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Abstract—In this work, a new metaheuristic algorithm, 
namely the hybrid pelican Komodo algorithm (HPKA), has been 
proposed. This algorithm is developed by hybridizing two 
shortcoming metaheuristic algorithms: the Pelican Optimization 
Algorithm (POA) and Komodo Mlipir Algorithm (KMA). 
Through hybridization, the proposed algorithm is designed to 
adapt the advantages of both POA and KMA. Several 
improvisations regarding this proposed algorithm are as follows. 
First, this proposed algorithm replaces the randomized target 
with the preferred target in the first phase. Second, four possible 
movements are selected stochastically in the first phase. Third, in 
the second phase, the proposed algorithm replaces the agent’s 
current location with the problem space width to control the local 
problem space. This proposed algorithm is then challenged to 
tackle theoretical and real-world optimization problems. The 
result shows that the proposed algorithm is better than grey wolf 
optimizer (GWO), marine predator algorithm (MPA), KMA, and 
POA in solving 14, 12, 14, and 18 functions. Meanwhile, the 
proposed algorithm creates 109%, 46%, 47%, and 1% better 
total capital gain rather than GWO, MPA, KMA, and POA, 
respectively in solving the portfolio optimization problem. 
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I. INTRODUCTION 
Optimization is a prevalent work that has been 

implemented in many areas. Optimization is essential because 
it aims to maximize results or minimize cost or effort. 
Optimization is also important because in any human process, 
whether the scope is individual or institution, it has a specific 
goal or objective. Contrary, the resources needed to execute 
this work are limited. The term cost can be translated in many 
ways, such as travel distance, consumed energy, production 
cost, penalty, unserved requests, and so on. On the other hand, 
the term result can also be translated into many ways, such as 
sales, profit, served customers, accuracy, and so on. In the 
production process, optimization is widely used, such as in the 
flow-shop scheduling [1], batch-shop scheduling [2], assembly 
line balancing [3], procurement [4], and so on. In transportation 
and logistics, optimization is implemented in route planning 
[5], storage management [6], and so on. Optimization is also 
implemented in finance, such as in portfolio optimization [7], 
option pricing [8], credit risk assessment [9], bankruptcy 
mitigation [10], etc. 

Metaheuristic algorithm is a popular method used in many 
studies conducting the optimization problem. This popularity 
comes from its flexibility in facing the limited computation 
resources. Moreover, the metaheuristic algorithm is flexible 
enough to tackle various objective functions, from simple to 
complicated ones. This advantage cannot be obtained from the 

exact method that needs an excessive computational resource, 
especially in solving a complicated problem with high 
dimension space [11]. However, as an approximate method, a 
metaheuristic algorithm does not guarantee the true optimal 
solution but only the acceptable or near optimal one [11]. In 
many metaheuristic algorithms, several parameters also must 
be adjusted. Proper adjustment can improve its performance, 
while misjudgment can worsen its performance. 

Many metaheuristic algorithms are inspired by nature or 
behavior, especially the animal behavior during mating and 
foraging. This circumstance occurs due to the similarity 
between these behaviors and the metaheuristic algorithm. An 
animal has a certain degree of uncertainty during mating and 
foraging. In foraging, even if it is searching for a food source 
or hunting prey, the animal still does not know the actual 
location of the food source or prey. Based on it, a random 
search with a certain degree of certainty is conducted. 
Although animals have a certain degree of similarity during 
foraging, there is a specific strategy conducted by every 
animal. On the other hand, the mating process can generate 
new descendants from the selected parents. These descendants 
inherit the characteristics of their parents. Some descendants 
are better than their parents while the others are worse. Several 
metaheuristic algorithms adopt this circumstance. In several 
algorithms, the improvement is created by mating a selected 
solution with the best solution. Several algorithms that adopt 
foraging behavior are particle swarm optimization (PSO) [12], 
ant colony optimization (ACO) [13], grey wolf optimization 
(GWO) [14], marine predator algorithm (MPA) [15], artificial 
bee colony algorithm (ABC) [16], Etc. Meanwhile, several 
algorithms that adopt the mating process are genetic algorithm 
(GA) [17], evolutionary algorithm (EA) [18], Etc. Several 
algorithms, such as the red deer algorithm (RDA), combine 
mating and foraging [19]. 

Among many shortcoming metaheuristic algorithms, there 
are two brand-new algorithms that is firstly introduced in 2022. 
The first is Komodo Mlipir Algorithm (KMA), and the second 
is the Pelican Optimization Algorithm (POA). The animal’s 
behavior inspires both algorithms. The behavior of Komodo 
dragon during foraging and mating inspires KMA [20]. 
Meanwhile, POA is inspired by the behavior of pelicans during 
foraging [21]. In their first appearance, both algorithms beat 
several algorithms. POA outperformed genetic algorithm (GA), 
particle swarm optimization (PSO), teaching-learning based 
optimization (TLBO), grey wolf optimizer (GWO), whale 
optimization algorithm (WOA), gravitational search algorithm 
(GSA), tunicate swarm algorithm (TSA), and marine predator 
algorithm (MPA) [21]. On the other hand, KMA outperformed 
six algorithms: GA, success-history based parameter adaptation 
differential evolution (SHADE), linear population size 
reduction SHADE with ensemble sinusoidal differential 
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covariance matrix adaptation with Euclidean neighborhood 
(LSHADE-CnEpSIn), equilibrium Optimizer (EO), MPA, and 
slime mold algorithm (SMA) [20]. 

Despite their outstanding performance, these algorithms are 
still not popular as brand-new algorithms. Studies conducting 
these algorithms to solve optimization problems are still hard 
to find. Based on this, it is challenging to explore these 
algorithms further. Moreover, as brand-new algorithms, the 
opportunity to improve and modify these algorithms is widely 
open. 

The objective and scope of this work are as follows. This 
work proposes a new metaheuristic algorithm that hybridizes 
both shortcoming algorithms: POA and KMA. Through 
hybridization, the proposed algorithm is hoped to combine the 
strength of both algorithms and, on the other hand, tackle the 
weakness of both algorithms too. Based on this objective, the 
scope of this work is to develop new algorithms that hybridize 
both POA and KMA and then evaluating this proposed 
algorithm through simulation. 

The methodology conducted to this work is as follows. 
First, the mechanics and strategy in both KMA and POA are 
explored and reviewed. This exploration is needed to analyze 
their strength and weakness. Then, the proposed algorithm is 
developed by hybridizing both algorithms. After that, this 
proposed algorithm is challenged to solve the theoretical and 
real-world optimization problems so that its performance can 
be evaluated. The proposed algorithm is implemented to solve 
the 23 benchmark functions. These functions represent the 
theoretical optimization problem. These functions are popular 
in many studies that propose a new metaheuristic algorithm. 
Meanwhile, the portfolio optimization problem is chosen as the 
real-world optimization problem. In this simulation, the 
proposed algorithm is compared with four shortcoming 
metaheuristic algorithms: GWO, MPA, KMA, and POA. GWO 
and MPA represent algorithms that have been implemented 
and modified in many studies. Meanwhile, KMA and POA are 
chosen because this proposed algorithm is the improved 
version of these algorithms. Several findings regarding the 
simulation result are then analyzed deeper. 

There are several contributions regarding this work. These 
contributions are as follows. 

1) This work proposes a new algorithm that hybridizes two 
brand-new algorithms: POA and KMA. 

2) This work modifies the swarm movement in the first 
phase of POA by replacing the randomized target with a more 
deterministic target. 

3) This work adopts the behavior of three types of 
Komodo in KMA to be implemented in the swarm movement 
in the first phase with several modifications. 

4) This work modifies the second phase by replacing the 
agent’s current location with the problem space to control the 
local problem space. 

The remainder of this paper is structured as follows. The 
mechanics of POA and KMA are reviewed in the second 
section to analyze their strengths and weaknesses. Based on 
this review, the proposed algorithm's model is presented in the 

third section. The simulation regarding the proposed algorithm 
is explained in the fourth section. The more profound analysis 
regarding the simulation result and the findings are discussed 
in the fifth section. In the end, the conclusion and future 
research potential regarding this work are summarized in the 
sixth section. 

II. RELATED WORK 
Komodo Mlipir Algorithm (KMA) is a brand-new 

algorithm that adopts the behavior of the Komodo dragon 
during mating and foraging. This algorithm is a population-
based algorithm consisting of several autonomous agents. Each 
agent represents the solution. These agents are classified into 
three groups based on their quality: big male, female, and small 
male [20]. Each type of agent has a specific role and 
mechanics. The big males are agents whose qualities are better. 
The females are agents whose quality is mediocre. In the end, 
the petite males are agents whose quality is worse. The 
proportion of these groups is fixed and set manually before the 
process begins. The rank to determine the group’s members is 
updated in every iteration. 

The big male adopts foraging behavior by searching for 
prey [20]. The big male moves based on its current location 
and other big males. The big male moves toward the better big 
males and moves away from the worse big males. The big male 
does not take account of the female and small male. 

The female conducts the mating process. There are two 
possible mating strategies for every female: sexual 
reproduction or asexual reproduction (parthenogenesis) [20]. 
Sexual reproduction is achieved by mating the female with the 
highest quality big male. Each female produces two 
descendants. The first descendant is close to the female, while 
the second descendant is close to the highest quality big male. 
Then, the best descendant between them will replace the 
female current’s location. In parthenogenesis, a female creates 
a descendant randomly within the problem space. 

Like a big male, the small male implements foraging [20]. 
The small male moves toward the cumulative of big males. As 
a worse solution, the small male should get closer to the better 
solutions (big males) to improve its quality. 

Meanwhile, the Pelican Optimization Algorithm is a brand-
new algorithm that adopts the pelican behavior during 
foraging. POA is a swarm-based intelligence. This algorithm 
consists of a certain number of agents (pelicans). As a swarm 
intelligence, collective intelligence is used or shared among the 
pelicans [22]. In this algorithm, the randomized target 
represents collective intelligence. POA consists of two steps 
that are executed sequentially in every iteration. 

There is a global target in the first phase where all pelicans 
will move based on this target [21]. This global target is 
selected randomly within the problem space at the beginning of 
every iteration. The pelican can choose two possible 
movements. If this target is better than the pelican’s current 
location, the pelican will move toward this target. Otherwise, 
the pelican will move away from this target. In POA, an 
acceptance-rejection strategy is adopted. The pelican will move 
to this new location only if this new location is better than its 
current location. 
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In the second phase, the pelican flies around its current 
location [21]. Although this term is not relevant in some 
circumstances, it can be seen as a local or neighborhood search. 
In this phase, a new location is selected randomly within the 
pelican’s local problem space. The width of this local problem 
space declines gradually due to the increase of the iteration. It 
means that the local problem space is wide enough in the 
beginning, and it can be seen as an exploration. On the other 
hand, this investigation moves to exploitation as the iteration 
goes. Besides iteration, the local problem space is also 
determined by the agent’s current location. Near zero current 
location makes the width of the local problem space narrow, 
although in the early iteration. Like in the first phase, in this 
phase, the pelican moves toward the new location only if this 
new location is better than the pelican’s current location. 

Based on the detailed description of KMA and POA, the 
comprehensive comparison between these algorithms is as 
follows. KMA splits the population into three groups. Each 
group represents a distinct strategy. But each agent conducts 
only a single procedure in every iteration. On the other hand, in 
POA, there is not any population split. Every agent is treated 
equal and conducts the same strategy. Each agent acts these 
two actions in every iteration. 

The swarm movement toward a better solution and away 
from the worse solution is also conducted in both algorithms. 
In KMA, the big males move toward better big males and 
move away from the resultant of worse big males. Moreover, 
petite males move toward the resultant of big males. On the 
other hand, each pelican moves toward a randomized target if 
this target is better than the pelican’s current location and 
avoids this randomized target if this target is worse than the 
pelican’s current location. This strategy can be seen as 
improving the current solution based on the guidance of the 
better solution or avoiding the possible worse solution. Both 
algorithms choose a different method in determining the target 
in the swarm movement. POA selects the target randomly 
within the problem space. On the other hand, in KMA, only big 
males can become the target. 

Random search is also conducted in both algorithms but in 
a different way. In POA, this strategy is undertaken in the 
second phase so that all agents work this strategy in every 
iteration. In KMA, the random search is implemented only by 
the female when it chooses parthenogenesis. It means that with 
the same population size, the probability of conducting the 
random search in POA is higher than in KMA. 

There is a difference between KMA and POA regarding the 
local problem space in the local search strategy. In KMA, the 
local problem space width is fixed based on the problem space. 
In POA, the local problem space is reduced gradually as the 
iteration increases. Reducing the local problem space during 
the iteration can make the system focus on the exploration in 
the early iteration and then transform to the exploitation. At the 
end of the iteration, the system focuses on exploitation. The 
advantage of this strategy is that the system can concentrate on 
exploring any space within the problem space to find the 
region where the optimal global solution exists. After that, the 
system will improve the solution within this region. Moreover, 
the agent will not be thrown away to any areas within the 

iteration in the later iteration, so it should start the searching. 
Contrary, fixed local problem space width is essential when the 
system still fails to find the region where the optimal global 
solution exists. The system can escape from the optimal local 
trap, although the iteration is not in the early phase. 

Acceptance-rejection strategy is conducted only in POA. 
Meanwhile, KMA does not adopt this strategy. Acceptance-
rejection has strengths and weaknesses, so not all algorithms 
adopt this strategy. By implementing this strategy, the agent 
moves to a new solution only if the new solution is better than 
its current solution. There is no probability of a worsening 
situation. But the system may be stuck in a case, such as the 
local optimal, when it fails to improve the current solution. On 
the other hand, without accepting this strategy, the system may 
go to a worse situation. Some algorithms, such as MPA, 
partially adopt this strategy. In MPA, the prey may move 
toward the worse solution. Contrary, the predator moves to a 
new location, only this new location is better than the 
predator’s current location. 

This review shows that both KMA and POA have several 
strengths and weaknesses. Based on this circumstance, there is 
the possibility of improvement by hybridizing these 
algorithms. Several parts that can be modified are as follows. 
First, modification can be conducted in the swarm movement. 
Second, change also can be shown in the random search. 

III. PROPOSED MODEL 
This section will present the detailed model of the proposed 

algorithm. This model consists of the conceptual model, 
pseudocode, and mathematical model. The conceptual model 
explains the framework and general mechanics of the 
algorithm. The pseudocode formalizes the structure of the 
proposed algorithm. In the end, the mathematical model 
describes the detailed formulation of processes and methods 
within the algorithm. 

The conceptual model of the proposed algorithm is as 
follows. This proposed algorithm uses POA as its main 
framework. The proposed algorithm consists of two phases. 
The first phase is the swarm movement toward the target. The 
second phase is the randomized movement within the local 
problem space. Like in POA, these phases are conducted 
sequentially in every iteration. 

In the first phase, four possible movements can be chosen 
by every agent. The first movement is the movement toward 
the global best solution. The second movement moves to the 
middle between the current location and the international best 
solution. The third movement is the movement related to the 
randomly selected agent. The fourth movement is jumping 
across the global best solution. KMA inspires the first, second, 
and third movements. The first movement is the modification 
of the minor male movement. The second movement is the 
modification of the mating process of the female with the best 
quality big male. The third movement is the modification of the 
significant male movement. MPA inspires the fourth 
movement. In the fourth movement, the agent’s new location is 
obtained based on the current global best solution movement 
away from the related agent. The main objective of the fourth 
movement is to improve the global best solution. In this first 
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phase, the agent will move to the new location, whether this 
new location is better or worse. It is different from POA, where 
the pelican will move to the new location only if this new 
location is better than the pelican’s current location. 

In the second phase, every agent searches for a new 
location within its local problem space. This method also 
occurs in POA. In this phase, the similarity between the 
proposed algorithm and POA is that the local problem space is 
reduced gradually due to the increase of the iteration. The 
exploration to exploitation strategy is also adopted in the 
proposed algorithm. Meanwhile, there is a difference between 
the proposed algorithm and POA. In this proposed algorithm, 
the local problem space width also depends on the problem 
space width. It is different from POA, where the agent’s 
current location affects its local problem space width. Like in 
POA, in this phase, the agent moves to the new location only if 
it is better than the current location. 

Like many metaheuristic algorithms, this proposed 
algorithm consists of two steps. The first step is initialization. 
The second step is iteration. The agent’s initial location is 
randomized within the problem space during the initialization. 
It follows uniform distribution so that the opportunity of every 
place is equal. The improvement is conducted during the 
iteration. Each time an agent moves to a new location, the 
global best solution will be updated in every process. The 
global best solution is an entity that stores the best answer so 
far. This best solution is applied among all agents. This 
international best solution is updated to its new value only if 
this new solution is better than the current global best solution. 
The global best solution becomes the final solution at the end 
of an iteration. 

This framework is then transformed into the pseudocode 
and the mathematical model. The pseudocode of the proposed 
algorithm is shown in Algorithm 1. There are several 
annotations used in the pseudocode and mathematical model. 
These annotations are as follows. 

bl lower bound 
bu upper bound 
d space divider 
f objective function 
r generated random number 
s step size 
x agent 
X set of agents 
xc candidate 
xtar target 
xsel selected agent 
xbest global best solution 
t iteration 
tmax maximum iteration 
T1 first threshold 
T2 second threshold 
T3 third threshold 
U uniform distribution 

 

Algorithm 1: HPKA Algorithm 
1 output: xbest 
2 begin 
3  //initialization 
4  for all X do 
5  initialize x using (1) 
6  end for 
7  //iteration 
8  for t=1 to tmax do 
9  for all X do 
10  //first phase 
11  generate r using (2) 
12  if r < T1 then 
13   first movement using (3) 
14  else if T1 ≤ r < T2 then 
15   second movement using (4) 
16  else if T2 ≤ r < T3 then 
17   third movement using (5) and (6) 
18  else 
19   fourth movement using (7) 
20  end if 
21  update xbest using (8) 
22  //second phase 
23  search within local problem space using (9) and (10) 
24  update xbest using (8) 
25  end for 
26 end 

All agents’ initial location is determined randomly within 
the problem space in the initialization. This process is 
formalized using (1). Equation (1) shows that the lower and 
upper bound to become the boundaries of the problem space. 
These boundaries represent the single dimension problem 
space. Each dimension has its limits in the multiple dimension 
problem space, and (1) is applied in all dimensions. 

𝑥 = 𝑈(𝑏𝑙 , 𝑏𝑢)               (1) 

In the first phase, the movement is selected randomly based 
on the value of a generated random number. The distribution of 
this random number follows a uniform distribution. This 
random number is formalized by using (2). Then, the 
movement is selected based on the location of this random 
number related to the thresholds. 

𝑟 = 𝑈(0,1)               (2) 

In the first movement, the agent moves toward the global 
best solution. This first movement is chosen if the generated 
random number is less than the first threshold. This process is 
formalized by using (3). Equation (3) shows that the movement 
length is uniformly randomized. It also depends on the step 
size. A bigger step size makes the agent moves closer to the 
global best solution. On the other hand, a smaller step size 
makes the agent moves closer to its current location. 

𝑥′ = 𝑥 + 𝑠.𝑈(0,1). (𝑥𝑏𝑒𝑠𝑡 − 𝑥)             (3) 

In the second movement, the agent moves to the middle 
between its current location and the global best solution. This 
movement is chosen if the generated random number is 
between the first and second threshold. This movement 
represents the deterministic version of the first movement. This 
movement is formalized using (4). 
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𝑥′ = 𝑥𝑏𝑒𝑠𝑡+𝑥
2

               (4) 

In the third movement, the agent moves related to the 
selected agent. This agent is chosen randomly among the set of 
agents. This movement is selected if the generated random 
number is between the second and third threshold. If this agent 
chosen is better than the agent’s current location, then this 
agent will move toward the selected agent. Else, this agent will 
move away from the designated agent. This process is 
formalized by using (5) and (6). Equation (5) formalizes the 
agent selection. Equation (6) formalized the movement related 
to the selected agent. 

𝑥𝑠𝑒𝑙 = 𝑈(𝑋)               (5) 

𝑥′ = �𝑥 + 𝑠.𝑈(0,1). (𝑥𝑠𝑒𝑙 − 𝑥), 𝑓(𝑥𝑠𝑒𝑙) < 𝑓(𝑥)
𝑥 + 𝑠.𝑈(0,1). (𝑥 − 𝑥𝑠𝑒𝑙), 𝑒𝑙𝑠𝑒            (6) 

In the fourth movement, the agent’s new location is 
obtained from the direction of the global best away from the 
agent’s current location. This movement is chosen if the 
generated random number is higher than the third threshold. 
This process is formalized by using (7). This movement is 
conducted to exploit the location near the global best. 

𝑥′ = 𝑥𝑏𝑒𝑠𝑡 + 𝑠.𝑈(0,1). (𝑥𝑏𝑒𝑠𝑡 − 𝑥)              (7) 

This agent’s new location is then used to update the global 
best. As mentioned in the conceptual model, the new solution 
will replace the global best current solution only if this new 
solution is better than the global best solution. This process is 
formalized by using (8). 

𝑥𝑏𝑒𝑠𝑡′ = �𝑥, 𝑓(𝑥) < 𝑓(𝑥𝑏𝑒𝑠𝑡)
𝑥𝑏𝑒𝑠𝑡 , 𝑒𝑙𝑠𝑒              (8) 

The agent searches for a new location within its local 
problem space in the second phase. This process is formalized 
by using (9) and (10). Equation (9) formalizes the candidate for 
the new location. Equation (10) states that this candidate will 
only replace the agent’s current location if it is better than its 
current location. 

𝑥𝑐 = 𝑥 + �1 − 𝑡
𝑡𝑚𝑎𝑥

� (2𝑈 − 1) �𝑏𝑢−𝑏𝑙
𝑑

�            (9) 

𝑥′ = �𝑥𝑐 , 𝑓(𝑥𝑐) < 𝑓(𝑥)
𝑥, 𝑒𝑙𝑠𝑒             (10) 

Based on this explanation, the complexity of the proposed 
algorithm can be presented in the Big O notation as 
O(2tmax.n(X)). Based on this notation, it is shown that the 
complexity of the proposed algorithm is linearly proportional 
to the maximum iteration or the population size. The number 2 
represents the two phases that are conducted in every iteration. 

IV. SIMULATION AND RESULT 
Four simulations are conducted to evaluate the proposed 

algorithm’s performance in this work. The first simulation is 
conducted to evaluate the proposed algorithm’s performance in 
solving the theoretical mathematic optimization problem. The 
second simulation is conducted to assess the sensitivity of the 
algorithm, related to its performance. The third simulation is 
conducted to evaluate the proposed algorithm’s performance in 
solving the real-world optimization problem. The fourth 

simulation is conducted to evaluate the convergence of the 
algorithm in solving the real-world optimization problem. 

In the first simulation, the proposed algorithm is challenged 
to solve the 23 benchmark functions representing the 
theoretical optimization problem. These functions are 
commonly used in many studies that suggest new metaheuristic 
algorithms, such as darts game optimizer (DGO) [23], hide 
objects game optimizer (HOGO) [24], KMA [20], RDA [19], 
POA [21], and so on. The list of these functions can be seen in 
Table I. These functions can be clustered into three groups 
based on their similar characteristics. The first group represents 
the high dimension unimodal functions. This group consists of 
function one to function seven. The second group represents 
the high dimension multimodal functions. This group consists 
of function eight to function thirteen. The third group 
represents the fixed dimension multimodal functions. This 
group consists of function 14 to function 23. 

TABLE I. BENCHMARK FUNCTIONS 

No Function Dim Problem Space Target 

1 Sphere 10 [-100, 100] 0 

2 Schwefel 2.22 10 [-100, 100] 0 

3 Schwefel 1.2 10 [-100, 100] 0 

4 Schwefel 2.21 10 [-100, 100] 0 

5 Rosenbrock 10 [-30, 30] 0 

6 Step 10 [-100, 100] 0 

7 Quartic 10 [-1.28, 1.28] 0 

8 Schwefel 10 [-500, 500] -4189.8 

9 Ratsrigin 10 [-5.12, 5.12] 0 

10 Ackley 10 [-32, 32] 0 

11 Griewank 10 [-600, 600] 0 

12 Penalized 10 [-50, 50] 0 

13 Penalized 2 10 [-50, 50] 0 

14 Shekel Foxholes 2 [-65, 65] 1 

15 Kowalik 4 [-5, 5] 0.0003 

16 Six Hump Camel 2 [-5, 5] -1.0316 

17 Branin 2 [-5, 5] 0.398 

18 Goldstein-Price 2 [-2, 2] 3 

19 Hartman 3 3 [1, 3] -3.86 

20 Hartman 6 6 [0, 1] -3.32 

21 Shekel 5 4 [0, 10] -10.1532 

22 Shekel 7 4 [0, 10] -10.4028 

23 Shekel 10 4 [0, 10] -10.5363 

The more detailed explanation related to the characteristic 
of these functions is as follows. The unimodal function is a 
function that has only one optimal solution [25], which is the 
optimal global solution. There is not any optimal local solution 
in this function. Contrary, the multimodal function is a function 
that has multiple optimal solutions [25]. One optimal is the 
optimal global solution that becomes the target of the 
optimization. The other optimal solutions are the local optimal. 
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In this function, the algorithm can be trapped in the local 
optimal so that the global optimal cannot be found until the 
iteration ends [25]. The high dimension function represents the 
function that has a flexible number of adjusted parameters that 
construct the solution. The dimension can be one and up to 
unlimited (hundreds or thousands). A higher dimension makes 
the problem more challenging to optimize. It means that more 
iteration or population size is needed. The fixed dimension 
function represents the function that its measurement is static 
or final. Although the dimension is static and usually low, it 
does not mean that this function is easy to solve. 

These 23 benchmark functions also represent optimization 
problems with various problem space. The problem space 
ranges from very narrow, such as in Quartic and Hartman 6, to 
the very large, such as in Schwefel and Griewank. Most of 
these functions are centralized at 0. Meanwhile, in several 
functions, such as Shekel 5 and Hartman 3, the problem space 
central is not at 0. 

In this simulation, the proposed algorithm is compared with 
four other algorithms: GWO, MPA, KMA, and POA. In 
general, these four algorithms are new. All these algorithms 
adopt the foraging mechanism of the animal. Meanwhile, these 
four algorithms have their distinct mechanics. GWO represents 
algorithms that every agent moves toward certain (three) best 
solutions or three global best solutions. MPA represents the 
movement of several couples of predators and preys where the 
predator represents the local best solution for its prey. KMA 
represents algorithm that combines the foraging and mating. 
POA represents the algorithm that all agents move toward the 
randomized global target. GWO and MPA also represent the 
shortcoming algorithms that have been widely studied, 
improved, and implemented. Meanwhile, KMA and POA 
represent brand new algorithms that are not popular yet. 

The setup of all these five algorithms is as follows. The 
maximum iteration is set 200 that represent low iteration. The 
population size is set 20. In MPA, the fishing aggregate 
devices are set 0.5. The reason is to make balance strategy 
between finding the alternative randomly within the local 
problem space and the two randomly selected predators. In 
KMA, the proportion of the big males is 40%. The reason of 
this proportion is to make almost balance population between 
the big males and the small males. Meanwhile, the only one 
female configuration is chosen based on the recommendation 
in the first appearance of KMA. There is only one female. The 
rest population are the small males. The mlipir rate is set 0.5. 
This rate is chosen to speed up the movement of the small 
males. Meanwhile, there is not any parameter setting in GWO 
and POA because these algorithms do not have any adjusted 
parameter. In the proposed algorithm (HPKA), the proportion 
is equal, and the step size is set 2. This step size is chosen to so 
that the local problem space width is wide enough but not too 
wide. This parameter setting is also can be seen in Table II. 
Meanwhile, the first, second, and third thresholds are set to 
make balance proportion between among the movements. The 
simulation result is shown in Table III. The best result is 
written in bold font. 

The result shows that the proposed algorithm is a good 
metaheuristic algorithm. It can find the acceptable optimal 
solution in all 23 benchmark functions. It means that the 
proposed algorithm is good in solving both unimodal functions 
and multimodal functions. Moreover, the proposed algorithm 
also can find the true optimal solution in solving the Six Hump 
Camel. 

Table III also shows that the proposed algorithm is 
competitive enough compared with other sparing algorithms. It 
performs the best in solving five functions: Step, Penalized 2, 
Six Hump Camel, Branin, and Hartman 6. One function is the 
high dimension unimodal function while the other four 
functions are the fixed dimension multimodal functions. 
Compared with other four algorithms, the proposed algorithm 
is better than GWO, MPA, KMA, and POA in solving 14, 12, 
14, and 18 functions respectively. It is also shown the GWO is 
very powerful in solving the high dimension unimodal 
functions but weak in solving the fixed dimension multimodal 
functions. Contrary, KMA is very powerful in solving the 
Shekel 5, Shekel 7, and Shekel 10. 

The second simulation is conducted to evaluate the 
algorithm sensitivity. In this work, the sensitivity analysis is 
focused on the formation of the agents due to four possibilities 
of action chosen by every agent. Like in the first simulation, in 
this simulation, the proposed algorithm is implemented to solve 
the 23 benchmark functions. Meanwhile, the maximum 
iteration and the population size are not chosen to be explored 
deeper. It is because based on the general model of 
metaheuristic algorithm, where the quality of the algorithm can 
be improved by increasing the maximum iteration or the 
population size theoretically but with the expense of the 
computational resource and time. On the other hand, the 
formation does not affect to the complexity or computational 
consumption. In Table IV, the proportion is presented in a set 
that contains the proportion of the first, second, third and fourth 
options consecutively. The first scenario represents the first 
movement dominant strategy. The second scenario represents 
the second movement dominant strategy. The third scenario 
represents the third movement dominant strategy. The fourth 
scenario represents the fourth movement dominant strategy. 
The result can be seen in Table IV. The best result is written in 
bold font. 

TABLE II. PARAMETER SETTING 

Parameter Value 

n(X) 20 

tmax 200 

s 2 

T1 0.25 

T2 0.5 

T3 0.75 
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TABLE III. SIMULATION RESULT (MEANS) 

Function GWO MPA KMA POA HPKA Better Than 
1 1.326x10-10 4.467x101 4.047x102 3.030x103 1.098x10-9 MPA, KMA, POA 
2 0 0 2.505 0 1.044x10-19 KMA 
3 7.583x10-16 1.003x102 1.704x103 4.085x103 4.757x10-1 MPA, KMA, POA 
4 2.804x10-9 2.764x10-1 1.226x101 3.057x101 4.254x10-1 KMA, POA 
5 9.000 1.004x101 1.320x104 8.090x105 9.073x101 KMA, POA 
6 2.25 3.698x101 3.291x102 1.998x103 6.243x10-11 GWO, MPA, KMA, POA 
7 3.971x10-2 1.546x10-2 4.244x10-1 5.733x10-1 8.457x10-2 KMA, POA 
8 1.244x10-13 -1.922x103 -3.240x103 -2.166x103 -2.786x103 GWO, MPA, POA 
9 0 2.174x101 3.364x101 6.631x101 4.004x101 POA 
10 6.534x10-15 4.019 8.343 1.506x101 6.035 POA 
11 0 1.425 4.176 2.446x101 4.471x10-1 MPA, KMA, POA 
12 2.639 2.182 2.184x102 3.030x103 2.540 GWO, KMA, POA 
13 3.139 9.062 8.641x103 3.119x106 1.167 GWO, MPA, KMA, POA 
14 1.267x101 3.002 4.152 1.364 6.768 GWO 
15 1.484x10-1 2.947x10-3 1.954x10-2 2.959x10-3 4.002x10-3 GWO, KMA  
16 -1.326x10-18 -1.029 -1.031 -1.030 -1.032 GWO, MPA, KMA, POA 
17 5.560x101 5.676x10-1 4.455x10-1 3.992x10-1 3.981x10-1 GWO, MPA, KMA, POA 
18 6.000x102 3.399 4.338 3.019 8.143 GWO 
19 -1.936x10-3 -3.875 -5.637x10-1 -4.954x10-2 -4.954x10-2 GWO 
20 -5.089x10-3 -2.151 -3.015 -3.030 -3.150 GWO, MPA, KMA, POA 
21 -0.273 -2.452 -7.943 -4.657 -4.894 GWO, MPA, POA 
22 -0.294 -2.474 -8.979 -4.279 -5.817 GWO, MPA, POA 
23 -0.322 -2.219 -6.590 -4.214 -5.843 GWO, MPA, POA 

TABLE IV. RELATION BETWEEN FORMATION AND THE FITNESS SCORE 

Function 
Fitness Score 
0.4:0.2:0.2:0.2 0.2:0.4:0.2:0.2 0.2:0.2:0.4:0.2 0.2:0.2:0.2:0.4 

1 3.534x10-11 1.977x10-10 1.359x10-2 6.729x10-9 
2 0 4.532x10-30 0 4.802x10-13 
3 4.448x102 4.857 4.302x102 1.528x103 
4 3.038x10-1 1.267 8.684x10-1 6.504x10-1 
5 2.597x102 4.506x101 1.344x102 3.151x101 
6 3.928x10-15 3.278x10-9 9.676x10-3 1.806x10-9 
7 1.572x10-1 1.337x10-1 2.893x10-2 1.075x10-1 
8 -2.643x103 -2.888x103 -2.974x103 -2.971x103 
9 4.399x101 2.907x101 2.946x101 3.787x101 
10 8.203 7.871 4.262 7.120 
11 6.029x10-1 3.370x10-1 2.377x10-1 2.053x10-1 
12 1.726 2.846 5.808x10-1 7.402x10-1 
13 2.145 4.561 9.026x10-2 1.211 
14 1.086x101 9.169 1.510 6.208 
15 2.225x10-3 3.593x10-3 5.864x10-3 4.831x10-3 
16 -1.032 -1.032 -1.032 -1.032 
17 3.981x10-1 3.981x10-1 3.981x10-1 3.981x10-1 
18 1.040x101 1.200x101 3.000 6.857 
19 -4.954x10-2 -4.954x10-2 -4.954x10-2 -4.585x10-2 
20 -3.269 -3.268 -3.131 -3.227 
21 -4.232 -3.965 -5.858 -4.206 
22 -4.189 -5.505 -5.324 -5.601 
23 -4.657 -4.207 -4.309 -4.104 
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Table IV shows that the relation between the proportion of 
the options and the algorithm’s performance is various; 
depends on the problem (function) to be solved. There is not 
any proportion that is the best among other proportions. In 
some functions, a proportion may be better. But in other 
function, other proportion is better. Meanwhile, the different 
proportion affects significantly, especially in solving the 
unimodal functions. A proportion produces much better result 
rather than other proportions. Meanwhile, the different 
proportion affects less significantly in solving multimodal 
functions. Moreover, the proportion does not affect the result in 
solving the Six Hump Camel, Branin, and Hartman 3 functions. 

The third simulation is conducted to evaluate the proposed 
algorithm in solving the real-world problem. In this work, the 
proposed algorithm is challenged to tackle the portfolio 
optimization problem. A portfolio is a set of valuable and 
productive assets that is owned by individual or institutions 
[26]. This asset can be property, stock, bond, gold, and so on. 
Portfolio represents the wealth of the entity. As a portfolio, an 
individual or institution should distribute its asset into several 
options [26]. The objective of this arrangement is to protect its 
value in the context of maximizing the profit and avoiding the 
lost. The profit may come from the revenue that is generated 
from the utilization of the asset or the increasing value of the 
asset in certain timespan. On the other side, lost may come 
from the value depreciation or reduction of the asset. Based on 
it, the portfolio optimization problem can be defined the 
arrangement of assets in the most optimal way in facing its 
objective. 

In this work, the portfolio optimization problem focuses on 
the stock. The stock represents the ownership of a proportion 
of a company. The profit of stock comes in two ways: capital 
gain and dividend. Capital gain is the increasing value of a 
share at the end of a certain timespan. The common timespan 
can be daily, monthly, year-to-date (YTD), year-on-year 
(YOY), and five years. The dividend is a portion of net profit 
distributed to the company’s owner or stockholder. The stock 
price represents the market value of a share of a company. 

The selected stocks are the ten best companies listed in the 
LQ45 index. LQ45 index is a list that consists of 45 companies 
whose share is traded on the Indonesian Stock Exchange (IDX) 
[27]. These companies are selected because their market 
capitalization is the biggest, and they are very liquid [27]. 
These ten companies come from several industrial sectors, such 
as oil and gas, mining, and banking. The list of these 
companies is shown in Table V. Table V contains three 
information: the company’s code, current price, and year-to-
date capital gain. The current price and capital gain are 
presented in rupiah per share. The data is obtained from 
Google, which refers to the Indonesian Stock Exchange. 

The stock optimization problem scenario in this work is as 
follows. The objective is maximizing the total capital gain. The 
total capital gain is obtained by accumulating the capital gain 
earned from all held shares. The capital gain refers to the year-
to-date capital gain in Table IV. On the other side, there are 
several constraints used in this optimization. The allocated 
investment is one billion rupiahs. It means that the bought 
stocks cannot surpass the total investment. All stocks in 

Table IV must be represented in the investment portfolio. The 
purchasing price refers to the current price in Table IV. The 
purchasing unit for every stock is presented in the lot. A lot 
refers to 100 shares. The investment ranges from 50 to 200 lots 
in every stock. Based on this scenario, this portfolio 
optimization problem can be seen as a high dimensional 
problem. The number of dimensions is 10. The problem space 
for every dimension is between 50 and 200. 

The simulation scenario related to this portfolio 
optimization problem is as follows. The population size is set 
at 20. The maximum iteration is set at 200. The proportion 
among possible actions is equal. Like in the first simulation, 
this proposed algorithm is benchmarked with four algorithms: 
GWO, MPA, KMA, and POA. The result is shown in Table VI. 

Table VI shows that the proposed HPKA algorithm is very 
competitive among algorithms in solving the portfolio 
optimization problem. Its total capital gain is the highest 
among GWO, MPA, KMA, and POA. The total capital gain 
created by the proposed algorithm is 109%, 46%, 47%, and 1% 
better than the GWO, MPA, KMA, and POA respectively. 

Based on the statistic comparison, it is shown that the 
proposed algorithm is more stable than POA due to its lower 
standard deviation. Meanwhile, MPA performs as the most 
stable algorithm due to its lowest standard deviation. Besides, 
the stability of KMA is also low and it is close to MPA. 
Ironically, GWO becomes the most unstable algorithm. 

The fourth simulation is conducted to observe the 
convergence of the proposed algorithm in solving the portfolio 
optimization problem. In this simulation, there are three values 
of the maximum iteration: 50, 100, and 150. In this simulation, 
the proposed algorithm is still compared with these fourth 
algorithms. The result is shown in Table VII. 

TABLE V. TEN BEST COMPANIES IN LQ45 INDEX 

No Code Current Price YTD Capital Gain 
1 MEDC 545 83 
2 ITMG 29,975 10,350 
3 ADRO 3,180 810 
4 INCO 6,850 2,090 
5 PTBA 3,710 1,040 
6 UNTR 29,775 7,950 
7 MDKA 4,610 570 
8 ANTM 2,340 0 
9 BBNI 8,450 1,725 
10 HRUM 10,125 -375 

TABLE VI. PORTFOLIO OPTIMIZATION PROBLEM SIMULATION RESULT 

No Algorithm 
Total Capital Gain 
Average Standard Deviation 

1 GWO 191,827,306 48,601,823 
2 MPA 274,425,133 5,323,910 
3 KMA 273,280,387 7,949,071 
4 POA 398,494,240 20,245,548 
5 HPKA 401,824,087 16,252,005 
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TABLE VII. SIMULATION FOR CONVERGENCE ANALYSIS 

No Algorithm 
Total Capital Gain 

tmax = 50 tmax = 100 tmax = 150 

1 GWO 208,336,875 189,973,268 192,619,037 

2 MPA 272,722,150 273,976,306 276,707,756 

3 KMA 259,277,675 268,501,294 268,033,687 

4 POA 402,265,771 416,313,431 408,763,771 

5 HPKA 416,847,431 404,039,878 406,785,637 

Result in Table VII shows that all five algorithms achieve 
their convergence in the low maximum iteration. It means that 
these five algorithms do not need high maximum iteration to 
find the near optimal solution or acceptable solution. 
Comparing between POA and HPKA, the gap between these 
two algorithms is narrow. 

V. DISCUSSION 
In general, the result proves that the proposed algorithm is a 

good and competitive metaheuristic algorithm. It is very 
competitive in solving theoretical optimization problem and 
real-world optimization problem. Its performance is better than 
KMA and POA in solving most of benchmark functions and 
the portfolio optimization problem. It means that this hybrid 
version is better that its origins, whether it is POA or KMA. 
More profound analysis regarding the findings will be 
discussed in the following paragraphs. 

Table II shows that the proposed algorithm is better than 
the basic POA. This circumstance happens in most functions in 
all three groups: high dimension unimodal, high dimension 
multimodal, and fixed dimension multimodal functions. This 
result proves that selecting the best solution for the target is 
better than the randomized target for the swarm movement. 
Through guided movement toward the global best solution, the 
probability of the improvement will be higher than the 
randomized movement, whether it is the randomized jump as 
conducted in the first option or the half jump as conducted in 
the second option. 

Table II also shows that the proposed algorithm is better 
than the KMA. This circumstance also occurs in most 
benchmark functions, exceptionally high dimension unimodal 
and high dimension multimodal functions. The proposed 
algorithm is less competitive than the KMA in solving fixed 
dimension multimodal functions. This circumstance shows that 
the mechanics of the proposed algorithm consists of four 
optional movements and the iteration-controlled exploration-
exploitation strategy is better than the three fixed movements 
in KMA. 

The result also strengthens the no free lunch theory. As 
stated in this theory, developing a general-purpose algorithm 
better for solving all problems is almost impossible [28]. The 
proposed algorithm may be less competitive than GWO in 
solving the high dimension unimodal functions where GWO is 
superior in these functions. On the other hand, GWO loses its 
superiority in most multimodal operations, whether they are 
high dimension or fixed dimension. The proposed algorithm is 
also significantly superior to GWO in solving the portfolio 

optimization problem. On the other hand, the proposed 
algorithm is slightly better than the POA in solving a portfolio 
optimization problem. However, the proposed algorithm is 
significantly superior to POA in solving theoretical 
optimization problems. 

The simulation result shows that the effectiveness of 
specific algorithms should not be measured by challenging 
them to solve only the theoretical optimization problem. In the 
end, any optimization algorithm must be challenged to solve 
the real-world optimization problem. On the other hand, the 
circumstance in real-world problems is various. Many 
problems, especially in the operational research or finance, are 
simpler to be presented using integer or mixed-integer 
programming. The problem space is often integer, such as the 
number of production units, vehicles, assigned employees, 
shares, and so on. Moreover, the objective function is also 
simple, such as maximizing the total sales or profit. This 
objective can be presented by accumulating the weighted 
parameters. As an integer problem, precision is not needed. It 
is difficult to achieve a much better result in the integer-based 
optimization problem. This circumstance also becomes the 
reason why many well-known old-fashioned algorithms, such 
as genetic algorithms, are still used widely in many studies in 
operational research and finance. It is different from the 
engineering optimization problem, where many parameters are 
presented in floating-point numbers. In this case, the high 
precision algorithm becomes more relevant. 

The simulation result also shows that the effectiveness of 
the metaheuristic algorithm also depends on the tuning 
mechanism of its adjusted parameters. Many metaheuristic 
algorithms are equipped with several adjusted parameters. The 
algorithm will perform well when these parameters are 
adjusted properly. On the other hand, the algorithm will 
perform poorly when these parameters are not adjusted 
properly. This circumstance becomes the nature of 
metaheuristic algorithms so that they can tackle many 
optimization problems in flexible ways. Based on this 
circumstance, it is not wise to judge some algorithms are better 
than others. However, the phenomenon of beating the elder 
algorithms is common in many shortcoming studies that 
propose new metaheuristic algorithms. Although the old-
fashioned algorithms, such as genetic algorithm, simulated 
annealing, tabu search, and PSO, have been beaten many times, 
their popularity is still high because they are simple and 
flexible to modify. Commonly, the effectiveness of an 
algorithm can be improved simply by increasing the iteration 
or enlarging the population size. 

There are several challenges and questions regarding this 
circumstance. Many metaheuristic algorithms are designed 
based on fixed adjusted parameters. It means that these 
adjusted parameters can be changed manually. It will be 
challenging in the future to propose an adaptive algorithm 
where the parameters can be tuned automatically during the 
iteration. It means there is logic in this future algorithm that 
can learn the behavior of the optimization environment 
(objective and problem space), and then it reacts based on its 
knowledge. 
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VI. CONCLUSION 
The proposed algorithm, namely the hybrid pelican 

Komodo algorithm, has been proposed in this work. This 
algorithm is developed by hybridizing the pelican optimization 
and Komodo Mlipir Algorithms. The work has demonstrated 
the outstanding performance of the proposed algorithm as a 
metaheuristic algorithm. It can tackle the two main objectives: 
finding near-optimal (acceptable) solutions and avoiding local 
optimal. Through simulation, the proposed algorithm is 
successful in solving the theoretical optimization problem and 
real-world optimization problem. It best solves five functions: 
Step, Penalized 2, Six Hump Camel, Branin, and Hartman 6. 
The proposed algorithm is better than GWO, MPA, KMA, and 
POA in solving 14, 12, 14, and 18 functions, respectively. In 
solving the portfolio optimization problem, the proposed 
algorithm creates 109%, 46%, 47%, and 1% better total capital 
gain than the GWO, MPA, KMA, and POA, respectively. 
Based on its positive result, this work shows that improving the 
current algorithms through modification or hybridization is as 
important as proposing a new algorithm with a new name. 

There are several future research potentials regarding this 
work. This work is just one modification of the existing 
algorithms (KMA and POA). There are many other ways to 
modify and improve these two shortcoming algorithms. These 
algorithms can be hybridized with other battle proven 
algorithms. Besides, it will be challenging to implement these 
two algorithms to solve many other optimization problems so 
that the effectiveness of these two algorithms can be observed 
better to make the ground base for further development. 
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