
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 6, 2022 

738 | P a g e  

www.ijacsa.thesai.org 

Improved Data Segmentation Architecture for Early 

Size Estimation using Machine Learning 

Manisha1*, Rahul Rishi2 

CSE, UIET, MDU, India 

Sonia Sharma3 

ECE, UIET, MDU, India 

 

 
Abstract—Software size estimation plays an important role in 

project management. According to the report given by Standish 

Chaos, about 65% of software projects are beyond companies 

budget or overdue; which could have been saved if an early 

estimation was imposed. Though the software size can’t be 

measured directly, but it is related to effort and hence a low 

effort will lead to low size. The calculation of effort depends upon 

how the data is organized or segmented. This research paper 

focuses on the improvement of data segmentation in order to 

reduce the effort and parallel the size. In order to improve the 

segmentation architecture, the project data is divided based on 

the similarity indexes which the projects have in between their 

attributes. Three similarity measures were used namely Cosine 

Similarity (CS), Soft Cosine Similarity (SC) and a hybrid 

similarity index which combines CS and SC. Based on these 

similarity indexes, the project data is divided into groups by K-

means algorithm. In order to estimate the size, the co-relation 

between the formed groups are calculated. To calculate the 

correlation, Mean Square Error (MSE), Square Error (SE), and 

Standard Deviation (STD) is calculated and the normalized 

parameters are used to evaluate the software size. 

Keywords—Cosine similarity; hybrid similarity; machine 

learning; size estimation and soft cosine similarity 

I. INTRODUCTION 

Software size estimation has always been a favorite area 
for the researchers as the wrong estimation of effort and size 
will lead to high computation risk and project failure. If the 
company does not earn from a project, even if the project is 
complete, it is termed as failure. Therefore, to overcome this 
problem, an early stage prediction model is designed based of 
the past project experience [1]. Underestimation and 
overestimation both leads to high project risk completion. In 
case, if size of the software project is estimated at the earliest 
stage, then, project handling team can provide better plan. 
Conventional software development mainly goes through four 
levels namely requirements elicitation, design, coding and 
testing [2]. After designing early size estimation model, most 
of the systems have better response. If the project estimation is 
terminated just after first level, then it affects directly the 
project management. Therefore, early size estimation of 
project is a crucial task not only for conventional software 
development bust also for agile development, as it makes the 
projects more manageable. Software size metrics play an 
important role in the success of this task [3]. In the 
conventional approach, Lines of Code (LOC), evaluation has 
been a way to evaluate the size of the projects [4]. Function 
Point (FP) sizing also evolved as a method to acquire the 
details of the project but being a object oriented concept again, 

the usage of FP will also require code oriented metrics [5], [6]. 
Early size estimation requires the attributes which does not 
involve post coding methods. Any estimation method, requires 
a learning model and as it is described earlier, code oriented 
metrics will be only attained once the project is complete. In 
order to train the system, the Ground Truth (GT) of the data is 
the foremost requirement. GT refers to the class label of the 
data. As for example, suppose a project had 5000 LOC ,10 
team members,1 team lead and 50 hours of development and 
the effort from the team in order to develop the project was 
“high”, then the GT for Project Attribute(PA){5000 
,10,1,50} is high. Unfortunately, these type of metrics can be 
only evaluated after the development and does not suit early 
size estimation. In the early age of development of early size 
estimation [15-20], authors introduced learning methods using 
machine learning and its extension. [7] used machine learning 
oriented neural networks to train the system based on the 
feedback from the engagements of the company but the 
generation of GT through machine learning failed here. 

A. Machine Learning 

The machine learning architecture needs a training data 
algorithm with its ground truth value. The material methods 
which involves statistics are called machine learning. 
Common machine learning algorithms are as follows. 

1) K-means. 

2) Regression. 

3) Linear Propagation Model. 

This research article uses K-means clustering algorithm 
with the enhancement of base architecture. The k-means 
clustering algorithm selects a random centroid out of the 
provided set of attributes. If there are three attributes, then the 
centroid of the clusters will also have three attributes. The 
adjustment in the centroid takes place when the co-relation 
between the attributes and centroids varies and goes to the 
adjustment into another cluster. In order to calculate the 
distance between centroid and attribute values, Euclidian 
distance is calculated. The data is always divided into ‘k’ 
number of clusters and in order to decide ‘k’, there are 
multiple ways of advisory. This research work does not 
focuses on the calculation of ‘k’ as there are two sections for 
the entire data namely ‘high size’ and ‘low size’ which is 
further subdivided into two sub-segments namely ‘moderate’ 
and ‘high’ . The size before the development can’t be directly 
evaluated and hence this research article refers to the 
statement that high effort will lead to high size and low co-
relation will lead to high effort. 

*Corresponding Author. mvmanishavatsa@gmail.com 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 6, 2022 

739 | P a g e  

www.ijacsa.thesai.org 

𝐸𝑓𝑓𝑜𝑟𝑡 ∝  𝑐𝑜𝑠𝑡 ||𝑠𝑖𝑧𝑒          (1) 

The rest of the paper is organized as follows: Section 2 
represents the related work in the field of size estimation. 
Section 3 presents the proposed work including technique 
used and process of work. The result and discussions are 
presented in Section 4. Conclusion is presented in Section 5. 

II. RELATED WORK 

Ahn et al. (2003) have presented a metric analyses based 
methodology tool to estimate effort at early stage of software 
project. Using this model, a project manager can analyzed, 
software system like as analyzed by FP analysis. In addition, 
relation between UML point and effort has also been observed 
[8]. Baskeles et al. (2007) have presented ML based software 
estimation model to resolve the problems related to cost and 
schedule extension. The test has been conducted on the 
collected data obtained from software industry in Turkey. 
Principle Component Analysis (PCA) has been applied as data 
dimension reduction approach. ML technique has been trained 
by 50 and 40 projects, and test later using 10 and 20 projects 
respectively. From the test results it has been concluded that 
the parametric models are not sufficient for software effort 
estimation [9]. Nassif et al. (2013) have presented a new 
logarithmic based linear regression model, which works on the 
basis of use case point model (UCP). This approach is used 
case diagram to determine software effort. To regulate the 
productivity factor of regression model Fuzzy logic is used as 
Fuzzy Interface System (FIS). Based on software size and 
project group productivity, neural network is design and used 
to estimate software effort. At last comparison between ANN 
and log-linear regression based model has been presented. The 
results show that NN outperformed compared to regression 
model while estimating small project, but for large scale 
projects regression algorithm performed better [10]. Satapathy 
et al. (2016) have used Random Forest (RF) as ML approach 
to enhance the performance of effort prediction model. UCP 
approach has been used for estimating project effort, the 
parameters of which has been improved using RF approach. 
Among various ML techniques like NN, log-linear regression 
scheme, stochastic approach, and radial function method, RF 
surpass among all [11]. Sharma et al. (2017) have presented a 
review on various ML techniques used for software effort and 
size estimation. LOC and FP are the two main metrics used for 
effort estimation. There are various validation methods that 
can be considered in the expansion of research to confirm the 
consequences of software effort assessments. The main 
validation methods are Cross Assessments, Jacknife method 
and Iterative method. In addition, research trends have shown 
that assessment methods need to be explored and improved. In 
addition, other ML approaches, such as size metrics and 
regression trees, can also be utilized using real-life data sets 

[12]. Spikol et al. (2018) have presented ML based effort 
estimation model using International Software Benchmarking 
Standards Group (ISBSG) dataset. For cross validation, three 
ML techniques SVM, ANN, and generalized Linear Model 
has been used [13]. Lavazza et al. (2019) have empirically 
studied the COSMIC early size estimation scheme using 
historical dataset. Average Functional Process along with the 
Equal Size Bands methods have been used for the prediction 
of effort estimation. Results shows that sometimes functional 
process provides better results that can be accepted but 
sometimes the error is so large, which is not to be acceptable 
for better performance of any project. On the other hand, band 
method provides better results [14]. Nassif et al. (2019) have 
compared three FIS systems namely, Mamdani, Sugeno with 
defined output, and Sugeno with linear output. The 
performance of the system has been analyzed based on 
standard sized accuracy, error, effect size and statistical tests. 
The designed model is trained using ISBSG dataset, and 
results show that FIS are very sensitive to outliers. Authors 
also concluded that when fuzzy logic is used in combination to 
regression model, the system outperforms [15]. Silhavy et al. 
(2021) had proposed a method for size estimation based on the 
use case and the number of actors. In the process, stepwise 
regression was performed that minimized the number of errors 
adjoining the size estimation of the software system. This is 
also added that the predictions were independent of the use 
case points to avoid inaccurate estimations [16]. Daud and 
Malik (2021) had aimed at quantitative analysis of the effect 
of precise software size estimations when the project transits 
to the designing phase. To achieve this Analysis to Design 
Adjustment Factors were introduced in the proposed work that 
demonstrated improved accuracy of the proposed model [17]. 
Suresh (2022) had integrated Artificial Neural Netowrk 
(ANN) to generate precise estimations in the initial stages of 
development cycle. It was observed that the work offered 
optimal and automated predictions based on training and 
classification using ANN architecture. The work exhibited 
better and more accurate software effort estimations in 
comparison to the existing works [18]. 

A. Problem Formulation 

It becomes easy to the train a system when the GT of the 
data is available but, if there is no GT, the system remains 
uncertain in order to make the system understand what the 
data represents for. In case of post size estimation, the GT is 
easy as the developers speaks themselves and the outcome 
defines the GT but, in case of early size estimation, GT is not 
present. This articles focuses on the development of automatic 
GT for improved segmented section in order to quantify low 
size and high size based on the co-relation between the groups 
as shown in Fig. 1. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 6, 2022 

740 | P a g e  

www.ijacsa.thesai.org 

DATA SEGMENTATION

GROUP LABELLING

Calculation of 

Cosine Similarity

Calculation of Soft 

Cosine Similarity

Calculation of 

Hybrid Similarity
Application of Machine Learning

G1

High Size

G2

Low

Moderate High Very High Moderate Low Very Low

Mean Squared 

Error(MSE)
Standard Error (SE)

Rule Set

Labels

 

Fig. 1. The Proposed Work Model. 

III. PROPOSED WORK 

The proposed work is divided into two segments, namely, 
segment generation and group labelling. The architecture of 
the proposed work is illustrated using Fig. 2. The data 
segmentation involves the application of Cosine Similarity 
(CS), Soft Cosine Similarity (SC) and hybrid similarity which 
is a summed value of CS and SC. The formation of groups 
utilizing K-means is also a part of this section. The K-means 
algorithms divides the entire attribute set in two groups and 
their labelling is done by the group labelling section of the 
proposed algorithm. 

A. Calculate Similarity Indices 

Here data, segmentation is used to obtained ground truth 
value. Here, data is fragmented based on their size into two 
parts high fragments and low fragments after finding the 
centroid for each row in the dataset. The available dataset 
contains irrelevant information, therefore need to be rectify 
before used for analysis process. Hence, need to be isolated 
from the available data for any project for size estimation. 
Therefore clustering using K-means play an important role for 
cluster formation. Before applying clustering, we need to find 
out similarity indices, which are obtained using three 

similarity measures (i) Cosine Similarity (CS), (ii) Soft Cosine 
(SC) measure, (iii) Hybrid similarity measure. 

1) Cosine similarity: It is similarity measurement 

approach used to find out the similarity metric between two 

entities based on their size using the concept of the cosine 

angle between entities in an n-dimensional space. Exactly, to 

calculate the cosine similarity between two entities in an n-

dimensional space, the given formula is used: 

𝐶𝑜𝑠 (𝜃) =  
�⃗⃗� .�⃗⃗� 

‖�⃗⃗� ‖‖�⃗⃗� ‖
            (2) 

Hare, ‘M’ and ‘N’ are two entities may be array or vectors; 
cosine equation gives the angle between them using the 
written equation: 

�⃗⃗� . �⃗⃗� =  ∑ 𝑀𝑘 × 𝑁𝑘
𝑛
𝑘=1            (3) 

 =  𝑀1 × 𝑁1 + 𝑀2 × 𝑁2 + ⋯+ 𝑀𝑛 × 𝑁𝑛 

‖�⃗⃗� ‖ = √𝑀1
2 + 𝑀2

2 + ⋯+ 𝑀𝑛
2 

‖�⃗⃗� ‖ = √𝑁1
2 + 𝑁2

2 + ⋯+ 𝑁𝑛
2 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 6, 2022 

741 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 2. Proposed Work. 

We consider an example to calculate the similarity 
between two sample data such as M and N, where 

M = [1, 1, 0] 

N = [1, 0, 1] 

�⃗⃗� . �⃗⃗� = 1 × 1 + 1 × 0 + 0 × 1 = 1 + 0 + 0 = 1        (4) 

‖�⃗⃗� ‖ = √12 + 12 + 02 = √2          (5) 

‖�⃗⃗� ‖ =  √12 + 02 + 12 = √2          (6) 

So, the value of cosine similarity is; 

𝐶𝑜𝑠 (𝜃) =  
1

√2×√2
= 

1

2
= 0.5          (7) 

𝜃 = 𝑐𝑜𝑠−1(0.5) = 60°           (8) 

Cosine similarity is used to measure the closeness between 
the data elements. It is a measurement of similarity between 
two non-zero arrays or vectors of an inner product space that 
measures the cosine of the angle between them. The cosine of 
0° is 1, and it is less than 1 for any angle in the interval (0, π) 
radians. It is thus a judgment of orientation and not 

magnitude: two vectors with the same orientation have a 
cosine similarity of 1, two vectors oriented at 90° relative to 
each other have a similarity of 0, and two vectors 
diametrically opposed have a similarity of -1, independent of 
their magnitude. These bounds apply for any number of 
dimensions, and the cosine similarity is most commonly used 
in high-dimensional positive spaces. Some important points 
related to the cosine similarity is written as: 

1) Always applicable for two non-zero arrays or vectors. 

2) The cosine similarity considers the Vector Space 

Model (VSM) features as independent or completely different. 

3) The time complexity of cosine similarity is non 

quadratic. 

4) Cosine similarity use the concept of Term Frequency–

Inverse Document Frequency (TF-IDF) to calculate the 

similarity between documents 

5) Cosine Similarity uses the Euclidean Distance to 

measure the closeness between two entities. 

The designed algorithm for CS is written. 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 6, 2022 

742 | P a g e  

www.ijacsa.thesai.org 

Algorithm: Cosine Similarity  

Input: PD Uploaded project data to calculate similarity  

Output: SIMCOS Cosine Similarity for PD 

SIMCOS= [()] // to store cosine similarities values  

Sim-count = 0 

For m = 1  Length (PD) 

Current-PD = PD (m) 

    For n = m+1 Length (PD) 

         Reference-PD = PD (n) 

Calculate the cos similarity using given equation  

Current − PD ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. Reference − PD ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  ∑ Current − PD𝑘 × Reference − PD 𝑘

𝑛

𝑘=1

 

‖Current − PD⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = √Current − PD1
2 + Current − PD2

2 + ⋯+ Current − PD𝑛
2 

‖Reference − PD ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = √Reference − PD 1
2 + Reference − PD 2

2 + ⋯+ Reference − PD 𝑛
2
 

𝐶𝑜𝑠 (𝜃) =  
Current − PD ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. Reference − PD ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

‖Current − PD⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖‖Reference − PD⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
 

SIMCOS[Sim-count]=Cos(θ) 

Increment in index of array, Sim-count = Sim-count + 1 

     End – For 

End – For 

Return: SIMCOSas an output in terms of Cosine Similarity for PD 

End – Algorithm  

2) Soft cosine similarity: Soft cosine or the soft similarity 

approach is used to calculate the similarity between two 

entities similar to the cosine similarity approach. Cosine 

similarity has the VSM (Vector Space Model)features as 

completely different or independent whereas the soft cosine 

measures considers the VSM similarity features that assists in 

the generalization of cosine and soft cosine with similarity 

idea. For the computation of soft cosine, S as matrix is utilized 

for the indication of similarity among features. It could be 

measured by Levenshtein distance and Wordnet similarity. 

Soft cosine similarity finds the most common between two 

document sets. 

𝑆𝑜𝑓𝑡 𝐶𝑜𝑠𝑖𝑛𝑒 =  𝐶𝑜𝑠 (
𝑛

𝑖=1
|𝑋 ∩ 𝑌|))         (9) 

Where, X and Y are the two entities in n dimensional 
space and the some important points related to the soft cosine 
similarity is written as: 

1) A soft cosine similarity between two vectors considers 

similarities between pairs of features. 

2) The soft cosine similarity measures the similarity of 

features in Vector Space Model (VSM) as dependent. 

3) The time complexity of Soft Cosine Similarity is 

quadratic, which makes it perfectly applicable to real-world 

tasks but it can be reduced to sub quadratic. 

4) Soft Cosine similarity uses the concept of n-grams 

which is a contiguous sequence of n items. 

5) Soft Cosine Similarity uses the Levenshtein Distance. 

The algorithm for soft cosine similarity index is written 
below. 

Algorithm: Soft Cosine Similarity  

Input:PD  Uploaded project data to calculate similarity  

Output: SIMSOFTCOSSoft Cosine Similarity for PD 

SIMSOFTCOS = [()] // to store soft cosine similarities values  

Sim-count = 0 

For m = 1  Length (PD) 

Current-PD = PD (m) 

    For n = m+1 Length (PD) 

         Reference-PD = PD (n) 

𝑺𝑰𝑴𝑺𝑶𝑭𝑻𝑪𝑶𝑺 =  𝑪𝒐𝒔 (
𝒏

𝒊 = 𝟏
|Current − PD ∩ Reference − PD|)) 

SIMSOFTCOS[Sim-count]=SIMSOFTCOS 

Increment in index of array, Sim-count = Sim-count + 1 

     End – For 

End – For 

Return:SIMSOFTCOS as an output in terms of Soft Cosine Similarity 

for PD 

End – Algorithm 

B. Hybrid Similarity 

When CS and SC measures are used in combination, then 
the measure form is known as hybrid similarity indices. By 
comparing average of each row with remaining rows, an 
average value is obtained. Suppose we have 100 rows in the 
project, therefore, to find similarity either applying CS, SC, or 
hybrid similarity average value obtained for each row (1st 
row) is compared to the remaining 99 rows. This process will 
provide an average value, which is used to find initial centroid 
of data that is given by equation (10). 

𝐺𝐻𝑆𝐴=∑ 𝐻𝑆/𝑛𝑛
𝑖=1          (10) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 6, 2022 

743 | P a g e  

www.ijacsa.thesai.org 

Where, 𝐺𝐻𝑆𝐴represents Gross Hybrid Similarity, HS 
indicates hybrid similarity value. 

For each index in HS, determined upper bound (UB), and 
Lower Bound (LB) values by multiplying 20 % of data to the 
obtained GHS average, adding and subtracting the obtained 
value to GHS. The added value is indicated by UB, and, 
subtracted value is represented by LB. Both UB and LB 
values are represented by equation (11), and equation (12), 
respectively. 

UB=𝐺𝐻𝑆𝐴 + 𝐺𝐻𝑆𝐴 × 0.20            (11) 

LB=𝐺𝐻𝑆𝐴 − 𝐺𝐻𝑆𝐴 × 0.20         (12) 

If the obtained average values of is greater than LB or less 
than UB (𝐺𝐻𝑆𝐴 > 𝐿𝐵 and𝐺𝐻𝑆𝐴 < 𝑈𝐵), then index value is 
selected. 

The algorithm for hybrid similarity measure is written. 

Algorithm: Hybrid Similarity (Soft Cosine Similarity) 

Input:PD  Uploaded project data to calculate similarity  

Output: SIMHHybridSimilarity for PD 

SIMH = [()] // to store cosine similarities values  

Sim-count = 0 

For m = 1  Length (PD) 

Current-PD = PD (m) 

    For n = m+1 Length (PD) 

         Reference-PD = PD (n) 

Calculate the cos similarity using given equation  

Current − PD ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. Reference − PD ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  ∑ Current − PD𝑘 × Reference − PD 𝑘

𝑛

𝑘=1

 

‖Current − PD⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = √Current − PD1
2 + Current − PD2

2 + ⋯+ Current − PD𝑛
2 

‖Reference − PD ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = √Reference − PD 1
2 + Reference − PD 2

2 + ⋯+ Reference − PD 𝑛
2
 

𝐶𝑜𝑠 (𝜃) =  
Current − PD ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. Reference − PD ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

‖Current − PD⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖‖Reference − PD⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
 

𝑆𝐼𝑀 𝑆𝑂𝐹𝑇𝐶𝑂𝑆 =  𝐶𝑜𝑠 (
𝑛

𝑖 = 1
|Current − PD ∩ Reference − PD|)) 

SIMH[Sim-count]={Cos(θ) + SIMSOFTCOS} 

Increment in index of array, Sim-count = Sim-count + 1 

     End – For 

End – For 

Return:SIMH as an output in terms of HybridSimilarity for PD 

End – Algorithm  

Now, apply K means as ML approach for centroid 
selection. 

ML is a branch of artificial intelligence (AI). In more 
detail, it is a method of data analysis that allows a machine / 
robot or any analysis system to learn independently by solving 
a number of similar problems. Machine learning aims to 
develop computer programs that can access information and 
use it to learn. The training process begins with a specific set 
of information, such as examples, direct experience, or 
instruction, to look for examples in the data and make better 
decisions in the future based on the examples we provide. The 
main purpose is to ensure that computers automatically learn 
without human intervention and outside help, and to regulate 
actions accordingly. 

ML algorithms are often classified as supervised, semi-
supervised or un-supervised. In general, these algorithms can 
apply past data to new data, using the noted examples to 
predict future events. Starting with the analysis of a known 
training database, the learning algorithm creates a resultant 
function to predict the output values. In doing so, the learning 
algorithm can also compare the result with specific "correct" 

samples of the latest data and find errors to change the 
development model accordingly. In semi-supervised ML 
approach small amount of data (labeled) is merged to the huge 
dataset (unlabeled). It lies between supervised (labeled data), 
and un-supervised learning (un-labeled data). In contrast, 
unsupervised ML algorithms are used when the information 
used for training is not classified or marked in any way. The 
system examines the data and can draw conclusions from the 
datasets. 

Improving machine learning algorithms is used to interact 
with the environment - trial and error search is the most 
important learning characteristic of this method, which allows 
programs to automatically detect ideal behavior in a specific 
context to maximize its performance. 

K-means is a clustering approach used to partitioned N 
number of data into k number of groups known an clusters. 
The process is followed as: 

 Initially, select K centroid, which is the center point of 
each fragmented data. 

 Allocate data point to the closest centroid. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 6, 2022 

744 | P a g e  

www.ijacsa.thesai.org 

 Reallocate centroid value as the calculated average 
value for each group. 

 Reallocate the data points to the adjoining centroid. 

 Repeat until the data points remain in the same group. 

After dividing data into different groups on the bases of 
boundary conditions as mentioned above, three centroids have 
been selected for the divided data. The process of centroid 
selection is as follows: 

Consider an initial set of k means (centroids) 
(C1, C2, …………Cn) in clusters (S1,, S2,          Sn). At the first 

stage, the centroids of the clusters are selected randomly or 
according to a certain rule (for example, choose the centroids 
that maximize the initial distances between the clusters). We 
refer observations to those clusters whose mean (centroid) is 
closest to them. Each observation belongs to only one cluster, 
even if it can be assigned to two or more clusters. Then the 
centroid of each i-th cluster is recalculated according to the 
equation (13). 

Cj =
1

Sj
∑ X(j)x(j)ϵSi

         (13) 

Thus, the k-means algorithm consists in recalculating the 
centroid at each step for each cluster obtained in the previous 
step. The algorithm stops when the value Cj does not change 

the maximum and minimum value. The three centroids are 
formed and named as centroid 1, centroid 2, and centroid 3, 
each represented by equation (14), equation (15), and equation 
(16) respectively. 

Centroid 1=[∑
𝐶𝑆

𝑛
, ∑

𝑆𝐶

𝑛
. ∑

𝐻𝑆

𝑛

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1        (14) 

Centroid 2=centroid 1+20%        (15) 

Centroid 3Centroid 1-20%        (16) 

The designed algorithm for K-means is written. 

Algorithm: K-means  

Input:PD  Uploaded project data for clustering 

Output: C-Data and C Clustered Data and their centroids 

Initialize an estimated Centroid C = C1, C2 and C3 

Where, 𝐶1 =  
𝑆𝐼𝑀𝐶𝑂𝑆

𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝐷
+

𝑆𝐼𝑀𝑆𝑂𝐹𝑇𝐶𝑂𝑆

𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝐷
+

𝑆𝐼𝑀𝐻

𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝐷
 

𝐶2 = 𝐶1 + 20% 𝑜𝑓 𝐶1 

𝐶3 = 𝐶1 − 20% 𝑜𝑓 𝐶1 

Calculate size of PD in terms of [Row, Col.] = size (PD) 

For i1 to all Row 

    For j1 to all column 

If PD (i,j)==C1 
        C-Data 1=PD (i,j) 

       Else if PD (i,j)==C2  
        C-Data 2=PD (i,j) 

       Else  
        C-Data 3=PD (i,j) 

      End  

      Adjust Centroid C using their mean 

      C = Average (C-Data 1, C-Data 2 and C-Data 3) 

    End – For  

End – For  

Return: C-Data and C as a Clustered Data and their centroids 

respectively  

End – Algorithm 

After selecting centroid, next step is to calculate Euclidian 
distance and hamming distance as metrics. The k-means 
method is a method of cluster analysis, the purpose of which is 
to divide m observations (from space𝑃𝑛) into k clusters, with 
each observation referring to the cluster to the center 
(centroid) of which it is closest. Euclidean distance is used as 
a measure of proximity, which is given by equation (17). 

𝑝(𝑥, 𝑦) = √(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2 + ⋯………(𝑥𝑛 − 𝑦𝑛)2   (17) 

=√∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1  

Where x, y represent the Euclidean vector. 

C. The Group Labelling 

As shown in Fig. 1, once the group is formed, the 
correlation between the group elements is calculated using 
Mean Square Error (MSE), Standard Error (SE) and Standard 
Deviation (STD) for both the groups. In order to neutralize, 
the evaluated parameters for every group, log scale is 
considered which joins summative of MSE, SE and STD. A 

ruleset for labelling the group is designed as follows. 

Algorithm Labelling 

Input: Groups , Evaluated Parameters 

Foreach grp in Groups  

 Calculate 
∑ 𝑀𝑆𝐸𝑛1

𝑖=1

𝑛
,
∑ 𝑆𝑇𝐷𝑛1

𝑖=1

𝑛
,
∑ 𝑆𝐸𝑛1

𝑖=1

𝑛
 

 𝐽𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙 . 𝐴𝑝𝑝𝑒𝑛𝑑 = log (
∑ 𝑀𝑆𝐸𝑛1

𝑖=1

𝑛
+

 
∑ 𝑆𝑇𝐷𝑛1

𝑖=1

𝑛
+

∑ 𝑆𝐸𝑛1
𝑖=1

𝑛
) 

End For  

Find min(𝐽𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙) and label it low effort as the co-

relation is high and viceversa. 

IV. ANALYSIS AND DISCUSSION 

In size and effort estimation in software project, there are a 
number of measures on the basis of which evaluations has 
performed. In this research, we have used three metrics to 
measure the performance of designed size estimation of 
software project as given by equation (18), equation (19), and 
equation (20). These are as follows: 

Mean Square Error (MSE): 

MSE=
1

𝑛
∑ 𝜀𝑖

2𝑛
𝑖=1           (18) 

Standard Error (SE):  

SE=∑ 𝜀𝑖
2𝑛

𝑖=1           (19) 

Standard Deviation (STD): 

STD=√
1

𝑛−1
∑ (𝑥𝑖 − �̃�𝑖)

2𝑛
𝑖=1          (20) 

In this research, we have applied data fragmentation 
approach in addition to K-means approach. The results 
evaluated based on above mentioned parameters is listed in 
Table I. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 6, 2022 

745 | P a g e  

www.ijacsa.thesai.org 

TABLE I. EVALUATED PARAMETERS 

Attributes MSE SE STD 

Project 0.0572 0.1247 0.472 

TeamExp 0.0269 0.1345 0.136 

ManagerExp 0.0378 0.2365 0.257 

YearEnd 0.0472 0.3254 0.369 

Transactions 0.0952 0.1025 0.158 

Length 0.0360 0.2456 0.354 

Effort 0.0761 0.6582 0.648 

Entities 0.0871 0.7251 0.756 

PointsNonAdjust 0.0675 0.6981 0.597 

Adjustment 0.0752 0.5368 0.694 

PointsAjust 0.0697 0.4865 0.486 

Language 0.0315 0.3785 0.697 

 

Fig. 3. MSE. 

Fig. 3 represents the MSE value analysed for 12 different 
attributes. X-axis and y-axis represents the number of 
attributes taken for software project and evaluated MSE value. 
It is observed that for transaction attribute, designed system 
show highest error, whereas for team expert error is analysed 
as minimum. The average mean square error obtained for the 
designed system is observed as 0.05895, which is very small, 
and the system can be considered as accepted one for the early 
size estimation of project using ML technique. 

SE is an estimate of the standard deviation of its sample 
distribution that roughly shows how much the value of a 
analyzed project rows can differ from its mean. The standard 
error of estimation is a value equal to the square root of the 
root mean square error (MSE) regression .MSE, in turn, is 
equal to the sum of the squares of the differences between the 
observed parameter (x) and the regression-estimated values 
(�̌�) calculated from all observations and referred to their 
number n as represented by equation (19). The standard error 
value has been measured to find out the degree of deviation of 
the values obtained using the regression, from the actually 
observed, and thus assess the accuracy of the corresponding 

model. The deviation has been represented in Fig. 4, in which 
the graph shows maximum and minimum SE value of 0.7251, 
0.1025 for attribute Entities and transaction respectively. 
Overall, the average SE analyzed for the proposed work is 
observed as 0.3877. 

The standard deviation is a statistical characteristic of the 
distribution of a random variable, showing the average degree 
of dispersion of the values of the quantity relative to the 
mathematical expectation, denoted by greek σ (sigma).The 
standard deviation is measured in units of the random variable 
itself and is used to calculate the standard error of the 
arithmetic mean, when constructing confidence intervals , 
when statistically testing hypotheses , when measuring the 
linear relationship between random variables. It is defined as 
the square root of the variance of a random variable. Fig. 5 
represents the examined STD for different attributes 
individually. The results show that for entities attribute, the 
designed early size estimation system using ML approach 
shows maximum STD, whereas, for 0.158 and 0.136 
respectively. 

0

0.02

0.04

0.06

0.08

0.1

M
SE

Number of Attributes



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 6, 2022 

746 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 4. SE. 

 

Fig. 5. STD.

V. CONCLUSION 

This paper represents a novel segmentation method in 
order to labels the projects as high size and low size. In order 
to do so, three similarity indexes namely CS, SC and a hybrid 
similarity which is a combination of CS and SC is designed. 
The value of ‘k’ which is total number of groups that can be 
formed from a supplied set of data is set to be 2 for “high” and 
“low” size. Once the data is divided, the proposed work model 
goes for group labelling which is based on machine learning 
parameters namely MSE, STD and SE. As the parameters are 
different in nature, a log scale neutralization is performed. A 
rule architecture was developed to judge the labels and over 
500 projects were labelled for high and low software size. A 
detailed evaluation of parameters is presented in section 4 and 
the current segmentation architecture will help in establishing 
Q-Learning mechanism for future project size estimations. 

REFERENCES 

[1] E. N. Regolin, G. A. De Souza, A. R Pozo, & S. R. Vergilio, “Exploring 
machine learning techniques for software size estimation,” In 23rd 
International Conference of the Chilean Computer Science Society, 
2003. SCCC 2003. Proceedings, pp. 130-136, November 2003. IEEE. 

[2] C. Zhang, S. Tong, W. Mo, Y. Zhou, Y. Xia, B. Shen, “Esse: an early 
software size estimation method based on auto-extracted requirements 
features,” In Proceedings of the 8th Asia-Pacific Symposium on Internet 
ware, pp. 112-115, 2016. 

[3] D. Azar, “A genetic algorithm for improving accuracy of software 
quality predictive models: a search-based software engineering 
approach,” International Journal of Computational Intelligence and 
Applications, vol. 9, no. 2, pp.125-36, 2010. 

[4] M. Kaur, S.K. Sehra, “Particle swarm optimization based effort 
estimation using Function Point analysis,” In 2014 International 
Conference on Issues and Challenges in Intelligent Computing 
Techniques (ICICT), pp. 140-145, 2014. 

[5] L. J. Lazić, M. Petrović, P. Spalević, S. Serbia, “Comparative Study on 
Applicability of Four Software Size Estimation Models Based on Lines 
of Code,” In Proceedings of the 6th WSEAS EUROPEAN COMPUTING 
CONFERENCE (ECC'12), Prague, Czeh Republic, pp. 71-80, 2012. 

[6] P.R. PVGD, C. V. Hari, “Software Effort Estimation Using Particle 
Swarm Optimization with Inertia Weight,” Global Journal of Computer 
Science and Technology, 1969. 

[7] B. Baskeles, B. Turhan, A. Bener, “Software effort estimation using 
machine learning methods,” In 2007 22nd international symposium on 
computer and information sciences, pp. 1-6, 2017. 

[8] Y. Ahn, J. Suh, S. Kim, H. Kim, “The software maintenance project 
effort estimation model based on function points,” Journal of Software 
maintenance and evolution: Research and practice, vol 15, no.2, pp.71-
85, 2003.  

[9] B. Baskeles, B. Turhan, A. Bener, “Software effort estimation using 
machine learning methods,” In 2007 22nd international symposium on 
computer and information sciences, pp. 1-6, 2007. 

[10] A.B. Nassif, D. Ho, L.F. Capretz, “Towards an early software estimation 
using log-linear regression and a multilayer perceptron model,” Journal 
of Systems and Software, vol. 86, no. 1, pp.144-60, 2013. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SE

Number of Attributes

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ST
D

Number of Attributes



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 6, 2022 

747 | P a g e  

www.ijacsa.thesai.org 

[11] S.M. Satapathy, B.P. Acharya, S.K. Rath, “Earl stage software effort 
estimation using random forest technique based on use case points,” IET 
Software, vol.10, no. 1, pp. 10-7, 2016. 

[12] P. Sharma, J. Singh, “Systematic literature review on software effort 
estimation using machine learning approaches,” In 2017 International 
Conference on Next Generation Computing and Information Systems 
(ICNGCIS), pp. 43-47, 2017. 

[13] D. Spikol, E. Ruffaldi, G. Dabisias, M. Cukurova, “Supervised machine 
learning in multimodal learning analytics for estimating success in 
project‐based learning,” Journal of Computer Assisted Learning, vol. 34, 
no. 4, pp. 366-77, 2018. 

[14] L. Lavazza, S. Morasca, “Empirical evaluation and proposals for bands-
based COSMIC early estimation methods,” Information and Software 
Technology, vol.109, pp.108-25, 2019. 

[15] A.B. Nassif, M. Azzeh, A.Idri, A. Abran, “Software development effort 
estimation using regression fuzzy models,” Computational Intelligence 
and neuroscience, pp.1-17, 2019. 

[16] R. Silhavy, P. Silhavy, & Z. Prokopova, “Using Actors and Use Cases 
for Software Size Estimation,” Electronics 2021, vol. 10, p. 592, 2021. 

[17] M. Daud, & A. A. Malik, “Improving the accuracy of early software size 
estimation using analysis-to-design adjustment factors (ADAFs),” IEEE 
Access, vol. 9, pp. 81986-81999, 2021. 

[18] Y. Suresh, “Effective ANN Model based on Neuro-Evolution 
Mechanism for Realistic Software Estimates in the Early Phase of 
Software Development,” International Journal of Advanced Computer 
Science and Applications, vol.13, no.2, 2022. 

[19] Manisha, Rahul Rishi, "Early Size Estimation using Machine Learning," 
8th International Conference on Computing for Sustainable Global 
Development (INDIACom), 2021, pp. 757-762. 

[20] Manisha and Rahul Rishi, "An Enhanced Metaheuristic Based Cuckoo 
Search Algorithm for Software Size Estimation," 4th International 
Conference on Recent Developments in Control, Automation & Power 
Engineering (RDCAPE), 2021, pp. 526-520, doi: 
10.1109/RDCAPE52977.2021.9633575. 


