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Abstract—Software reliability estimation using machine 
learning play a major role on the different software quality 
reliability databases.  Most of the conventional software 
reliability estimation model fails to predict the test samples due 
to high true positive rate of the traditional support vector 
regression models. Most of the traditional machine learning 
based fault prediction models are integrated with standard 
software reliability growth measures for reliability severity 
classification. However, these models are used to predict the 
reliability level of binary class with less standard error. In this 
paper, a hybrid support vector regression-based quartile 
deviation growth measure is implemented on the training fault 
datasets. Experimental results are simulated on various 
reliability datasets with different configuration parameters for 
fault prediction. 
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I. INTRODUCTION 
Reliability, in its simplest form, means that a failure 

cannot occur within a certain period of time. The reliability 
concept thus stresses the probability, expected function (s), 
time, and operating conditions of four components. Reliability 
also depends on the conditions of the system that may or may 
not change over time. Software systems have increased 
significantly in size and complexity in recent decades, and the 
trend is expected to continue in the future [1]. Computer 
reliability and accessibility, usability, performance, 
serviceability, capabilities, and documentation are important 
attributes of software quality. Software reliability is difficult 
to achieve since software complexity seems to be high. While 
it is difficult to achieve a certain degree of reliability for any 
highly complex system, including software, system developers 
tend to upgrade the software layer with complexity and 
rapidly developing system sizes. The Software Reliability 
Growth Model (SRGMs) is a software reliability model 
(SRMs) design recognition class which is converted into a 
mathematical model. The reliability assessment of recent 
system updates is an important challenge in IT software 
management [2]. 

The probabilistic models are based on dynamic models and 
are represented as time-based statistical distributions. All these 
models are used to predict current trends and predict future 
trends in reliability. Probabilistic software reliability 
prediction models use statistical methods to estimate variables 
such as system error numbers, failure rates, software 
complexity, programme failures, etc. There are a number of 

software models in the literature, but none of them is ideal. 
The selection of an appropriate estimate model based on a 
specific application is a major research problem [3]. A data set 
that includes instances of defined classes and a test data set for 
which the class must be decided must therefore be entered. 
The quality of the data provided for learning, and also the type 
of algorithm used in machine learning, depends greatly on the 
ability to classify successfully. Categorical labels (discrete, 
unorderly) estimate classification results of continuously 
valued function models. It implies that numerical data values 
are expected instead of class marks to be incomplete or 
inaccessible. Regression analysis is the most widely used 
statistical method for numerical forecasting. Although other 
methods are available, the prediction also consists of 
identifying distribution trends based on available data. Genetic 
algorithms are also implemented to maximise the number of 
delayed input neurons and the number of neurons in the neural 
network's hidden architectural layer. We have demonstrated, 
using the software model for online adaptation that good-
fitness and next-step predictability are better than traditional 
methods when cumulative software failure times are forecast 
because those variables' meanings are certainly not known. 
Many potential values can be equated to the likelihood of 
occurrence. Therefore, we really don't know when the next 
loss will happen. We know only a few possible failure times 
and their likelihood. “T” Two types of fault data, namely, 
time-domain data and interval-domain data, are widely used in 
software reliability modeling. The time-domain form is 
determined by the time the failure occurred. Learning 
supervised is a methodology for machine learning to build a 
data structure for preparation. Maximum Likelihood 
Assessment (MLE) is a common statistical method for the 
determination of the probability distribution parameters 
underlying a given dataset. Throughout the literature, there are 
many predictive models of the reliability of software-based 
neural networks, which are better known than certain 
statistical models [4-6]. Computer reliability is one of the key 
factors taken into account in maintaining the accuracy of the 
computer. Simply put, software reliability is about system 
failure or failure [7]. "Success and success" are two distinct 
variables commonly included in our software development. A 
fault could be identified as a fault or error during the 
development phase. As software constraints and modular 
complexity increase, the manufacture of a quality finished 
product is too difficult. Software defects may lose cash and 
time, so bugs for good performance products and decision-
makers need to be predicted in advance. As a consequence, 
these bug accounts contain comprehensive data on bugs along 
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with the seriousness level [8] within different bug tracking 
frameworks. Generally, software bugs are defective 
limitations that trigger inaccurate outputs. These limitations 
can be described as a collection of characteristics to discover 
the bugs. These features affect the bug prediction model's 
effectiveness. Applications for software defect detection 
include decision trees, multifunctional regressions, neural 
networks, SVM, nave Bayes, and various classification types 
and selection models. But the relevant flaws for suitable 
classification could not be selected in these designs. Nave 
Bayes is a highly efficient method of classification for 
predicting flaws based on samples of practice. A naive Bayes 
system sees bug predictions as binary classifiers, i.e., by 
evaluating historical measurement information, it trains and 
predicts the predictor. If the attribute kinds in the metric 
information are blended, errors owing to lacking values or 
uncertain data are hard to estimate. Three separate layers of 
dynamic analysis can be classified. A systemic testing layer is 
the first layer. This layer is designed into the policy to run 
target programs. These strategies are designed to efficiently 
achieve error states. The second layer is a layer of data 
retrieval. In order to check programme correctness, data on the 
inner behaviour of the target programmes is collected. In the 
third level, monitors create from the information collected an 
abstract model of the destination programme and then check 
for possible errors in the programme on the abstract model. 
The test limits are fundamental to all dynamic analysis 
techniques. Dynamic analysis cannot support full target-
program analysis because it uses monitored partial programme 
compliance. The other restriction is that it is hard to 
implement dynamic analysis methods except for the 
completion of the target programs. Executable environments 
and sample instances involve dynamic analysis methods. [9] 
the significance of various software prediction-model metrics. 
In this model, correlations and metric events were introduced 
using distinct algorithms in the bug forecast model, and bug 
counts were calculated in each metric. Object-oriented 
measurement metrics for object-oriented quality software A 
model for bug-projection was proposed and its levels with 
high, medium, and low severity defects were found to be 
lower than traditional models with various severe values. The 
technique of regression is intended to predict the quantity and 
density of software defects. The technique of classification 
aims at determining whether or not a software module (e.g. a 
package, code, or file) has a higher risk of defect than another. 
This approach [10] uses fuzzy logic with neural networks in 
software reliability prediction. The recurrent neural network is 
trained using the back-propagation algorithm. The number of 
failures and cumulative execution time in the failure dataset 
are used as inputs to the network to predict the next step 
failure. 

The rest of the paper is organized as follows. Section II 
describes the related works of the SRM and its limitations. 
Section III describes the proposed solution to the SRM based 
machine learning framework on different dataset. Section IV 
describes the experimental results and analysis. Finally, we 
conclude the paper in Section V. 

II. RELATED WORK 
Lazarova et al. have developed various SRGMs 

concerning the growth rate software reliability index for error 
detection [11]. Li et.al, proposed a measuring method as an 
indicator collection, gathering data for the testing of all those 
metrics [12]. Mirchandaniet al. suggested the non-
homogeneous Poisson method-based software reliability 
growth pattern because the detection of these errors might also 
lead to detection of other errors without failure [13]. Nagaraju 
proposed an evolutionary model of the neural network to 
estimate and predict the software reliability based on a 
multimedia architecture input and output.  In this study, the 
development of neural network models for software-reliability 
predictions was proposed using an Exponential and 
Logarithmic Encoding Scheme. Neural network models with 
the two encoding schemes above have shown a better 
prediction of cumulative failures than some statistical models. 
However, [14] the value of the encoding parameter is 
calculated by repeated hit / test experiments. This paper 
presents recommendations for encoding parameter selection, 
which provide consistent results for various data sets. The 
proposed solution is implemented using 18 separate data sets 
and a clear result for all datasets is observed. The method was 
compared to known statistical models using three sets of 
change points. 

Rani [15] proposed a neural network approach focused on 
predictions of software reliability. He compared the approach 
to parametric model recalibration with some meaningful 
predictive measures with the same data sets. We concluded 
that better predictors are neural network methods. 

Rizvi et al. [16] proposed a system in which software 
reliability based on the neural network would be expected. 
They used the reverse propagation algorithm for instructions. 
They used several failure times in the last 50 to estimate the 
next failure as output. The performance of approaches was 
calculated by changing the number of input nodes and hidden 
nodes. We concluded that the success of the strategy usually 
depends on the quality of the data sets. 

Sagar [17] submitted a neural network approach focused 
on the evolutionary prediction of device reliability. They used 
single output architecture with multiple delayed inputs.   
Vojdani [18] suggested two models for cumulative system 
failure estimation, such as exponential neural network 
encoding (NNEE) and logarithmic encoding (NNLE). He 
encoded the data with the above two encoding scheme, i.e. the 
time of execution. He used the four dataset method and 
compared the results with some statistical models and found 
better results than those models. 

Wang et al. [19] have proposed to reuse data from 
previous projects / releases for failure to boost early reliability 
for current projects / releases. Wang et al.[20] proposed the 
combinational dynamic weighted model (DWCM) based on a 
neural network for the prediction of device reliability. Based 
on the software-reliability growth model (SRGM), they used 
various activation functions within the secret layer. The 
method was used on two sets of data and the effect was 
compared with certain statistical models. The experimental 
results indicate that the DWCM approach is more successful 
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than traditional models. The neural network is a methodology 
for performance computation. The machine performance can 
previously be predicted on the basis of our neural network 
architecture. The system is also trained unless its desired 
output or destination can be achieved. For training purposes, 
we use different learning techniques that are freely described 
as supervised and unattended learning [21]. Software 
reliability is a quantitative study of every software designed 
since it affects directly software quality [22]. An efficient 
software reliability model is required in order to achieve good 
results. The previously developed reliability model is based on 
the analysis of faults linked to the code and context in which it 
was implemented [23]. All software reliability models are 
designed based on the execution time and calendar time. The 
time required or spent by the processor in the execution of 
instructions from the program is the execution time of any 
program [24]. 

Research Gaps: From the literature works, the main gaps 
identified for the software reliability estimation process are: 

1) Difficult to predict the new reliability test data using 
machine learning approach. 

2) Traditional SVM require different hyper parameters in 
order to improve the classification optimization. 

III. PROPOSED GEOMETRIC PERTURBATION BASED PRIVACY 
PRESERVING CLASSIFIER 

In this section, a statistical quartile deviation-based 
improved SVR prediction model is proposed on the software 
reliability datasets. In this work, a novel approach to predict 
the software reliability on the training and test software fault 
data. This model is integrated with the quartile deviation 
growth function in order to fit the S shaped curve. In the 
proposed model, reliability estimation is performed in two 
phases. In the initial phase, quartile deviation based error 
estimation is calculated on the training data for software 
reliability prediction. In the second phase, a hybrid support 
vector regression model is designed and implemented on the 
computed S-shaped training data as shown in Fig. 1. 

 
Fig. 1. Proposed Ensemble Deep Learning Framework for Privacy 

Preserving. 

In the proposed model, an enhanced support vector 
regression is designed and implemented on the software fault 
dataset to improve the prediction rate and to minimize the 
error rate. The following proposed SVR model is implemented 
on the fault data. Initially, input data is given to hybrid SVR 
model to predict the effort rate. The prediction values of the 
SVR are tested using the Quartile deviation model and 
maximized composite reliability measures. These measures 
are used to find the deviation, skewness and shape of the 
dataset. The impact of failures on decision making is 
calculated using traditional software metrics. Extensive 
research was done using one or two software stage metrics to 
discover the error models. However, redundant and 
meaningless characteristics affect the effects of traditional 
designs. Also, the relationship between the new metrics and 
the traditional metrics is becoming too complex to make 
decisions as the number of software metrics increases. 
Generally, software metrics are used to gain quantitative 
insight into the software or its characteristics. The value of 
metrics is an ordinal, an interval, or a nominal scale. Software 
quality is assessed by the various features such as 
performance, documentation, easy maintenance and system 
soundness. Software reliability is considered as it is difficult to 
achieve with the complex nature of software. The software is 
therefore layered by the system developers throughout the 
design process to achieve a certain level of reliability, to 
support the later update of the software system and also to 
incorporate elasticity for increased system size. The reliability 
of software is inversely linked to the level of software 
complexity, since complexity is directly associated with 
enhanced capacity and strong software system features with 
enhanced functions. The main objective of this paper is to 
improve the software reliability prediction using the hybrid 
SVR model. 

Let m(x) be the input data, m be the estimation function. 
M value is estimated by using multiple linear regression 
method. Then the objective function of the proposed SVR 
model is given as 

𝐶(𝑥) ≔
1
2
∥ 𝑤 ∥2+

 

 

Where 

 
MLR(x) = Multiple linear regression 

 

 

IV. EXPERIMENTAL RESULTS 
In this work, experimental results are simulated with java 

environment for different software reliability datasets. The 
first, second, third and fourth datasets DS1, DS2, DS3, and 
DS4 are taken from Rome air development centre (RADC) 
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projects. Each dataset and its type are given in Table I, 
Table II, Table III and Table IV. 

TABLE I. DS1 FOR FAULT PREDICTION BASED ON SEVERITY LEVEL 

W CF Label 

1 16 L 

2 24 L 

3 27 L 

4 55 M 

5 41 L 

6 49 L 

7 54 M 

8 58 M 

9 69 M 

10 75 H 

11 81 H 

12 86 H 

13 90 H 

14 93 H 

15 96 H 

16 98 H 

17 99 H 

18 100 H 

19 100 H 

20 100 H 

TABLE II. DS2 FOR FAULT PREDICTION BASED ON SEVERITY LEVEL 

W CF Label 

1 28 L 

2 29 L 

3 29 L 

4 29 L 

5 29 L 

6 37 M 

7 63 M 

8 92 H 

9 116 H 

10 125 H 

11 139 H 

12 152 H 

13 164 H 

14 164 H 

15 165 H 

16 168 H 

17 170 H 

18 176 H 

TABLE III. DS3 FOR FAULT PREDICTION BASED ON SEVERITY LEVEL 

W F label 

40 71 M 

41 72 M 

42 74 M 

43 74 M 

44 80 M 

45 84 M 

46 84 M 

47 84 M 

48 84 M 

49 85 H 

50 86 H 

51 89 H 

52 90 H 

53 90 H 

54 92 H 

55 108 H 

56 120 H 

57 128 H 

58 129 H 

59 139 H 

60 146 H 

TABLE IV. DS4 FOR FAULT PREDICTION BASED ON SEVERITY LEVEL 

W F Label 

      33 79 L 

34 80 L 

35 82 L 

36 83 L 

37 83 L 

38 84 L 

39 84 L 

40 85 M 

41 85 M 

42 87 M 

43 87 M 

44 87 M 

45 89 M 

46 89 M 

47 91 H 

48 91 H 

49 94 H 
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Fig. 2 represents the mean time to failure rate and its 
runtime for the proposed exponential distribution function. 
Here, the proposed exponential function is used to test the 
reliability of the given input parameters. 

Fig. 3 represents the F-measure rate for the proposed 
exponential distribution function to the existing models. Here, 
the proposed exponential function is used to test the reliability 
of the given input parameters. From the figure, it is observed 
that the proposed approach has better improvement over the 
conventional model on all the datasets. 

Fig. 4 represents the recall rate for the proposed 
exponential distribution function to the existing models. Here, 
the proposed exponential function is used to test the reliability 
of the given input parameters. From the figure, it is observed 
that the proposed approach has better improvement over the 
conventional model on all the datasets. 

 
Fig. 2. Mean Time to Failure Rate and Runtime of the Proposed Model to 

the Exponential Model. 

 
Fig. 3. Comparison of Proposed Fault Prediction Model to Existing 

Weighted SGRM Model on All Datasets. 

 
Fig. 4. Comparison of Proposed Fault Prediction Model to Existing 

Improved Weighted SGRM Model on All Datasets. 

V. CONCLUSION 
Software reliability fault prediction plays a vital role in 

small- and large-scale software applications. In this paper, a 
hybrid support vector regression-based quartile deviation 
model is implemented on the different software reliability 
datasets. Most of the traditional machine learning based fault 
prediction models are integrated with standard software 
reliability growth measures for reliability severity 
classification. However, these models are used to predict the 
reliability level of binary class with less standard error. 
Experimental results proved that the proposed reliability fault 
prediction model has better performance in terms of prediction 
and time is concerned. 

VI. FUTURE WORK 
In future work, a supervised learning model is integrated to 

the SVR model in order to predict the reliability for the new 
unclass labelled data. 
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