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Abstract—Premature ventricular contraction (PVC) is a very 

common arrhythmia that can originate in any part of the 

ventricle and is one of the important causes of sudden cardiac 

death. Timely and rapid detection of PVC on dynamic 

electrocardiogram (ECG) recording for patients with 

cardiovascular diseases is of great significance for clinical 

diagnosis. Furthermore, it can facilitate the planning and 

execution of radiofrequency ablation. But the dynamic ECGs can 

be easily contaminated by various noises and its morphological 

characteristics show significant variations for different patients. 

Though the deep learning methods achieved outstanding 

performance in ECG automatic recognition, there are still some 

limitations, such as overfitting, gradient disappearance or 

gradient explosion in deep networks. Therefore, a residual 

module is constructed using the squeeze-excitation method to 

alleviate the problems. A 20-layer squeeze-extraction residual 

network (SE-ResNet) containing multiple squeeze-extraction 

modules was designed for real-time PVC detection on 12-lead 

dynamic ECG. The algorithm was evaluated using the dynamic 

12-lead ECGs in INCART database (168,379 heartbeats in total). 

The experimental results show that the test accuracy of the 

method proposed in this paper is 98.71%, and the specificity and 

sensitivity of PVC are 99.12% and 99.59%, respectively. Under 

the same dataset and experimental platform, the average 

recognition accuracy of our proposed method is increased by 

0.73%, 1.55%, 2.9% and 1.65% compared with the results 

obtained by CNN, Inception, AlexNet and deep multilayer 

perceptron, respectively. The proposed scheme provides a new 

method for real-time detection of PVC on dynamic 12-lead 

ECGs. The experiment results show that the proposed method 

outperforms state-of-the-art methods, and has good potential for 

clinical applications. 

Keywords—Dynamic ECG; squeeze-excitation; residual 

network; premature ventricular contraction 

I. INTRODUCTION 

Premature ventricular contractions (PVCs) are the most 
common type of arrhythmia and, under certain conditions, can 
lead to life-threatening heart disease. Electrocardiogram (ECG) 
is not only a noninvasive and economical tool for routine 
cardiovascular examination, but also an essential monitoring 
device in surgical procedures and intensive care units. It is 
more clinically significant for the diagnosis of PVC. However, 
it is time-consuming and arduous for cardiologists to analyze 
many long-term dynamic ECG. Therefore, the automatic 
detection of PVC on body surface dynamic ECGs can not only 

improve cardiology workflow efficiency and timely prevent 
cardiac diseases such as arrhythmia, but also accurately locate 
the occurrence time and source localization of ventricular 
premature beats, and then guiding the surgical process such as 
radiofrequency ablation, etc. 

Dynamic ECG is susceptible to various background noises, 
such as power-line interference, inotropic noise, baseline drift 
and motion artifact, and its morphological characteristics show 
significant variations for different patients and under different 
temporal and physical conditions. Even experienced specialists 
cannot accurately determine the type of arrhythmias. Machine 
learning methods such as deep neural networks can more 
accurately detect arrhythmias such as PVC, and have shown 
good clinical applications [1]. 

Deep learning has experienced great breakthroughs in the 
past decade in many fields, such as image recognition and 
natural language processing. With the popularity of deep 
learning and outstanding performance in other fields, 
researches use deep learning to monitor arrhythmias such as 
PVCs [2-5]. They transform ECG as one-dimensional time-
series signals or two-dimensional signals such as multi-lead 
ECG beats or time-frequency images as the input of the 
convolution neural network (CNN). Then conduct layer-by-
layer feature extraction and classification. In 2017, Acharya et 
al.[6] proposed a 9-layer deep CNN to discriminate 5 types of 
ECG heartbeats and achieved 94.03% accuracy using MIT-
BIH arrhythmia database. In 2018, Yildirim et al. [7] designed 
a new 1D convolutional neural network model (1D-CNN) to 
recognize 17 different types of long-time dynamic ECG 
signals. Using the MIT-BIH database, they achieved an overall 
accuracy of 91.33% for the 17 type arrhythmias. In 2019, 
Andersen et al. [8] proposed a convolution combined cyclic 
convolution model, which could search for atrial fibrillation 
heartbeats from 24-hour dynamic ECG signals, and achieved 
good results. In 2020, Ullah et al. [9] proposed a two-
dimensional (2-D) CNN model to recognize eight types of 
ECG signals. The model was evaluated on the MIT-BIH 
dataset and the classification accuracy reached 99.11%. With 
the deepening of deep network structure, the accuracy of the 
neural network model will decrease. That is the degradation of 
neural network. To overcome the problem, deep CNN model 
with residual structure is developed for ECG arrhythmias 
detection, which improves classification accuracy [10]. In 
2019, Brito et al. [11] proposed a deep learning model based on 
ResNet architecture. They conducted experiments using MIT-
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BIH arrhythmia database and achieved an accuracy of more 
than 90%. In 2020, Li et al. [12] classified arrhythmias based 
on deep residual network. The experiments applied to the MIT-
BIH arrhythmia database and showed high classification 
performance with an accuracy of 99.38%. Deep learning has 
made some achievements in the classification and recognition 
of PVCs [13, 14]. It has good performance on small evaluation 
samples and static ECGs, but the accuracy decreases for 
clinical dynamic 12-lead large data especially for non-
equilibrium dataset. Therefore, the evolutionary model and 
method is crucial to improve the efficiency and effects of PVC 
detection which will promote the further clinical applications. 

Although there are many studies on arrhythmia detection in 
the literature, there are still various problems such as difficult 
convergence of deep networks, training cost, and 
computational complexity. Furthermore, in the literature, most 
models are trained on relatively clean open-source ECG 
datasets such as the MIT-BIH database. In this study, 
considering the advantages and disadvantages of existing 
technologies, a squeeze-excitation module is constructed which 
embedded in a residual structure to improve the convergence of 
the deep network. It aims to improve the non-linear fitting 
ability of the deep network by reconstructing the hyperplane 
parameters through the squeeze-excitation operation. The 
network model uses a feature rescaling strategy, where the 
importance of each feature channel is automatically obtained 
by learning, and then the useful features are promoted and the 
less useful features are suppressed according to its importance. 
The network model can fully consider the weight of each lead 
and main wave of ECG signals, and provide a new idea for 
deep feature extraction of arrhythmia heartbeats. Based on the 
SE-ResNet model, the performance of the model was evaluated 
by 168379 12-lead heartbeats from the St Petersburg INCART 
12-Lead (INCART) arrhythmia dynamic ECG database. The 
effectiveness of this method is evaluated by experiments. 

The remainder of this paper is organized as follows. 
Section II described the related work and methods for this 
study. In Section III, a novel SE-ResNet for detection of 
premature ventricular beats was implementation. Experimental 

results are also described. Section IV is discussion and 
Section V concludes the paper. 

II. METHOD 

A. Convolutional Neural Network 

CNN is a deep learning algorithm based on artificial neural 
network structure, trained by a gradient-based optimization 
algorithm. In contrast to traditional machine learning 
algorithms, CNN architecture does not need to manually 
extract features from raw data. Feature extraction and 
classification are embedded in the architecture, so robust 
features can be automatically identified from the input data 
[15]. In general, a CNN consists of multiple back-to-back 
layers connected in a feedforward manner. As shown in Fig. 1, 
in the CNN architecture, the main layers are including 
convolutional layers, pooling layers and a fully-connected 
layer. Convolutional and pooling layers are responsible for 
feature extraction, while fully-connected layer is responsible 
for classification. 

B. Squeeze-excitation Residual Network 

Bioelectric signals are characterized by individual 
variability, strong interference, and multi-lead characteristics. 
Individual variability is reflected in the ECG morphology of 
different patients with the same disease, and even the 
difference and translation of characteristic wave directions. In 
addition, the same patient will also have certain differences in 
different times and environments. Different leads of the ECG 
signal reflect the potential transformation of cardiac activity in 
different parts of the body. The waveforms corresponding to 
each lead has great difference, and each lead is relatively 
independent. CNN improves performance by deepening the 
network structure as much as possible. However, with the 
increase of CNN depth, namely, the number of network layer 
increases, the performance of the model tends to saturate and 
even decline rapidly, which makes the training of deep 
networks more difficult. 
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Fig. 1. CNN Architecture. 
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Fig. 2. SE-ResNet Architecture.
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Aiming at the above problems, this paper adopts the SE-
ResNet model, a deep network architecture with stronger 
nonlinear fitting ability. The model constructs a squeeze-
excitation module which embedded in a residual structure. The 
network model adopts a feature recalculation strategy, namely, 
the importance of each feature channel is automatically 
obtained by learning, and then the useful features are improved 
and the features that are not useful for the current task are 
suppressed according to the importance. As shown in Fig. 2, in 

the squeeze layer, for inputs X = [x1,x2, … ,xc], where 
WHR cx , the simplest aggregation technique, global 

averaging, is used to generate channel statistics. Formally, the 

statistic 
cRz  is generated by reducing X by reducing its 

spatial dimension H  W, and the c-th element of z is 
calculated by the following equation (1): 
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Among them, the H and W represent the height and width 
of the feature map, respectively, and C represents the number 
of feature map channels. 

In the excitation layer, two fully-connected layers (FC) are 
used to achieve channel scaling with a reduction rate of q. The 
dimension of feature data changes from 1   C to 1   C / q, 
and then playback to 1   C. Finally, the sigmoid activation 
function is used to scale the data back to the previous data 
dimension. Since we want to ensure that multiple channels are 
allowed to be emphasized, a simple gating mechanism with 
sigmoid activation in equation (2) is employed: 

     zWWWzgs 12,  
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where σ is the sigmoid function, 
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Here q is a scaling parameter. The final output of the block is 
obtained by rescaling X with the activations s, as shown in 
Equation (3) below: 

ccc s xx~ 
          (3) 

Where X
~

 = [ 1x~ , ̃ 2x~ ,…, ̃ cx~ ] and the channel 

multiplication between the index quantity sc and the feature 

map 
WHR cx . 

Reconstructing hyperplane parameters by squeeze-
excitation operation can alleviate the problems of the difficulty 
tuning of deep network and the nonlinear fitting ability of deep 
network. The architecture can effectively avoid the effect of 
traditional ECG signal feature extraction on the subsequent 
classification accuracy. 

III. DETECTION OF PREMATURE VENTRICULAR 

CONTRACTIONS BASED ON SE-RESNET 

A. Data Sources and Evaluation Metrics 

In this experiment, the 12-lead dynamic ECGs from the 
open INCART Arrhythmia database were used for evaluating 
the algorithm. The INCART Dynamic Arrhythmia ECG 

database contains 75 records, sampled at 275 Hz. Each record 
is about half an hour long and has 12 leads. The original ECG 
data were collected from patients who were examined for 
coronary artery disease, and most of them had premature 
ventricular contractions [16]. 

Since V6 lead is missing in 102 ECG record, V3 lead is 
missing in 103 record, and V4 lead is missing in 158 record, 
the above three ECG records were deleted in consideration of 
the lead consistency. All heartbeats from the remaining 72 
records were used in this experiment. According to our 
statistics, the data in INCART database included 168379 
heartbeats. In order to test the recognition effect of premature 
ventricular contractions, all cardiac heartbeats were divided 
into three types: normal heartbeats (N), premature ventricular 
contractions (V) and other heartbeats (O). The number of 
normal heartbeats was 143,260, the number of premature 
ventricular contractions was 19,640 and the number of other 
heartbeats (premature atrial contractions, supraventricular 
premature heartbeats and right bundle branch block, etc.) was 
5479. 

In this study, three metrics were used to evaluate the 
performance of the proposed classification method: accuracy (

ccA ), sensitivity ( eS ) and specificity ( Sp ), which were 

defined in formulas (4), (5) and (6) respectively. The 
calculations are made based on the statistical results of multiple 
experiments. 
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Among them, TP, FP, TN and FN are true positive, false 
positive, true negative and false negative, respectively [17, 18]. 

B. Pre-processing 

In contrast, dynamic ECG signals have stronger 
interference from noise such as motion artefacts, due to factors 
such as poor skin-to-electrode contact, the effects of breathing 
and poor contact with the power lines of electrical equipment, 
et al. Therefore the signal characteristics are chaotic, non-linear 
and multi-channel. Noises in the ECG signal distort some of its 
morphological characteristics, which make diagnosis more 
difficult. So reasonable filtering is very important for 
subsequent recognition. The useful part of the frequency in the 
ECG signal mainly ranges from 1 to 40 Hz, and the interest 
signal is easily submerged in the background noises. The main 
noise sources include baseline drift, power frequency 
interference, motion artifact and myoelectric interference [19]. 
In addition, the low-frequency part of ECG signal contains 
indicators of malignant arrhythmias such as S-T segment 
abnormalities, and the high frequency part reflects the 
amplitude information of main complex wave. In order to keep 
the morphological characteristics of ECG signal as completely 
as possible, a wavelet adaptive threshold filtering method is 
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proposed. The algorithm includes three steps: wavelet 
decomposition, adaptive threshold de-noising and 
reconstruction. The selection of threshold is adaptive to the 
signal; therefore, the inherent morphological characteristics of 
the ECG signal are preserved as much as possible. 

The INCART dynamic ECG database contains long-term 
ECG records with complete annotation of heartbeats. Before 
applying the model, segmentation of the heartbeat was 
performed, dividing the long ECG record into heartbeat 
segments that represent different types, namely, N, V and O. 
Each heartbeat segment was extracted by selecting a window 
of 300 samples around the R-peak, which formed by taking 92 
points in front of the R-peak and 137 points behind the R-peak, 
respectively. As each heartbeat segment consists of 230 
samples, and the ECG signals are 12 leads, so the size of each 
beat sample is 12 * 230. 

C. SE-ResNet Network Modeling 

The architecture of the SE-ResNet network pay more 
attention to the weights of each lead, and can fully extract the 
morphological features of the multi-lead ECG waveform. Since 
the number and complexity of network layers will have a great 
impact on the training results, we designed SE-ResNet models 
with different layers and structures, and performed several 
cross-validation experiments and comparisons. Fig. 3 is the 
experimental results of the accuracy for each epoch training 
using the SE-ResNet networks with 8, 12, 16, 20, and 24 
layers. As shown in Fig. 3, the 20-layer SE-ResNet achieved 
better training and testing results, and the 24-layer network 
performance was comparable to the 20-layer network. 
Considering computation efficiency and the real-time 
implementation, especially performed on the embedded 
processor, we select a 20-layer network for PVC recognition in 
the following experiments. 

In order to optimize the model, we selected the Sgd 
optimizer, with an initial learning rate of 0.05. To improve the 
performance of the neural networks, the negative log-
likelihood loss (NLLLoss) function and cross-entropy loss 
(CrossEntropyLoss) function were compared, and the results 
were shown in Fig. 4. The figure represents the convergence 
performance for 30 epoch training iterations using different 
loss functions. As is shown in Fig. 4, using the CrossEntropy 
loss function, the neural network has more robust stability and 
better convergence of the training process. Therefore, the 
CrossEntropyLoss function was selected as the loss function in 
the following experiments. 

In this work, the model architecture of the 20-layer SE-
ResNet was designed, as is shown in Fig. 5. The main 
difference between the proposed network and the original SE-
ResNet on ImageNet is that the proposed network uses 1D 
convolutions instead of 2D convolutions. The input ECG 
heartbeat is a sample of 12*230 size, and after a convolutional 
layer with a kernel size of 1*3, followed 9 residual blocks. The 
residual blocks of the network have 16, 32, and 64 channels 
respectively. Among them, the first three residual blocks have 
16 channels, the second three residual blocks have 32 channels 
and the remainder three residual blocks has 64 channels. 

 

Fig. 3. ECG Recognition Results of different Network Architecture. 

 

Fig. 4. Comparison of Convergence in Training Process with different Loss 

Functions. 

Each residual block is embedded with squeeze-excitation 
modules, so a total of 3+ 3+3=9 residual blocks are designed in 
Fig. 5. In order to accurately extract information from each 
channel of the ECG heartbeat signal, each residual (short-
connect connection) is embedded with a squeeze-excitation 
module that automatically captures the weight information of 
each feature channel of the ECG heartbeats in a learning 
manner, effectively enhancing the features of the useful 
channels and suppressing information that is not sufficiently 
useful for the current classification recognition task. Take the 
first three residual blocks (short-connect) of 16 channels as an 
example, as shown in Fig. 5, in order to make the best use of 
the contextual ECG feature information of each channel, 
channel-level statistics are generated by global averaging 
pooling. The excitation layer is implemented using two fully-
connected layers (FC) for channel scaling, the reduction rate is 
taken as 4, the dimension of the feature data is changed from 
1* 16 to 1* 4 and then replayed as 1* 16. Finally, use the 
sigmoid activation function to rescale the data back to the 
dimensions before squeezing. It is equivalent to map the data 
associated with the input to a set of channel weights, so that the 
channel features are not limited to the local perceptual field of 
the convolutional network. Therefore, the context information 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 7, 2022 

12 | P a g e  

www.ijacsa.thesai.org 

can be easily understood, and different weights are assigned to 
the channels. Residual architecture can improve the parameter 
adjustment ability of the network, namely, the optimization 
ability. As shown in Fig. 5, there are three 16-channel SE-
ResNet modules in total, and each module has two layers of 
convolution. There are three 32-channel SE-ResNet modules in 
total, and each module has two layers of convolution. 
Similarly, there are three 64-channel SE-ResNet modules in 
total, each with two layers of convolution. Through 19 layers 
of network transmission, deep feature extraction is completed. 
Finally, the feature is fed into a fully-connected layer, so the 
network model has a total of 20 parameter layers. 
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Fig. 5. SE-ResNet Network Model. 

D. Analysis of Experimental Results 

In order to evaluate the recognition effect of the proposed 
SE-ResNet model for PVCs recognition based on the INCART 
dynamic ECG database, this experiment employed a wavelet 
self-adapting filter to preprocess all 72 lead-consistent ECG 
records, and segmented 168379 heartbeats according to the R-
peak position. We randomly selected 3000 normal heartbeats, 
3000 PVCs and 1000 other type heartbeats, respectively from 
the total 168,379 heartbeats which include 143260 normal 
heartbeats, 19640 premature ventricular contraction and 5479 
other heartbeats. So the total training samples is 7000. 
Similarly, 1000, 1000 and 500 heartbeats were randomly 
selected from the remainder data, which were used for cross 
verification. The remainder 158,879 heartbeats were used for 
the final evaluation. The classification results were expected to 
be affected by the heartbeat sample size, and the ratio of 
training to testing sample size. In general, the lower the ratio of 
training samples to total samples, the greater the generalization 
ability of the classifiers. In order to evaluate the network’s 
performance and avoid the occasionality of random sampling, 
we carried out three random sampling experiments, and the 
confusion matrix was calculated from the average value of the 
three experiment results. Then, CNN, Inception, multi-layer 
perceptron (MLP) and Alexnet of the same complexity were 
designed. In these experiments, the parameters of the networks 
were regulated to be best fitted in the classification task. The 
five networks were trained 30 epochs using the same training 
samples, and the test results were also compared. The 
confusion matrix and evaluation metrics are shown in Table I. 

Since the experiments were performed three times, three 
trained models were obtained with exactly the same training 
dataset. When testing the 12-lead ECG signal, the predicted 
probabilities of the three models were averaged and finally got 
the final classification results. The confusion matrix and three 
different statistical indices, such as Sensitivity (Se), Specificity 
(Sp), and Accuracy (Acc) were summarized in Table I. As is 
shown in Table I, it can be seen that the algorithm designed in 
this paper achieved an accuracy of 98.71% for the detection of 
the arrhythmias, and the sensitivity (Se) and specificity (Sp) for 
PVC recognition are 99.12% and 99.59%, respectively. The 
experimental results showed that the accuracy of the designed 
SE-ResNet algorithm was improved by 0.73%, 1.55%, 1.65% 
and 2.9% over CNN, Inception, MLP and AlexNet networks, 
respectively. The PVC sensitivity (Se) value of the SE-ResNet 
test was 98.71%, and the sensitivities (Se) of the CNN, 
Inception, MLP, and Alexnet tests were 92.17%, 97.74%, 
94.62, and 95.97%, respectively. It can be seen that the 
sensitivity of PVC has been significantly improved. 

E. Compare Results with other Methods 

The PVCs detection results of our proposed method were 
compared with the recent published research results. These 
published results on the same dataset are shown in Table II. 
The detection results were expected to be affected by the 
heartbeat sample size, the number of classes for classification, 
and the ratio of training to testing sample size. In general, the 
lower the ratio of training samples to total samples, the greater 
the generalization ability of the classifiers, and the fewer the 
types for classification, the higher the recognition accuracy. In 
one study, Al Rahhal et al. [20] proposed an electrocardiogram 
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(ECG) technique based on multi-lead signals and a deep 
learning architecture. Automatic identification of ECG signals 
was performed using INCART Arrhythmia Database, which 
automatically recognized three types: normal heartbeats, PVC 
and other heartbeats. The overall classification accuracy 
reached 98.6%, but the sensitivity (Se) of PVC was 91.4%. In a 
study, Allami [21] used three morphological features and seven 
statistical features, and also employed the artificial neural 
network (ANN) classifier for PVC and non-PVC ECG 
heartbeats recognition. Using 75 ECG records, the 
classification accuracy and the sensitivity (Se) of PVC they 
achieved was 95.8% and 93.9%, respectively. In another, 
Malek et al. [22] developed an improved template matching 
technique for PVCs and normal heartbeats detecting, by 
analyzing the maximum value and the correlation coefficients 
of the maximum and minimum value. The classification 
accuracy rate was 97.91%, and the sensitivity (Se) and 
specificity (Sp) of PVC detection were 91.14% and 98.82%, 
respectively. In general, the proposed SE-ResNet residual 
network has achieved superior performance on the PVCs 

recognition experiments using the 12-lead dynamic ECGs. It 
demonstrates great clinical application prospects. 

F. Discussion 

Dynamic 12-lead ECG is the gold standard in the detection 
of arrhythmias. Multi-lead dynamic ECG has strong 
background noise; there are correlations of ECG leads. 
Different arrhythmias have corresponding lead characteristics, 
and the main wave morphological characteristics of some leads 
are more distinguishable for the specific arrhythmia. Squeeze-
excitation network introduces attention mechanism that the 
importance of each feature channel is automatically obtained 
by learning. That the useful features are promoted and the less 
useful features are suppressed according to its importance. The 
network model can fully consider the weight of each lead and 
main wave of ECG signals. Therefore, the model can fully 
extract the morphological features of multi-lead and its main 
waves, and improve the robustness and generalization ability of 
the network. 

TABLE I. COMPARISON OF PVC RECOGNITION RESULTS ON INCART DATABASE 

Method 
Confusion Matrix Evaluation 

 N V T Se Sp Acc 

SE-ResNet N 137682 496 1082 98.87% 98.22% 98.71% 

 V 97 15503 40 99.12% 99.59%  

 T 252 87 3640 91.48% 99.28%  

CNN N 138079 759 422 99.15% 91.70% 97.98% 

 V 862 14416 362 92.17% 99.44%  

 T 766 44 3169 79.64% 99.49%  

Inception N 135780 1332 2148 97.50% 96.41% 97.16% 

 V 142 15287 211 97.74% 98.99%  

 T 563 120 3296 82.83% 98.48%  

MLP N 136246 1255 1759 97.84% 95.65% 97.06% 

 V 204 14798 638 94.62% 99.00%  

 T 650 171 3158 79.37% 98.45%  

Alexnet N 134939 4202 119 96.90% 88.64% 95.81% 

 V 624 15010 6 95.97% 96.99%  

 T 1605 103 2271 57.07% 99.92%  

TABLE II. COMPARISON WITH OTHER METHODS PROPOSED IN THE LITERATURES 

Method Classification Se Sp Acc 

Al Rahhal et al.[20]
 3 91.4% * 98.6% 

Allami[21] 2 93.9% * 95.8% 

Malek et al.[22] 2 91.14% 98.82% 97.91% 

Algoritm of this paper 3 99.12% 99.59% 98.71% 
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In this work, we analysis the characteristics of the long-
time dynamic 12-lead ECGs and introduce the squeeze-
excitation ResNet model to the real-time PVCs recognition on 
12-lead dynamic ECGs. Which is to overcome the and fully 
extract the multi-lead and multi-dominant complexes. 
Reconstructing hyperplane parameters by squeeze-excitation 
operation can alleviate the problems of the difficulty tuning of 
deep network and the nonlinear fitting ability of deep network. 
In addition, we considered the influence of SE-ResNet models 
with different layers and structures on the training results, and 
through experiments, a 20-layer network was selected as the 
recognition model. At the same time, the results of two 
different loss functions under the 20-layer network model are 
also compared. Finally, the CrossEntropyLoss function was 
selected as the loss function. The test accuracy of the method 
proposed in this paper is 98.71%. Under the same dataset and 
experimental platform, the recognition accuracy of this method 
is improved compared with CNN, IncexNet and deep 
multilayer perceptron. The proposed SE-ResNet residual 
network has achieved superior performance on the PVCs 
recognition experiments using the 12-lead dynamic ECGs. It 
demonstrates great clinical application prospects. Then, the 
PVCs detection results of our proposed method were compared 
with the recent published research results. Experimental results 
show that our method has better precision and accuracy than 
previous studies. Which perform Demonstrate its practical 
application potential in the medical field. 

Although the research results of this paper has achieved 
good performance, there are still some challenges and study 
values. First, Bioelectric signals are characterized by individual 
variability, strong interference, and multi-lead characteristics. 
The same patient will also have certain differences in different 
times and environments. Real-time identification of multiple 
arrhythmias using clinical big data is a challenge work and is 
of great value in clinical diagnosis. Therefore, we will extend 
the proposed method to multiple types of arrhythmias on long-
term dynamic ECGs, which is of great significance for 
collecting more clinical ECG data from different patients under 
different conditions. This also puts forward higher 
requirements on the robustness and generalization ability of the 
recognition network. Second, because of the fast and slow 
changes in heart rhythm, it is not always desirable to use a 
fixed beat length. It is necessary to study adaptive beat size 
segmentation to meet different. Third, to achieve higher 
accuracy, many studies focus on the deep learning trend of 
making networks deeper and more complex. However, many 
real-world studies must be performed on computationally 
limited platforms. We need to consider the computational 
speed and the computational complexity of the model, as well 
as its accuracy. Finally, as catheter ablation is an effective 
therapy for treatment of symptomatic PVCs. And it is 
important to estimate the targeted anatomic ablation site that 
prior to the procedure. Based on this study, the localization of 
the site of origin of a PVCs using 12-lead ECGs is still an 
interesting and challenge work. Therefore, the further study of 
us will focus on the location of PVCs. It is important for the 
planning and execution of the electrophysiological procedure 
for the catheter ablation and has great clinical application 
values. 

IV. CONCLUSION 

In this study, a 12-lead dynamic ECG PVCs recognition 
algorithm based on squeeze-excitation residual network is 
proposed. The squeeze-excitation module is constructed and 
embedded in the residual structure to improve the performance 
of the deep network. The hyperplane parameters are 
reconstructed by squeezing-excitation operations to improve 
the nonlinear fitting ability of deep networks. A SE-ResNet 
model based on 20 layers is designed, which overcomes the 
degradation problem caused by the increase of the network 
layers when the deep neural network approximates the identity 
mapping, and ensures the smooth convergence of the network. 
Experiments of PVCs recognition was performed using 
168,379 heartbeats from the INCART dynamic 12-lead ECG 
database. In the same experimental samples, several popular 
deep neural network algorithms were compared. The 
experimental results show that the proposed method effectively 
improves the overall PVC recognition accuracy on the 
INCART 12-lead dynamic ECGs, as well as the sensitivity and 
the specificity have achieved. In the future, we intend to 
improve the performance of this work with further advanced 
deep learning techniques. Additional datasets will be added to 
test the performance of the model to further verify the 
robustness of the method used. Furthermore, we will further 
study the localization of the site of origin of a PVC, which is 
important for the planning and execution of the 
electrophysiological procedure for the catheter ablation. 
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