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Abstract—The principal objective of this paper is to provide
a parallel implementation focused on the main steps of the
parameter-free clustering algorithm based on K-means (PFK-
means) using the Spark framework and a machine learning-
based model to process Big Data. Thus, the process consists of
parallelizing the main tasks of the first stage of the PFK-means
clustering algorithm using successive RDD functions. Then, the
parallel K-means provided by Spark MLlib is invoked by setting
the cluster centers and the number of clusters determined
in the previous step as input parameters of the parallel K-
means. Furthermore, a comparison between the parallel designed
algorithm and the parallel K-means was conducted using UCI
data sets in terms of the sum of squared errors and the processing
time. The experimental results, performed locally using the Spark
framework, demonstrate the efficiency of the proposed solution.
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I. INTRODUCTION

Today’s digital world is experiencing unprecedented
progress, causing the generation of an immense amount of data
presented in various formats and derived from many sources,
including social networks, the internet of things, mobile apps,
multimedia, financial services, and ERP systems. Hence, man-
aging this huge amount of data requires efficient techniques
and tools to ensure that the data is processed efficiently to
make the right decision according to the application domain
[1]. Researchers and scientists are constantly contributing to
and developing new machine learning algorithms, as well as
designing more efficient frameworks capable of dealing with
the continuous flow of data generated each lapse of time [2]
[3].

Cluster analysis is one of the appropriate data mining
techniques for ensuring efficient Big Data processing [4] [5].
Indeed, the purpose of cluster analysis is to place similar data
objects in the same group to construct disjoint clusters. The
concept of similarity is firmly based on a distance measure
depending on the characteristics of the data object’s features.
In the same context, several Big Data clustering algorithms
were designed based on specific computing platforms aiming
to either distribute the clustering tasks on several nodes to
perform the necessary calculations in a parallel way or by using
a server with high capacities in terms of CPUs, memories, and
I/O resources [6] [7] [8].

This paper proposes a new parallel clustering algorithm
based on Spark [9], designed to enhance the sequential PFK-
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means algorithm to leverage distributed systems and process
big data. As a result, the proposed parallel implementation
is carried out using open-source Hadoop, the Spark frame-
work with RDDs, and a machine learning-based model. More
specifically, the proposed algorithm aims to parallelize the
two principal stages of the PFK-means algorithm using Spark
RDDs functions. The first one consists of applying successive
RDDs functions in order to perform the computation of the
Euclidean distances, build the initial clusters, and finally up-
date the different clusters to obtain the cluster centers and,
consequently, the number k. The second stage invokes the
use of the parallel K-means provided by Spark mLlib with as
input parameters the cluster centers and the number of clusters
discovered in the previous phase. In that respect, a comparison
between the developed parallel algorithm and the parallel K-
means provided by Spark mLlib was conducted on some UCI
data sets based on the sum of the squared error measure
and the processing time. The results obtained show that the
suggested solution yields more efficient clustering compared
to the parallel K-means with the random initialization mode.
The main contributions of this paper are as follows:

• Improve the approach to determining the initial
cluster centers of the cluster construction step

• Suggest a parallel implementation of the main
steps of the PFK-means clustering algorithm
based on spark RDDs in order to process big
quantitative data.

• Establish a comparison between the designed al-
gorithm and the parallel K-means algorithm pro-
vided by spark mLlib.

The remainder of this paper is organized as follows: Section
II discusses a literature review. Section III gives a short
presentation of parallel computing using the Spark framework.
Section IV provides the design and implementation of the
parallel developed algorithm. Section V shows the results of
the experiment. Finally, Section VI concludes the paper and
presents future perspectives.

II. LITERATURE REVIEW

Over the years, clustering algorithms have undergone sev-
eral evolutions and improvements to face the challenges of
managing heterogeneous and complex data generated from
multiple and varied digital sources. In particular, K-means [10]
[11] is one of the most widely used clustering algorithms due
to its simplicity and efficiency in processing data. This algo-
rithm has experienced several adaptations and improvements
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to address initialization issues, exploit distributed systems and
handle Big Data [12] [13] [14]. In this context, several research
studies based on different parallel computing architectures
have been carried out to give birth to powerful and scalable
algorithms.

Among these algorithms, a parallel adaptive Canopy-K-
means algorithm [15] aims to solve the manual selection
problem for the distance threshold T2 in the Canopy process.
In this regard, it is improved by adaptive parameter estimation
using the MapReduce-based Model and the Spark framework.
The clustering results on the Stanford Large Network Dataset
Collection (SNAP) data set and self-built Dimension demon-
strate the efficiency of the proposed solution.

Another improvement in the parallel K-means is introduced
in [16], which is an improved K-Means Clustering Algorithm
for Big Data Mining based on the density of data points
to construct the corresponding clusters. Thus, the algorithm
was parallelized on the Hadoop platform using the distributed
database to improve its efficiency and decrease the running
time. The simulation results prove that the enhanced solution
outperforms the classical K-means and the DBSCAN algo-
rithm in terms of clustering accuracy by 10%.

In the same context, a clustering center selection method
[17] was developed to solve the issue of the random nature and
limited quality of initial cluster center selection. In addition, a
parallel implementation using the Spark computing framework
was suggested to perform Big Data clustering and therefore
obtain higher execution efficiency, accuracy, and good stability
in big data.

More recently, another improved initialization method [18]
for the K-means algorithm was implemented to enhance the
initial points selection strategy using sparse reconstruction.
Moreover, the parallel version of the algorithm was performed
based on the MapReduce framework and Hadoop cluster using
the real customer data from the JD Mall. The experimental
results demonstrate its efficiency in processing large amounts
of data.

Another contribution aiming to address the K-means algo-
rithm initialization issue is a parallel clustering algorithm based
on grid density [19]. Indeed, the process of the algorithm is
based on specific strategies, including, locality sensitive hash
function(DP-LSH), the adaptative grouping strategy (AGS),
and the MapReduce framework to operate the cluster centers in
parallel and therefore increase the performance of the proposed
approach.

III. PARALLEL COMPUTING USING SPARK FRAMEWORK

Parallel computing is one of the efficient solutions to
process large amounts of data using computing platforms.
Indeed, these platforms allow the distribution of the calcu-
lations according to different architectures [20]. Such plat-
forms can be either horizontally scaled platforms or vertically
scaled platforms [7]. In particular, Spark is a horizontally
scalable cluster computing framework [9], performing parallel
processing for data-intensive applications with working sets.
These applications are managed by the driver program, which
allows them to execute the user’s main function as well as the
parallel operations in a cluster. Hence, it has the advantage

Fig. 1. Spark Architecture.

of executing tasks by ensuring locality-aware scheduling, fault
tolerance, and load balancing [9]. The spark is distinct from
MapReduce since it handles iterative jobs and enables users
to run queries on a Big Data set by loading into memory only
the required data set. More specifically, the Spark framework
is structured around two main abstractions: resilient distributed
dataset (RDD) and shared variables. The RDD is a collection
of items distributed through the cluster nodes that can persist
in memory to be reused in the event of parallel operations.
The shared variables are also used in parallel operations to
share the necessary variables among jobs or between jobs
and the driver program. In addition, Spark is powerful and
outperforms the Hadoop MapReduce framework by 10× in
interactive machine learning workloads. Fig. 1highlights the
basics of spark architecture.

IV. THE PROPOSED PARALLEL PFK-MEANS

This section first introduces an overview of the PFK-
means clustering algorithm for processing quantitative data,
then gives a detailed description of the implementation of
the parallel algorithm designed for Big Data processing, and
finally presents the algorithm describing the various Spark
RDD functions that allow the parallelization of the tasks of
the suggested algorithm.

A. The Sequential PFK-means

The PFK-means algorithm [21] is a parameter-free clus-
tering algorithm aiming to construct progressively homoge-
neous clusters until the appropriate number of clusters is
automatically detected. This heuristic is a combination of
the E-transitive heuristic [22] adjusted for quantitative data,
and the traditional K-means [10] [11]. Indeed, the sequential
version of the PFK-means algorithm performs a partitioning
clustering based on two main stages. The first one aims to
construct clusters successively based on the similarity between
the cluster centers and the data objects using the Euclidean
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Fig. 2. Sequential PFK-means Flowchart.

distance calculation and consequently, gets the initial cluster
centers and the number of clusters k, which are the two
primary input parameters for the K-means algorithm. The
second stage consists of applying the K-means algorithm to
the same data set taking into consideration the cluster centers
obtained and the number of clusters k reached in the first stage.
The first stage of the PFK-means algorithm is an independent
clustering algorithm that enables the discovery of clusters with
appropriate cluster centers. The K-means algorithm is applied
to enhance the quality of the clusters obtained. Fig. 2 resumes
the main steps of the PFK-means algorithm.

B. Design and Implementation of the Parallel PFK-means

The PFK-means is a sequential and iterative clustering al-
gorithm, suitable for processing unsupervised machine learning
data sets. However, the efficiency of this algorithm will be

Fig. 3. The Design of the Parallel Implementation.

restricted when dealing with a large amount of data. Among
the solutions to improve the performance of this algorithm and
make it suitable for processing Big Data is the parallelization
of its tasks using the open-source Hadoop, Spark RDD, and
Machine Learning-based Model. In that respect, the imple-
mentation of the parallel version of PFK-means consists of
the parallelization of its two main stages. In this way, the first
stage consists of the parallelization of three principal tasks,
including the calculation of the total average of the Euclidean
distances, the construction of the initial clusters, and assigning
the data objects to the appropriate clusters as well as updating
the discovered cluster centers. The next stage involves the use
of the parallel K-means provided by spark mLlib, using as
input parameters the discovered cluster centers as well as the
number of clusters automatically detected in the first stage.
Fig. 3 illustrates the design of the parallel implementation of
the PFK-means. In the following, the steps of the initial stage
will be thoroughly described.

1) Calculation of the Total Average of the Euclidean dis-
tances: In order to compute the total average of the Euclidean
distances, the process starts by reading the data set being
processed locally into RDDs partitions since it is the first
step. Then these RDDs’ partitions are transformed using the
Map function with the purpose of calculating the Euclidean
distance between each two data objects, which is performed
in several iterations. Therefore, in each iteration, the Reduce
function sums the partial Euclidean distances for each partition
Map. Then, after completing all the iterations, another Reduce
function is applied to the final result, in order to obtain the total
average of the Euclidean distances. Fig. 4 depicts the process
of spark RDDs to compute the total average Euclidean distance
of the processed data set.

Although the use of Spark is optimal since it avoids
storing the data on a hard disk, the calculation of the average
of the Euclidean distances of the data set is costly. It is,
therefore, essential to optimize this calculation. The first way
involves calculating the average of the Euclidean distances of a
sample instead of processing the entire data set using the Map
and Reduce functions. The second solution consists of first
reordering the whole data set randomly and then applying the
MapPartitions function, which allows decomposing the data
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Fig. 4. The Parallel Process of the Average of Euclidean Distance
Calculation.

set into a specific number of partitions. Then, each partition
performs the computation of the two-by-two Euclidean dis-
tances of a part of the data. Thus, the result produced by the
MapPartitions function is transmitted to the Reducer, allowing
the calculation of the total average of the Euclidean distances.
In this solution, the MapPartitions and Reduce functions are
invoked only once, so the calculation time is much reduced
compared to the solution explained previously.

2) The Construction of the Initial Clusters: This step starts
by choosing the first data object in the data set as the first
cluster center. Then, the data objects similar to this cluster
center are gathered in such a way that the Euclidean distance
between this cluster center and each data object in the whole
data set is less than the total average of the Euclidean distances
calculated in the previous step. Contrary to the sequential
version of the algorithm in which the construction of the
first cluster is realized in n iterations, the construction of the
first cluster in the parallel version of the algorithm is done
using the filter function, which selects the elements similar
to the cluster center by calculating the Euclidean distances in
parallel. Subsequently, the cluster center of the second cluster
is determined in such a way that the data object similar to the
first cluster center whose Euclidean distance is the greatest
is compared to the data objects not similar to the center, so
the data object whose Euclidean distance yields an average
value is chosen as the second cluster center. Consequently, the
determination of the cluster center is realized using the filter
function, which allows selecting the cluster center among the
objects not similar to the first cluster center by calculating
the Euclidean distances in parallel. In this way, the other
cluster centers are determined successively to follow the same
process. This process is finished when all the data objects are
classified and there are no more data objects to choose from
as a new cluster center. And lastly, it is important to mention
that during the construction of the clusters, each data object
can be placed in several clusters, and therefore the clusters
achieved at the end of this step are overlapped. This allows for
the enlargement of the size of the clusters and, accordingly,
improves the quality of the cluster centers obtained. Fig. 5
shows the cluster construction process using the Spark RDDs
functions.

Fig. 5. The Parallel Process of Initial Cluster Construction.

Fig. 6. The Parallel Process of Updating Clusters.

3) Assigning the Data Objects to the Appropriate Clusters
and Update Cluster Centers: After having built the initial
clusters in the previous step, this step consists of assigning
to each cluster center found in the previous step the data
objects similar to it by using the filter function. This function
selects the data objects by performing the calculations of the
Euclidean distances in parallel. Then, the Reduce function is
applied to the RDD returned by the Filter function to update
the value of the cluster center by computing the average of
the data objects contained in the corresponding cluster. In this
step, each data object can be associated with only one cluster,
and consequently, there will be no overlaps in the resultant
clusters. Fig. 6 describes the process of obtaining the final
hard clusters with the new cluster centers using the Filter
and Reduce functions. Once the hard clusters with updated
cluster centers and the number of cluster centers detected
automatically have been obtained, the next step is to apply
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the parallel K-means provided by Spark mLlib with the input
parameters obtained from the first stage, which are the cluster
centers and the number of clusters.

C. The Parallel Proposed Algorithm

The following pseudo-code (Algorithm 1) describes the
stages of the parallel implementation of the PFK-means algo-
rithm. Hence, the process begins by reading the file containing
the set of quantitative data (lines 1 and 2). Subsequently, it
seeks to calculate the average of the Euclidean distances of
the data set using one of the previously explained methods
(line 3). The next step is to build the initial clusters to obtain
the list of cluster centers to be used in the next step (from 4 to
17). Afterward, the process aims to assign the data objects to
the appropriate centers and update the different centers (from
18 to 24). The last step intends to invoke the parallel K-means
provided by Spark mLlib using the parameters obtained from
the previous step (from 25 to 27).

Algorithm 1 The Parallel Implementation of PFK-means
Input:A set of n data objects X
Output:The initial cluster centers Tcnext. The number of
clusters automatically computed
begin

1: ReadFile = sc.textFile(”the file path”)
2: dtSet = ReadFile.map(lines).cache()
3: TotalAverage = ComputeTotalAverage()
4: sc.broadcast(TotalAverage)
5: NextCenter = newList[0], Next = True
6: while Next do
7: sc.broadcast(NextCenter)
8: Cluster = dtSet.filter(dist(X,NextCenter) <

TotalAverage)
9: NextC= dtSet.filter(dist(X,NextCenter) >

TotalAverage)
10: SortedList = NextC.sortBy(dist(X,FarthestElement))
11: NextCenter = MeanV alue(SortedList.collect())
12: Add the constructed Cluster to Tcnext
13: if NextCenter == Null then
14: Next == False
15: end if
16: end while
17: Save the set of centers in Centers
18: i← 0
19: while i < ClustersSize do
20: Cluster = dtSet.filter(dist(X,Centers[i]) <

TotalAverage)
21: UpdateCenter=Cluster.reduce(computeMean(X,Y ))
22: Remove the filtred elements from the dataset dtSet
23: Save the new cluster center in NewCenters
24: end while
25: tmax = maxIterations,dt = dtSet,k =

NewCentersSize
26: initializationMode = KMeansModel(NewCenters)
27: FinalC=KMeans.train(dtSet,k,tmax,initializationMode)
end begin

TABLE I. DESCRIPTION OF THE REAL-LIFE DATA SETS

data set Data size Attributes Cluster number

Iris 150 4 3
Wine 178 13 3
Pima Indian Diabetes 768 8 2
Letter-Recognition(LR) 20000 16 26

V. EXPERIMENTS

For the purpose of implementing the parallel version of
PFK-means with Spark RDDs in stand-alone mode, a machine
of 12GB memory and 1TB hard disk was configured with
Spark (version 3.0.3) and Hadoop (2.7 version) and PyCharm
IDE by installing useful Pyspark libraries (PySpark version
is 3.9). Subsequently, the proposed algorithm was evaluated
on real-world data sets extracted from the UCI machine
learning repository based on the sum of squared errors and
the execution time to measure the clustering performance.
In addition, the parallel PFK-means were compared with the
parallel K-means provided by the mLlib library to demonstrate
the efficiency of the developed solution. It is also crucial to
notice that the parallel implementation of PFK-means has been
tested locally in the PyCharm IDE and, therefore, the size of
the data sets has been limited.

A. Data Sets Description

Table I provides a short description of three real-world
datasets, extracted from the UCI machine learning repository
[23], serving to validate the efficiency of the parallel im-
plementation of PFK-means, including Iris, Wine, and Letter
Recognition (LR). In this way, each data set is represented by
a data size, a determined number of clusters, and the number
of attributes that constitutes the vectors of the data sets.

B. Results Achieved in Terms of the Sum of Squared Errors

One of the effective metrics to evaluate the quality of
clustering is the sum of the squared errors. This measure is
obtained by calculating the sum of the Euclidean distances
between each cluster center and the set of data objects be-
longing to this cluster. Therefore, the sum of the results found
corresponds to the sum of squared errors of the set of clusters.
Accordingly, the more minimal this measure is, the better the
result is achieved.

Table II reports the sum of squared errors of the clustering
result obtained by running the parallel PFK-means and the
parallel K-means provided by Spark mLlib on the Letter
Recognition (LR) data set. The execution of parallel PFK-
means performs clustering by automatically detecting the
number of clusters that can be varied by changing the position
of the new cluster center determined in each iteration of the
cluster construction step of the algorithm. Thus, the reported
results are obtained by iterating the parallel K-means one,
three, and ten times, respectively. In other words, for the
parallel PFK-means, the reiteration is applied just to the second
phase of the algorithm, which consists of applying the parallel
K-means implementation of Spark mLlib using the cluster
centers and the number of clusters found in the first phase of
the algorithm. In this respect, the acquired results are compared
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TABLE II. THE SUM OF SQUARED ERRORS OF THE CLUSTERING
RESULTS ON LETTER-RECOGNITION DATA SET

number of clusters parallel PFK-means parallel K-means number of iterations
(mLlib)

24 117015.22 118400.60 1
24 113035.25 113995.74 3
24 111162.61 110717.19 10
26 114813.58 118262.82 1
26 111198.35 112354.80 3
26 109506.13 109853.67 10

TABLE III. THE SUM OF SQUARED ERRORS OF THE CLUSTERING
RESULTS ON IRIS, WINE, AND PIMA DATA SETS

data set parallel PFK-means parallel K-means
(mLlib)

Iris 97.34 97.70
Wine 18889.14 19015.23
Pima 49403.81 64315.08

with the parallel K-means of Spark mLlib using the random
initialization mode.

By observing the results displayed in the Table II, it can
be seen that the parallel PFK-means outperforms the parallel
K-means in terms of the sum of squared errors, except for
the tenth iteration with k = 24, for which the parallel K-
means exceeds the proposed algorithm. It is also noteworthy
that the PFK-means produces good results from the first
iteration, implying that the cluster centers discovered in the
first phase of the algorithm are well-positioned in comparison
to the cluster centers discovered using the random initialization
mode. Besides the fact that the parallel PFK-means allows
discovering the number of clusters automatically, the result
given by the developed algorithm is stable. Table III presents
a comparison of the parallel PFK-means and the parallel K-
means in terms of the sum of squared errors for the real-world
data sets Iris, Wine, and Pima. The results clearly show that the
execution of the parallel K-means after determining the input
parameters (number of clusters and the cluster centers) from
the first phase of the developed parallel algorithm consumes
less time compared to the execution of parallel K-means with
the random initialization mode for the three data sets used.

C. Results of the Processing Time

In order to evaluate the performance of the parallel PFK-
means concerning running time, the second phase of the
proposed algorithm has been compared with the parallel K-
means of Spark mLlib using the random initialization mode,
which allows to randomly generate the cluster centers. In this
case, the number of clusters k used is the number detected by
the first phase of the parallel PFK-means, and therefore the
number of cluster centers must be fixed before the execution.
On the other hand, by running the second phase of the PFK-
means, the number of clusters is automatically detected and
assigned to the parallel K-means as well as the cluster centers.

Fig. 7 illustrates the execution time of the second stage of
the parallel PFK-means compared to the execution time of the
parallel K-means on Iris, Wine, Pima, and Letter-Recognition
data sets. Fig. 7 shows that the PFK-means outperforms the
parallel K-means for all the data sets used.

Fig. 7. Clustering Time on Real-world Data Sets.

D. Discussion of the Obtained Results

According to the experiments that were conducted on
real-world data sets, it was proved that the proposed algorithm
is a parameter-free clustering algorithm since it can automat-
ically determine the set of cluster centers and the number of
clusters without specifying any input parameters, and therefore
the suggested solution is suitable for unsupervised learning.
However, running the parallel version of k-means provided
by Spark mLlib requires fixing the number of clusters as
well as specifying the initial cluster centers. Moreover, the
execution of the developed algorithm using real-world data
sets gives significant results compared to the results achieved
by the parallel implementation of K-means provided by Spark
mLlib in terms of the sum of squared errors and execution
time. In addition to that, the parallel implementation of the
method allows the distribution of the tasks constituting the
main steps of the algorithm on several nodes, which allows
for the processing of very large files.

VI. CONCLUSION AND PERSPECTIVE

The main concern of this paper is to design a new parallel
clustering algorithm based on the main steps of the PFK-means
clustering algorithm for processing large quantitative data sets
by bringing a significant improvement in the way of deter-
mining the initial cluster centers in the cluster construction
step. Thus, it exposes a general presentation of the parallel
computing platforms and the main process of the Spark frame-
work. Moreover, this paper presents a preview of the sequential
version of the PFK-means algorithm [21]as well as a detailed
explanation of the proposed parallel algorithm. Furthermore,
experiments based on UCI data sets were conducted based
on the sum of squared errors and the execution time. The
results have clearly shown that the suggested parallel algorithm
is an efficient clustering algorithm as it can automatically
construct the initial cluster centers as well as the number of
clusters without having to specify any parameters beforehand.
Besides, it has been demonstrated that the developed algorithm
outperforms the parallel K-means provided by Spark mLlib in
terms of squared errors and processing time.
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In our future research, we intend to concentrate on creating
a remote server configuration to distribute the different tasks
of the algorithm on multiple nodes and therefore process
very large files. In addition, we will establish a deep analysis
to compare both the stand-alone mode implementation and
cluster mode implementation. Furthermore, we will focus on
the implementation of the proposed algorithm using other
similarity measures and various data sets. It may also be
possible to apply the proposed solution to perform real-time
processing.
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