-test ToN-IoT dataset.

2) ToN-IoT Linux dataset: Linux datasets are partitioned

into three categories disk, memory, and process CSV files. The

first CSV file contains attributes for disk usage in normal

behavior and attack. The second CSV file is related to memory

activity, containing ten attributes, a label column labeled as

normal or attack, and an attack-type containing attack type

(DoS, DDoS). The last file belongs to processes in Linux

operating system. The Linux process ToN-IoT contains 14

attributes and an attack type for each data point. Fig. 1 shows

the statistics for all Linux data records in ToN-IoT.

3) ToN-IoT Windows dataset: Windows datasets are

contained records for windows 7 & 10. Windows 7 CSV file

contains 133 attributes, labeled as normal or attack, and attack-

type containing attack type (DoS, DDoS). Windows 10 CSV

file contains 125 attributes, labeled as normal or attack and

attack-type, which contain attack type (DoS, DDoS). The

statistics for all Windows data in the ToN-IoT were presented

in Fig. 1.

Fig. 1. ToN-IoT Statistics.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

554 | P a g e

www.ijacsa.thesai.org

V. DISTRIBUTED IDS

This part of work discusses the architecture of the proposed
model, system components of the proposed detection model,
and the various detection nodes in proposed model.

A. Model Architecture

The primary purpose of the suggested detection system for
IoT networks is to make on-demand security services more
convenient while also preventing attacks. The proposed
detection system employs a machine learning for detecting
attacks in the network traffic within the IoT network and in all
other nodes in IoT systems. As shown in Fig. 2, the proposed
detection system functions primarily in various stages/phases -
cloud phase, fog-network-detection phase, and a fog-host
detection phase.

B. Machine Learning Methods

The ToN-IoT dataset has been used to evaluate various
machine learning (ML) approaches. The chosen algorithms are
utilized for training, and testing ML approaches with various
parameters in the preprocessing phase of data for intrusion
detection. The accuracy, precision, recall, F1-Score, false-
positive rate (FPR), and confusion matrix were used to
evaluate the different classifiers. The methodologies utilized
have demonstrated great performance in the production of
IDSs and have proven to be successful in various industries.
This study look at the logistic regression (LR), naïve bias
(NB), support vector machine (SVM), decision tree (DT),
random forest (RF), k-Nearest Neighbor (KNN), Adaboost,
and XGBoost techniques, among others [41], [42].

C. Model Nodes

In this section each node in the proposed model will
discussed.

1) Malicious network detection node (Cloud layer): The

framework for malicious/intrusion detection comprises the

default procedure in machine learning:

a) Data preprocessing and feature engineering.

b) Training machine learning models.

c) Evaluate the selected model.

The deployed IDS in the cloud was established using
various feature-engineering techniques discussed in the next
section.

Fig. 2. The Proposed Detection System.

ToN-IoT preprocessing: Filtering and preparing are the
most critical steps before supplying data into machine learning
in order to achieve high performance. The used dataset has
numerous obstacles, including missing values, categorical
characteristics, and class imbalance. Unnecessary attributes
may impact the performance of the chosen ML algorithms.
Using permutations of multiple preprocessing and normalizing
strategies, this work tested the selected ML algorithms using
several preprocessing techniques.

 Missing value imputation: Missing values are common
in the ToN-IoT. These missing values must be
addressed appropriately. In the proposed model, the
imputation of missing values is substituted with the
most frequent value in each feature containing missing
data. A second an approach was imputed numerical
features using mean value.

 Converting categorical attributes to numerical: There
are various categorical attributes in the ToN-IoT
dataset. Numerical values must be assigned to the
category characteristics. One-hot encoding was used to
achieve this goal.

 Class-imbalance: The SMOTE technique was utilized
to balance the classes in the used dataset. The ToN-IoT
dataset is plagued with class imbalance distributions.
Solutions to the imbalanced problem, oversampling,
under-sampling, and hybrid techniques were proposed.
Oversampling is the practice of duplicating the
minority class points. Several researchers utilized it.
However, this approach has the drawback of overfitting
these spots. Others employ under-sampling, which
reduces the dominating class's score. The problem with
this method is that some of the elements that have been
removed may be necessary for accurately portraying
the class. A hybrid strategy was used; it duplicates
minority class points while removing certain majority
class points. Synthetic Minority Oversampling
Technique (SMOTE) [43], [44] enhances basic random
oversampling by providing synthetic minority class
samples, addressing the overfitting problem that can
occur with simple random oversampling. SMOTE
creates new data points instead of replicating old ones.
A linear combination of two comparable minority
samples is used to generate extra minority data points.

 Several attributes such as timestamp, IP-address,
source-port, and destination_port were removed from
the dataset since they may cause overfitting.

The two key steps used during feature-engineering
development are preprocessing based on the mentioned dataset
challenges and data normalization. For high performance, ML
approaches are evaluated using a variety of feature-engineering
techniques:

Feature selection: Various aspects must be checked for
intrusion detection, some of features will be valuable while
others will be useless. The feature selection procedure is
assigning a score to each potential feature and picking the best
(k) attributes. A function of both is obtained by counting the
frequency of a feature in training for each positive and negative

Cloud-NIDS

Fog-NIDS

Fog-HIDS
Fog-NIDS

Fog-HIDS

Fog-NIDS

Fog-HIDS

Fog-

NIDS Fog-

HIDS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

555 | P a g e

www.ijacsa.thesai.org

class occurrence separately. Non-essential attributes are
removed, increasing accuracy, decreasing computation time,
and reducing the overfitting problem, resulting in better
performance. The used feature selection technique was Chi

2
,

which is a filter method.[31], [45].

 ∑ ∑
()

 (1)

where m indicates the no of attributes, n indicates the no of
classes, is the observed frequency, and is the expected
frequency.

 Data normalization: The ToN-IoT contains attributes
with varying values, and some attributes have larger
values than others. Because a technique may be slanted
toward characteristics with larger values, differing
values out of range might lead to inaccurate results. As
a result, data normalization is critical in preventing
outweighing attributes with greater values over
attributes with smaller values by scaling the feature
vector. Min-Max is used to scale data between [0:1] as
presented in Eq. (2).

 (2)

where x reflects the feature-value, Z reflects the feature-
value after normalization, the maximum and minimum values
of the feature are and .

Fig. 3. The Procedure to Evaluate Network Dataset [41].

The training process: All ToN-IoT datasets are in CSV
extension; initially, the ToN-IoT dataset was divided into two
sets. The first set comprises training with 70% of the dataset.
The second set contains unseen data for evaluating the
performance of the selected ML algorithms. Before employing
any preprocessing to the ToN-IoT, the splitting step was
completed to avoid data leaking. The effectiveness of the
chosen machine learning algorithms is evaluated using a
variety of assessment measures, which will be provided in the
next section. The previous steps associated with evaluating the
performance of various ML algorithms utilizing ToN-IoT
datasets are summarized in Fig. 3 and 4.

Classifier performance evaluation: Based on the ToN-IoT
dataset, numerous metrics were utilized to assess the efficacy
of various machine learning approaches. The chosen
assessment techniques were chosen because they provide a
detailed explanation of the outcomes for machine learning-
based malicious detection [46].

Fig. 4. The Overall Process for Malicious Detection.

The first metric is accuracy, which measures a technique's
overall efficiency as a proportion of instances accurately
identified as normal or attacks. The precision metric, which
shows the proportion of accurately recognized attacks out of all

Figure 3.4. The process to evaluate ML methods on the ToN-IoT dataset.

All

features
Apply

chi2

Apply

SMOTE

Apply both

chi2 and

SMOTE

Test the chosen ML methods

Network ToN-IoT dataset

Analyze the results and

choose the ML approach

with the highest

assessment metric.

Data preprocessing

Processed data

Train ML

methods for each

feature-

engineering

phase

Binary classification

using selected

classifier

If attack

detected yes

Multi classification

using selected

classifier

No

Publish alert for other

detection nodes

End

Start

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

556 | P a g e

www.ijacsa.thesai.org

detected attacks, is the second metric. The third metric is recall,
which represents the proportion of properly recognized attacks
in the test dataset as a fraction of all attacks. The fourth metric
is the F1-score. The final metric was the false-positive rate
(FPR) [46]. These carefully chosen metrics are defined as
follows:

 (3)

 (4)

 (5)

()

()
 (6)

 (7)

Where true positive (TP) is the total number of actual
attack records that are correctly identified as attacks. True
Negative (TN) refers to the total number of real records that are
correctly classified as normal records. False Negative (FN)
refers to the total number of real attack samples that are
incorrectly detected as normal. False Positive (FP) refers to the
total number of normal samples that are incorrectly identified
as attacks.

2) Malicious network detection node (Fog layer): In the

fog computing layer, this work offer an IDS in the proposed

architecture. Devices in this tier have more effective attributes

than those on the IoT edge layer. It is feasible to use intrusion\

malicious detection to monitor the IoT system without sending

the data to the cloud, eliminating the latency issue that has

plagued several studies advocating cloud layer analysis. The

fog layer has processing nodes nearest to the physical IoT

system, processing instruments, and edge storage to identify

threats more quickly. A binary classification approach and a

multi-class classification method are used in the architecture to

detect intrusions.

The process is shown in Fig. 5.

1) The fog node connects each terminal device to the

network using various protocols and collects data created by

each terminal sensor in real-time[47].

2) The original data is preprocessed and trained by the

cloud server: The entire training dataset is collected on the

cloud server, and the entire training procedure is completed

there, including the generation, and saving of a training model.

3) The fog node transmits a detection command: After

establishing a communication link with the terminal device,

the fog node gathers a considerable quantity of network data

and sends a detection instruction to the cloud server.

4) The cloud server provides the training phase: The cloud

server sends the data preprocessing pipeline and the trained

classification prototype to the fog node after receiving the

detection instruction.

5) Fog-node detection: The fog-node receives the model

and utilizes it for data preprocessing and detection, producing

detection results.

6) Malicious response: The discovered anomalous data

are forwarded to the malicious response module, which

performs the necessary processing [47].

In the fog layer, the same malicious network IDS model
was used, it was trained in the cloud layer.

3) The host malicious detection node (fog layer): The fog

layer contains the operating system (OS) devices in the IoT

system. a malicious detection model was deployed for each

device in the fog layer in the IoT system. The deployed model

is called a host intrusion detection system. A host IDS is

considered to run on a single machine and protect it from

interruptions or malicious attacks that could harm the device –

or data. A HIDS uses the measurements in the host

environment. These supplies are sent into the HIDSs as input.

Based on the selected ToN_IoT dataset, two operating
systems (Linux and Windows 10&7) were included in the
dataset. Based on these data, an intrusion model was designed
for each partition of data to detect included attacks.

a) Windows dataset (preprocessing): The correlation

study significantly influences the applicability of attributes in

defining security events using machine learning models. We

built a correlation coefficient function [43] for ranking the

attributes powers into a range of [-1, 1] in order to estimate the

correlation coefficient between the attributes without the label

characteristics on the Windows 7 and 10 datasets. The

direction of the link is indicated by the sign of the correlation

coefficient, while the magnitude (i.e., how near it is to -1 or +1)

reflects the strength of the relationships between the

characteristics [43]. The correlation matrix was tweaked to find

the most associated attributes with a cut-off value of 0.85 % or

above. Table III shows the top ten most associated traits in

each dataset. As presented in Table III illustrate the most

linked attributes of the Windows 7 and 10 datasets,

respectively. Machine/deep learning algorithms would.

Fig. 5. Cloud-Fog Intrusion Detection Scheme.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

557 | P a g e

www.ijacsa.thesai.org

TABLE III. THE TOP TEN ATTRIBUTES

Attributes (win_7) Attributes (win_10)

Process _Total _IO

Other _Bytes_sec

Network_I.Intel_R.._82574_L_GNC_

Current_Bandwidth

Network -_I.Intel_R_ Pro-

_000MT)_Bytes_Received_sec

Network_I_Intel.R_82574L

GNC_Packets_Sent_Unicast_sec

Process_Total _IO_

Other_Operations_sec
Memory_Pool_Paged_Bytes

Process_Total _IO

Data_Bytes _sec

Logical_Disk_Total

Disk_Read_Bytes.sec

Process_Total_IO_Read_Bytes

_sec
Memory_Page__Reads__sec

Network I.Intel.R_

Pro_1000MT_Bytes_Received_sec

Network I.Intel.R

82574L_GNC.Packets_Sent.sec

Process _Pool_Paged_Bytes Memory.Modified_Page_List_Bytes

Process _Pool_Paged_Bytes Process _IO _Data_Operations_sec

Network _I.Intel.RPro_

1000MT.Packets_Received_sec

LogicalDisk_Total._Avg.Disk.Bytes_

Transfer

Process__Total__IO_Data__Operat

ions_sec
Processor _pct_Processor _Time

b) Preprocessing of Linux dataset: Linux datasets are

partitioned into three categories: disk, memory, and process.

Timestamp and CMD attributes were eliminated from the

dataset for obtaining high performance and far away from

overfitting. The Correlation-matrices of the most critical

attributes in the Win_7 dataset and Win_10 are extracted from

another paper [48].

VI. DATASET EVALUATION

In this part, the architecture of the suggested model was
evaluated; the evaluation is based on binary classification and
multi-class classification.

The presented results in this section are based on the best
outcomes from the experimentations, other outcomes for
classifiers such LR, NB, Adaboost, and SVM are neglected
since these classifiers have poor results.

Malicious detection for network dataset evaluation (cloud
layer):

Based on the newly available ToN-IoT dataset, the
efficiency of the deployed machine learning approaches were
investigated for malicious identification. The best parameters
stated in the literature were selected [49], [50]. The
experiments for this work were carried out in Python 3.8. All
trials were run on a Windows 10 computer with a Core i7
processor and 16 GB of RAM. An experimental methodology
was utilized to evaluate the effectiveness of the selected ML
algorithms using the ToN-IoT network.

 Binary classification [41]: The results for the network
dataset are introduced in this section. In addition to the
confusion matrix, the accuracy, precision, recall, F1-
score, and FPR are offered to evaluate the chosen ML
algorithms. In general, the XGBoost produces
considerable results for binary classification depending
on multiple feature engineering strategies applied to
the dataset.

Using all attributes, for XGBoost, the training accuracy is
0.992 %, the testing accuracy is 0.991 %, the recall is 0.984 %,
the precision is 0.991 %, and the F1-score is 0.987 %,
according to the results. With a significance of 0.007, k-
Nearest Neighbor (KNN) exhibits relevance in the scenario of
false-positive rate (FPR). The findings for the best ML
techniques are shown in Table IV. The kNN, on the other hand,
was the second-best technique. The training accuracy is 0.989
%, the testing accuracy is 0.988 %, the recall is 0.986 %, the
precision is 0.979 %, and the F1-score is 0.983 %, according to
the kNN findings. Naive bias is the poorest technique (NB).
The heterogeneity of data in ToN-IoT datasets might explain
the ML technique's performance variances. The findings of RF
and DT are practically identical.

As a feature selection strategy, the Chi
2
 was used. After

using Chi
2
 to evaluate ML algorithms based on a variety of

criteria, because the optimum assessment measure is obtained
with only 20 features, the best 20 attributes were selected from
the total 108 attributes. After Chi

2
, XGBoost provides

considerable results, almost identical to testing with all
characteristics. The training accuracy is 0.984 %, the testing
accuracy is 0.983 %, the recall is 0.984 %, the precision is
0.967 %, the F1-score is 0.975 %, and the FPR is 0.008 %,
according to the findings. The KNN approach was the second-
best technique. Naive bias is the poorest technique (NB).). The
findings for the ML techniques are shown in Table IV.

Because ToN-IoT has an issue with class imbalance,
another testing approach based on SMOTE was used; XGBoost
and KNN also have the same best outcome with 0.990 %
accuracies. Recall is 0.976 %, accuracy is 0.997 %, F1-score is
0.986 %, and FPR is 0.013 % for XGBoost in terms of other
assessment criteria. KNN has a recall of 0.981 %, accuracy of
0.990 %, F1-score of 0.985 %, and FPR has the highest score
of 0.001 % to other ML algorithms. XGBoost is superior to
KNN since it requires less training and testing time.

Finally, the selected ML algorithms were assessed using
Chi

2
and SMOTE for binary classification. With Chi

2
 and

SMOTE, KNN produces considerable results. The findings for
the ML techniques are shown in Table IV.

 Multi-class classification: The dataset contains an
attribute type that displays the attack sub-class for
multi-class classification tasks, as stated before. There
are ten sub-classes in ToN-IoT. In this part, candidates'
ML methods will be analyzed for evaluating multi-
classification tasks. When assessing prospective ML
methods for a multi-class classification task, several
factors must be considered. To begin, LR is most
commonly employed to solve binary classification task
and cannot be immediately used for multi-class
classifications. As a result, to construct LR for multi-
class classification, the one-vs-rest (OvR) approach is
applied. Accuracy, precision, recall, F-score, and
confusion matrix are the assessment measures used to
compare all models. The multi-classification findings
are summarized in Table V. When comparing all ML
algorithms, XGBoost achieves decent results. The
training accuracy for XGBoost is 0.986 percent, the
testing accuracy is 0.983 %, the recall is 0.953 %, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

558 | P a g e

www.ijacsa.thesai.org

F1-score is 0.949 percent, and the FPR is 0.008 %.
KNN comes in second with scores of 0.981 % for
training accuracy and 0.979 % for testing accuracy, and
the AdaBoost classifier has the worst metrics of all
tested ML methods. SVM is the most time-consuming
in terms of training and testing.

The Chi
2
 feature selection methodology after was used

evaluating all of the specified ML algorithms over the whole
dataset. Chi

2
 will assess all ML algorithms with the best 20

attributes from all 108 attributes. XGBoost achieves
considerable results in binary classification, for example. The
training accuracy is 0.985 percent, the testing accuracy is 0.982
%, the recall is 0.950 %, the precision is 0.943 %, the F1-score
is 0.946%, and the FPR is 0.008 %. Table V. displays the
results of all ML techniques applied with the Chi2 approach.

KNN was the second-best approach, AdaBoost is the poorest
model.

Another approach based on the SMOTE technique was
used. As seen in Table V, XGBoost outperforms other
commonly used ML algorithms. Finally, the selected ML
algorithms were assessed using the Chi

2
 and SMOTE

methodologies on the basis of the multi-class classification
issue. With the Chi

2
 and SMOTE methods, XGBoost achieves

considerable results. The training accuracy of XGBoost is
0.980 %, while the FPR is 0.019 %. Table V. displays the
outcomes of chosen ML approaches using the Chi

2
 and

SMOTE techniques.

In the cloud layer, the network intrusion detection was
suggested to be deployed in the cloud for binary and multi-
class classification problems, as shown in Fig. 6.

TABLE IV. THE RESULTS OF THE BINARY CLASSIFICATION (NETWORK_DATA)

Data Models Train Acc Acc Precision Recall F1-score FPR
Confusion

Matrix

Network

All attributes

DT 0.981 0.980 0.960 0.982 0.971 0.022
[[88032 1966]

 [851 47464]]

RF 0.980 0.979 0.959 0.984 0.971 0.023
[[87949 2049]

 [792 47523]]

KNN 0.989 0.988 0.986 0.979 0.983 0.007
[[89325 673]

 [995 47320]]

XGB 0.992 0.991 0.984 0.991 0.987 0.009
[[89220 778]

 [442 47873]]

Network

Chi2

KNN 0.984 0.982 0.983 0.965 0.974 0.009
[[89170 828]

 [1694 46621]]

XGB 0.984 0.983 0.984 0.967 0.975 0.008
[[89247 751]

 [1598 46717]]

Network

SMOTE

KNN 0.991 0.990 0.981 0.990 0.985 0.001
[[89067 931]

 [504 47811]]

XGB 0.993 0.990 0.976 0.997 0.986 0.013
[[88789 1209]

 [125 48190]]

Network

Chi2 & SMOTE

KNN 0.985 0.982 0.959 0.989 0.974 0.023
[[87960 2038]

 [515 47800]]

XGB 0.986 0.982 0.954 0.996 0.975 0.026
[[87670 2328]

 [190 48125]]

TABLE V. THE OUTCOMES OF THE MULTI-CLASS CLASSIFICATION (NETWORK_DATA)

DATA Models Train Acc Acc Precision Recall F1-score FPR

Network

All attributes

AdaBoost 0.399 0.399 0.339 0.229 0.274 0.505

KNN 0.981 0.979 0.933 0.925 0.929 0.009

XGB 0.986 0.983 0.945 0.953 0.949 0.008

Network

Chi2

AdaBoost 0.498 0.497 0.352 0.363 0.358 0.424

KNN 0.980 0.977 0.929 0.928 0.929 0.014

Network
SMOTE

KNN 0.976 0.976 0.901 0.956 0.928 0.018

XGB 0.980 0.979 0.907 0.968 0.937 0.018

Network

Chi2 & SMOTE

KNN 0.971 0.976 0.899 0.956 0.927 0.019

XGB 0.980 0.978 0.911 0.967 0.939 0.019

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

559 | P a g e

www.ijacsa.thesai.org

Fig. 6. The Process for Evaluating ML Methods on the OS ToN-IoT Dataset.

After applying various feature engineering techniques for
the network ToN_IoT dataset, the XGBoost classifiers obtains
optimal results using chi2 and SMOTE techniques that were
used for class balancing and feature selection.

 Malicious detection for Linux dataset evaluation (fog
layer): The same intrusion model was deployed in the
fog layer with the same specification as discussed in
earlier sections.

 Linux dataset evaluation (fog layer): This section
focuses on the effectiveness of the used ML techniques
for host malicious detection using the newly released
Linux ToN-IoT dataset. Linux dataset was partitioned
into three categories process, disk, and memory.

 Process_Linux (Binary classification): This section
showed the findings for the Linux ToN-IoT dataset. In
general, XGBoost is useful for binary classification.
This experiment begin by impute missing values and
then use the Min-Max normalization approach.
Training accuracy is 0.994 %, testing accuracy is 0.993

%, recall is 0.990 %, precision is 0.991 %, and F1-
score is 0.991 %, according to the findings. In terms of
false-positive rate (FPR), XGBoost is significant at
0.005%. Table VI displays the results of all ML
techniques applied without the SMOTE approach. The
KNN approach, on the other hand, was the second-best
methodology.

Because ToN-IoT has a class imbalance issue, another
testing methodology based on SMOTE approach was used; RF
and DT had the same better outcome with 0.992 % accuracies.
In terms of other assessment measures, F1-score is 0.989 % for
DT and RF, and FPR is 0.007 % for DT, which is superior to
RF. Table VI displays the outcomes for several ML algorithms.

Multi-class classification (Process_Linux): For multi-class
classification tasks, the Linux ToN-IoT dataset includes a
feature type that displays the attack sub-category. When
assessing prospective ML algorithms for a multi-class
classification issue, several factors must be taken into account.
The multi-classification findings are summarized in Table VII.

When compared to other ML algorithms, XGBoost
achieves decent results. The training accuracy for XGBoost is
0.962 %, the testing accuracy is 0.954 %, the recall is 0.870 %,
the precision is 0.909 %, the F1-score is 0.889 %, and the FPR
is 0.004 %. DT and RF come in second with scores of 0.981 %
for training accuracy and 0.979 % for testing accuracy, and the
AdaBoost classifier has the worst statistics of all tested ML
methods.

Another procedure was used based on the SMOTE method.
As stated in Table VII. DT has the greatest outcomes compared
to other used ML techniques.

 Memory_Linux (Binary classification): In this section,
the results for memory-based Linux ToN-IoT dataset
were presented. In general, RF is significant for binary
classification. To begin with, the results reveal that the
training accuracy is 0.999 %, the testing accuracy is
0.997 %, the recall is 0.993 %, the precision is 0.997
%, the F1- score is 0.995 %, and the FPR is 0.001
percent, with XGBoost achieving the best second
result. Table VIII displays the results of all ML
techniques applied without the SMOTE approach. NB
is the worst approach.

Because ToN-IoT has a class imbalance problem, another
approach based on SMOTE was used; RF produced the best
result with 0.997 % accuracy.

 Multi-class classification (Memory_Linux): For multi-
class classification tasks, the Linux memory ToN-IoT
dataset includes a feature type that displays the attack
sub-class. The multi-classification findings are
summarized in Table IX.

When compared to other ML algorithms, XGBoost
achieves decent results. The training accuracy for XGBoost is
0.986 %, the testing accuracy is 0.982 %, the recall is 0.922 %,
the precision is 0.965 %, the F1-score is 0.943 %, and the FPR
is 0.001 %. RF comes in second with scores of 0.988 % for
training accuracy and 0.982 % for testing accuracy.

IOT operating system

ToN_IoT dataset

All

features

Select

feature

using

correlation

matrix

Data preprocessing

Apply

SMOTE

For all

features

Test the chosen ML methods

Apply both

corr_matrix

and

SMOTE

Processed data

Train the chosen

ML method for

each feature-

engineering

phase

Analyze the results and

choose the ML approach

with the highest

assessment metric.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

560 | P a g e

www.ijacsa.thesai.org

TABLE VI. THE OUTCOMES OF THE BINARY CLASSIFICATION (LINUX_PROCESS_DATA)

DATA Models Train Acc Acc Precision Recall F1-score FPR
Confusion

Matrix

process
All attributes

KNN 0.992 0.990 0.988 0.985 0.986 0.007
[[29549 215]

 [281 17989]]

XGB 0.994 0.993 0.991 0.990 0.991 0.005
[[29606 158]

 [181 18089]]

process
SMOTE

DT 0.997 0.992 0.989 0.989 0.989 0.007
[[29555 209]
 [192 18078]]

RF 0.997 0.992 0.988 0.990 0.989 0.008
[[29540 224]

 [181 18089]]

XGBOOST 0.994 0.992 0.985 0.995 0.990 0.009
[[29483 281]

 [88 18182]]

TABLE VII. THE OUTCOMES OF THE MULTI-CLASS CLASSIFICATION (LINUX_PROCESS_DATA)

DATA Models Train Acc Acc Precision Recall F1-score FPR

process

All attributes

DT 0.969 0.952 0.901 0.889 0.895 0.005

RF 0.969 0.950 0.875 0.839 0.857 0.006

XGBOOST 0.962 0.954 0.909 0.870 0.889 0.004

Process

SMOTE

DT 0.943 0.950 0.838 0.881 0.859 0.01

RF 0.943 0.948 0.831 0.871 0.851 0.011

XGBoost 0.934 0.949 0.811 0.884 0.846 0.017

TABLE VIII. THE OUTCOMES OF THE BINARY CLASSIFICATION. (MEMORY_LINUX)

DATA Models Train Acc Acc Precision Recall F1-score FPR
Confusion

Matrix

Memory

All attributes

DT 0.999 0.996 0.995 0.991 0.993 0.002
[[29867 66]

 [104 11997]]

RF 0.999 0.997 0.997 0.993 0.995 0.001
[[29891 42]

 [83 12018]]

XGBoost 0.998 0.997 0.996 0.992 0.994 0.002
[[29887 46]

 [93 12008]]

Memory

SMOTE

DT 0.999 0.996 0.992 0.993 0.993 0.003
[[29837 96]

 [79 12022]]

RF 0.999 0.997 0.995 0.995 0.995 0.002
[[29867 66]

 [64 12037]]

XGBoost 0.998 0.996 0.991 0.996 0.993 0.004
[[29818 115]

 [49 12052]]

TABLE IX. THE RESULTS OF THE MULTI-CLASS CLASSIFICATION (LINUX MEMORY)

DATA Models Train Acc Acc Precision Recall F1-score FPR

process
All attributes

DT 0.988 0.982 0.947 0.928 0.937 0.002

RF 0.988 0.982 0.964 0.918 0.941 0.001

XGBoost 0.986 0.982 0.965 0.922 0.943 0.001

Process

SMOTE

DT 0.972 0.981 0.874 0.947 0.909 0.003

RF 0.972 0.981 0.878 0.938 0.907 0.003

XGBoost 0.968 0.978 0.877 0.933 0.904 0.008

Another approach was used based on the SMOTE method.
As stated in Table IX, DT has the top outcomes compared to
other employed ML methods.

 Malicious detection for windows dataset evaluation
(fog layer): This work focuses on the efficiency of the
chosen ML methods for malicious detection using the

newly released Windows ToN-IoT dataset. The
Windows dataset was partitioned into two categories,
Win_10 and Win_7.

 Win_10 dataset (Binary classification): In this part, the
outcomes for the Windows ToN-IoT were presented.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

561 | P a g e

www.ijacsa.thesai.org

In general, XGBoost shows significance. Training accuracy
is 1.0%, testing accuracy is 1.0%, and F1-score is 1.0%,
according to the results. In the case of false-positive rate (FPR),
XGBoost shows significance with 0.0. Table X. shows the
results for the selected ML methods. Since ToN-IoT suffers
from a class imbalance problem, another testing methodology
was done based on SMOTE technique, XGBoost has the best
result. Table X. shows the results for all used ML methods
using SMOTE technique.

Another testing technique was based on the best selected
attributes that were selected from a correlation matrix.
XGBoost obtains the best result with and without SMOTE.
Tables X shows the outcomes for all selected ML methods.

 Multi-class classification (Win_10): For multi-class
classification issues, the ToN-IoT dataset includes a
feature type that displays the attack sub-category. The
multi-classification findings are summarized in
Table XI.

When compared to other ML algorithms, XGBoost
achieves decent results. XGBoost training accuracy is 1.0, its
testing accuracy, recall, precision, and F1-score are all 1.0%,
and its FPR is 0.00 %. Another testing approach based on the
SMOTE technique was used. As seen in Table XI. XGBoost
outperforms other commonly used ML algorithms.

 Win_7 dataset (Binary classification (Win_7): In
general, for binary classification, XGBoost shows
significant results for windows 7 dataset. Table XII
displays the outcomes for the selected ML method.

ToN-IoT has a class imbalance problem, another testing
methodology was done based on SMOTE technique, XGBoost
has the best result.

XGBoost obtains the best result with and without SMOTE
for multi-class classification. XGBoost shows significant
outcomes. Table XIII displays the outcomes for the selected
ML method.

TABLE X. THE OUTCOMES OF THE BINARY CLASSIFICATION. (WIN_10)

DATA Models Train Acc Acc Precision Recall F1-score FPR
Confusion

Matrix

WIN_10

All attributes
XGBoost 1.0 1.0 1.0 1.0 1.0 0.0

[[3045 0]

[0 3287]]

WIN_10
All attributes

(SMOTE)
XGBoost 1.0 1.0 1.0 1.0 1.0 0.0

[[3045 0]

[0 3287]]

(10) Selected
attributes

XGBoost 1.0 1.0 1.0 1.0 1.0 0.001
[[3043 2]

[1 3286]]

(10) Selected

attributes
SMOTE

XGBoost 1.0 0.999 0.999 1.000 0.999 0.001
[[3042 3]

[1 3286]]

TABLE XI. THE RESULTS OF THE MULTI-CLASS CLASSIFICATION FOR NORMAL RECORDS AGAINST ATTACK RECORDS (WIN_10)

DATA Models Train Acc Acc Precision Recall F1-score FPR

WIN_10

All attributes
XGBoost 1.0 1.0 1.0 1.0 1.0 0.0

WIN_10

All attributes

(SMOTE)

XGBoost 1.0 1.0 1.0 1.0 1.0 0.0

(10) Selected

attributes
XGBoost 1.0 0.989 0.977 0.911 0.943 0.001

(10) Selected

attributes

SMOTE

XGBoost 1.0 0.986 0.868 0.912 0.890 0.001

TABLE XII. THE OUTCOMES OF THE BINARY CLASSIFICATION. (WIN_7)

DATA Models Train Acc Acc Precision Recall F1-score FPR
Confusion

Matrix

WIN_7

All attributes
XGBoost 1.0 0.999 0.999 0.998 0.999 0.00

[[3000 1]

 [3 1790]]

WIN_7

All attributes

(SMOTE)

XGBoost 1.0 1.0 1.0 1.0 1.0 0.0
[[3000 1]

 [0 1793]]

(10) Selected attributes XGBoost 1.0 0.987 0.988 0.977 0.982 0.007
[[2979 22]

 [42 1751]]

(10) Selected attributes

SMOTE
XGBoost 0.999 0.986 0.979 0.983 0.981 0.012

[[2964 37]

 [31 1762]]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

562 | P a g e

www.ijacsa.thesai.org

TABLE XIII. THE RESULTS OF THE MULTI-CLASS CLASSIFICATION (WIN_7).

DATA Models Train Acc Acc Precision Recall F1-score FPR

WIN_7

All attributes
XGBoost 1.0 1.0 1.0 1.0 1.0 0.0

WIN_7 All attributes

(SMOTE)
XGBoost 1.0 1.0 1.0 1.0 1.0 0.0

(10) Selected attributes XGBoost 1.0 1.0 1.0 1.0 1.0 0.0

(10) Selected attributes
SMOTE

XGBoost 1.0 1.0 1.0 1.0 1.0 0.0

VII. CONCLUSION

Based on the ToN-IoT dataset, this study proposed a unique
malicious detection technique for IoT. The ToN-IoT dataset
was employed for training and testing, and the suggested
model incorporates several essential aspects. There is a
problem with a class imbalance in the ToN-IoT dataset, as well
as missing values. this work which deal with ToN-IoT can
cover more attacks than prior work with obsolete datasets like
KDD-CUP99, NSL-KDD, and UNSW-NB15.The ToN-IoT
contains nine types of attacks (Scanning, Cross-Site Scripting
(XSS), Denial of Service (DoS), Distributed Denial of Service
(DDoS), Backdoor, Injection Attack, Password Cracking
Attack, Man-In-The-Middle (MITM), Ransomware.

Exploring, preprocessing, feature selection, class imbalance
solution, training ML methods, and testing ML methods are the
various system blocks. In a network dataset, the Chi

2
 approach

was utilized to select attributes. It lowered the number of
attributes to 20, resulting in a quicker training time, lower
model complexity, and the highest performance over the whole
dataset. Another feature selection methodology was the
correlation matrix which was used in the windows dataset to
obtain the most relevant attributes from the whole dataset. The
SMOTE approach was utilized to balance the classes. It
improved performance by reducing dominant class bias,
reducing overfitting, and improving the overall performance. A
good evaluation metric was achieved by using Chi2, SMOTE,
and correlation matrix as preprocessing approaches. For
evaluating the performance of the deployed ML algorithms,
many evaluation metrics (accuracy, precision, recall, F1-score,
FPR, and confusion matrix) were used. The results determined
that XGBoost outperforms all other ML approaches in binary
classification and multi-class classification tasks after assessing
the selected ML methods. The main contributions of this work
are that it uses a new benchmark dataset that is updated with
new attacks and gathered from a real IoT system. The gathered
dataset reflects data from each layer of the IoT system, such as
(the cloud, fog, and edge layers). The proposed model is a
distributed malicious model based on a multi-layer for IoT
system. Various ML methods were tested in each specific
parathion of the ToN-IoT dataset. The prosed model is the first
suggested model that is based on the collected data from the
same IoT system from all layers and devices (sensors).

In the future, Deep learning methods such as (recurrent
neural network, auto-encoder, and convolution neural network)
will be used in the ToN-IoT dataset. More work might be done
in the future to enhance the performance of the baseline
techniques on the datasets. Advanced parameter optimization

approaches (for example, Bayesian optimization and the
genetic algorithm) can be used to optimize the model's
hyperparameters and get superior outcomes.

REFERENCES

[1] M. Lombardi, F. Pascale, and D. Santaniello, "Internet of Things: A
General Overview between Architectures, Protocols and Applications,"
Information, vol. 12, no. 2, p. 87, 2021.

[2] X. Yao et al., "Security and privacy issues of physical objects in the IoT:
Challenges and opportunities," Digital Communications, vol. 7, no. 3, pp.
373-384, 2021.

[3] A. S. Ashoor and S. Gore, "Difference between intrusion detection
system (IDS) and intrusion prevention system (IPS)," in International
Conference on Network Security and Applications, 2011, pp. 497-501:
Springer.

[4] E. P. Nugroho, T. Djatna, I. S. Sitanggang, A. Buono, and I. Hermadi, "A
Review of Intrusion Detection System in IoT with Machine Learning
Approach: Current and Future Research," in 2020 6th International
Conference on Science in Information Technology (ICSITech), 2020, pp.
138-143: IEEE.

[5] L. Thomas and S. Bhat, "Machine Learning and Deep Learning
Techniques for IoT-based Intrusion Detection Systems: A Literature
Review," International Journal of Management, Technology Social
Sciences vol. 6, no. 2, pp. 296-314, 2021.

[6] A. A. Cook, G. Mısırlı, and Z. Fan, "Anomaly detection for IoT time-
series data: A survey," IEEE Internet of Things Journal, vol. 7, no. 7, pp.
6481-6494, 2019.

[7] V. Pandu, J. Mohan, and T. P. Kumar, "Network intrusion detection and
prevention systems for attacks in IoT systems," in Countering Cyber
Attacks and Preserving the Integrity and Availability of Critical Systems:
IGI Global, 2019, pp. 128-141.

[8] N. M. T.-I. D. [Online]. Available: Available: https://
cloudstor.aarnet.edu.au/plus/s/ds5zW91vdgjEj9i.

[9] N. Moustafa, B. Turnbull, and K.-K. R. Choo, "An ensemble intrusion
detection technique based on proposed statistical flow features for
protecting network traffic of internet of things," IEEE Internet of Things
Journal vol. 6, no. 3, pp. 4815-4830, 2018.

[10] M. Alhanahnah, Q. Lin, Q. Yan, N. Zhang, and Z. Chen, "Efficient
signature generation for classifying cross-architecture IoT malware," in
2018 IEEE Conference on Communications and Network Security
(CNS), 2018, pp. 1-9: IEEE.

[11] Q.-D. Ngo, H.-T. Nguyen, V.-H. Le, and D.-H. Nguyen, "A survey of IoT
malware and detection methods based on static features," ICT Express,
vol. 6, no. 4, pp. 280-286, 2020.

[12] J. Su, D. V. Vasconcellos, S. Prasad, D. Sgandurra, Y. Feng, and K.
Sakurai, "Lightweight classification of IoT malware based on image
recognition," in 2018 IEEE 42Nd annual computer software and
applications conference (COMPSAC), 2018, vol. 2, pp. 664-669: IEEE.

[13] K. D. T. Nguyen, T. M. Tuan, S. H. Le, A. P. Viet, M. Ogawa, and N. Le
Minh, "Comparison of three deep learning-based approaches for IoT
malware detection," in 2018 10th international conference on Knowledge
and Systems Engineering (KSE), 2018, pp. 382-388: IEEE.

[14] H. Alasmary et al., "Analyzing and detecting emerging internet of things
malware: A graph-based approach," IEEE Internet of Things Journal, vol.
6, no. 5, pp. 8977-8988, 2019.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 6, 2022

563 | P a g e

www.ijacsa.thesai.org

[15] M. Hasan, M. M. Islam, M. I. I. Zarif, and M. Hashem, "Attack and
anomaly detection in IoT sensors in IoT sites using machine learning
approaches," Internet of Things vol. 7, p. 100059, 2019.

[16] F. Hosseinpour, P. Vahdani Amoli, J. Plosila, T. Hämäläinen, and H.
Tenhunen, "An intrusion detection system for fog computing and IoT
based logistic systems using a smart data approach," International Journal
of Digital Content Technology its Applications vol. 10, 2016.

[17] H. Bostani and M. Sheikhan, "Hybrid of anomaly-based and
specification-based IDS for Internet of Things using unsupervised OPF
based on MapReduce approach," Computer Communications, vol. 98, pp.
52-71, 2017.

[18] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and
A.-R. Sadeghi, "DÏoT: A federated self-learning anomaly detection
system for IoT," in 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), 2019, pp. 756-767: IEEE.

[19] P. Illy, G. Kaddoum, C. M. Moreira, K. Kaur, and S. Garg, "Securing
fog-to-things environment using intrusion detection system based on
ensemble learning," in 2019 IEEE Wireless Communications and
Networking Conference (WCNC), 2019, pp. 1-7: IEEE.

[20] G. D. L. T. Parra, P. Rad, K.-K. R. Choo, and N. Beebe, "Detecting
Internet of Things attacks using distributed deep learning," journal of
Network Computer Applications vol. 163, p. 102662, 2020.

[21] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, "IoT malicious
traffic identification using wrapper-based feature selection mechanisms,"
Computers Security vol. 94, p. 101863, 2020.

[22] CAIDA:. Center for Applied Internet Data Analysis. CAIDA Data -
Overview of Datasets, Monitors, and Reports Available:
(https://www.caida.org/data/overview/index.xml).

[23] D. R. H. C.-C. t. F. Archive. Available: (https://www.defcon.org/html/
links/dc-ctf.html).

[24] A. -IDS-DATASET. Available: (https://www.unsw.adfa.edu.au/unsw
canberracyber/cybersecurity/ADFA-IDS-Datasets/).

[25] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K. Nakao,
"Statistical analysis of honeypot data and building of Kyoto 2006+
dataset for NIDS evaluation," in Proceedings of the first workshop on
building analysis datasets and gathering experience returns for security,
2011, pp. 29-36.

[26] D. R. C. I. f. C. UNB. Available: (https://www.unb.ca/cic/datasets/
index.html).

[27] S. D. Bay, D. Kibler, M. J. Pazzani, and P. Smyth, "The UCI KDD
archive of large data sets for data mining research and experimentation,"
ACM SIGKDD explorations newsletter, vol. 2, no. 2, pp. 81-85, 2000.

[28] N. Chandolikar and V. Nandavadekar, "Selection of relevant feature for
intrusion attack classification by analyzing KDD Cup 99," International
Journal of Computer Science Information Technology vol. 2, no. 2, pp.
85-90, 2012.

[29] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, "Selecting
features for intrusion detection: A feature relevance analysis on KDD 99
intrusion detection datasets," in Proceedings of the third annual
conference on privacy, security and trust, 2005, vol. 94, pp. 1723-1722:
Citeseer.

[30] J. Granjal, E. Monteiro, and J. S. Silva, "Security for the internet of
things: a survey of existing protocols and open research issues," IEEE
Communications Surveys Tutorials vol. 17, no. 3, pp. 1294-1312, 2015.

[31] A. A. Olusola, A. S. Oladele, and D. O. Abosede, "Analysis of KDD’99
intrusion detection dataset for selection of relevance features," in
Proceedings of the world congress on engineering and computer science,
2010, vol. 1, pp. 20-22: WCECS.

[32] NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity
|UNB.

[33] N. Moustafa and J. Slay, "UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set)," in
2015 military communications and information systems conference
(MilCIS), 2015, pp. 1-6: IEEE.

[34] A. Sivanathan et al., "Characterizing and classifying IoT traffic in smart
cities and campuses," in 2017 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2017, pp. 559-564:
IEEE.

[35] A. H. A. Sivanathan, Hassan Habibi, and V. Sivaraman., " UNSW
Proliferation Dataset.," ed.

[36] Canadian Institute for Cybersecurity (CIC). IDS 2017 | Datasets |
Research | Canadian Institute for Cybersecurity | UNB, ed.

[37] A. Gharib, I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, "An
evaluation framework for intrusion detection dataset," in 2016
International Conference on Information Science and Security (ICISS),
2016, pp. 1-6: IEEE.

[38] CSE-CIC-IDS2018 | Datasets | Research | Canadian Institute for
Cybersecurity | UNB, ed.

[39] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, "Towards the
development of realistic botnet dataset in the internet of things for
network forensic analytics: Bot-iot dataset," Future Generation Computer
Systems, vol. 100, pp. 779-796, 2019.

[40] T.-I. D. N. Moustafa, 2020, [online] Available:
https://cloudstor.aarnet.edu.au/plus/s/ds5zW91vdgjEj9i.

[41] A. R. Gad, A. A. Nashat, and T. M. Barkat, "Intrusion Detection System
Using Machine Learning for Vehicular Ad Hoc Networks Based on ToN-
IoT Dataset," IEEE Access, vol. 9, pp. 142206-142217, 2021.

[42] A. R. Gad, N. Hassan, R. A. A. Seoud, and T. M. J. A. Nassef,
"Automatic machine learning classification of Alzheimer’s disease based
on selected slices from 3D magnetic resonance imagining," vol. 67, pp.
10-15.

[43] J. Wang, M. Xu, H. Wang, and J. Zhang, "Classification of imbalanced
data by using the SMOTE algorithm and locally linear embedding," in
2006 8th international Conference on Signal Processing, 2006, vol. 3:
IEEE.

[44] S. Bagui and K. Li, "Resampling imbalanced data for network intrusion
detection datasets," Journal of Big Data, vol. 8, no. 1, pp. 1-41, 2021.

[45] H. Liu and R. Setiono, "Chi2: Feature selection and discretization of
numeric attributes," in Proceedings of 7th IEEE International Conference
on Tools with Artificial Intelligence, 1995, pp. 388-391: IEEE.

[46] M. Haggag, M. M. Tantawy, and M. M. El-Soudani, "Implementing a
deep learning model for intrusion detection on apache spark platform,"
IEEE Access vol. 8, pp. 163660-163672, 2020.

[47] R. Du, Y. Li, X. Liang, and J. Tian, "Support vector machine intrusion
detection scheme based on cloud-fog collaboration," Mobile Networks
Applications pp. 1-10, 2022.

[48] N. Moustafa, M. Keshk, E. Debie, and H. Janicke, "Federated TON_IoT
Windows datasets for evaluating AI-based security applications," in 2020
IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), 2020, pp. 848-855: IEEE.

[49] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[50] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar,
"TON_IoT telemetry dataset: A new generation dataset of IoT and IIoT
for data-driven intrusion detection systems," IEEE Access, vol. 8, pp.
165130-165150, 2020.

