
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

E-AHP: An Enhanced Analytical Hierarchy Process
Algorithm for Priotrizing Large Software

Requirements Numbers
Nahla Mohamed1, Sherif Mazen2, Waleed Helmy3

Department of Information Systems, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt

Abstract—One of the main activities of software requirements
analysis is requirements prioritization. The wrong requirements
prioritization is risky as it leads to many software failures. The
current requirements prioritization techniques can’t deal with
large requirement numbers efficiently, which is considered one of
their main issues. Many researchers have agreed that the
analytical hierarchy process (AHP) is one of the best
prioritization techniques as it produces highly accurate results.
AHP has two main problems: scalability and inconsistency.
These problems have motivated us to propose an improved
version of AHP for software requirements prioritization, namely
Enhanced AHP (E-AHP). A performance evaluation has been
done for the conventional AHP, E-AHP, and one of the recent
algorithms that also try to solve the AHP scalability problems,
namely removing eigenvalues and introducing the dynamic
consistency checking algorithm into AHP (ReDCCahp)
algorithms The evaluation shows which algorithm takes the least
time, uses the least memory, produces the most consistent and
accurate results, and has the highest scalability. The three
algorithms have been evaluated by running their codes using
different numbers of requirements ranging from 10 to 500. The
results show that E-AHP is more scalable, takes the least time,
uses the least memory, and produces the most consistent and
accurate results compared to the other two algorithms. That
becomes remarkable when the number of requirements
increases. Therefore, E-AHP is suitable to be applied in large
software projects, as it can deal efficiently with the large software
requirements numbers.

Keywords—Requirements engineering; analytical hierarchy
process; software engineering; requirements prioritization
techniques

I. INTRODUCTION
Requirements engineering is a critical part of software

engineering [1]. It is the process of gathering the requirements
and understanding them deeply to ensure that they are correct,
complete, and consistent [2]. If the requirements engineering
process has not taken enough time, it will affect the overall
project [3], [4]. The requirements engineering process consists
of five activities: requirements elicitation, requirements
analysis, requirements specification, requirements validation,
and requirements management. The prioritization of
requirements is one of the critical activities in the requirements
analysis process [5], [6]. When the requirements number
increases, analysts must organize them to implement the most
important ones in the early stages to avoid the high cost of

system transformation and rework and achieve user satisfaction
according to a pre-specified budget, time, and resources [7].

There are three requirements prioritization technique types
[8], [9]: nominal scale techniques, ordinal scale techniques and
ratio scale techniques. In the Nominal scale prioritization
techniques [7], [10], the users assign each requirement to a
priority group, and all requirements in the same group have the
same priority [8]. One of the well-known techniques is the
Numerical Assignment technique, which categorizes the
requirements by distributing them into groups [11]; each group
has a number that describes its rank or order among all groups.
And the number of groups equals the scale range [9], [12]. Top
Ten Requirements is another well-known nominal scale
technique. It has only one group that contains the most ten
critical requirements [9]. Another technique is MoSCow,
which distributes the requirements into four main groups [8]:
Must-Have, Should-Have, Could-Have, and Will-Not-Have
[5], [12]. These techniques are simple, easy, and fast [10]. But
their results are not accurate in most cases as they don’t give
specific priority value to each requirement [13] and cannot deal
efficiently with large requirements numbers [11].

The Ordinal scale techniques produce an ordered
requirements list [10], [12], and each requirement has a
specific priority [8]. They are more accurate than nominal scale
techniques [9]. One of the well-known ordinal scale techniques
is the Priority group [11]. It is like the Nominal scale
techniques but has only three groups: High, Medium, and Low.
The users prioritize and classify the requirements within the
same group into another sub-group; users repeat that looping
until each group has only one. Bubble sort is another well-
known ordinal scale technique [11]. In this technique, the user
should list the requirements and then compare every adjacent
two [9]. If the second one has less priority than the first, the
user swaps the order of these two requirements. The user
should repeat this process for each element in the requirements
list until it becomes sorted in ascending order.

Binary Search Tree (BST) is another well-known ordinal
scale technique. It depends on node structure. In BST, each
node represents a requirement [14] .The root node is in the first
level. The last level is the ordered requirements list. BST works
as follows: the user first selects one requirement to represent
the top node (the root node) [8]. After that, the user iterates on
the requirements list; if the requirement in the root node is
more important than the requirement in the current node, the
user should search in the left sub-tree to place it. Otherwise, the

190 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

user searches in the right sub-tree. The user repeats this process
until putting each requirement in the right place in the tree
based on its priority. The ordinal scale techniques have
medium scalability, consume more time, and are less easy to
use than nominal scale techniques [9].

The Ratio scale techniques are similar to the Ordinal scale
prioritization techniques [6], [10]. In addition, they show
relative importance among all the requirements, which means
they give the requirements priority values [8]. In these
techniques, the users know to what extent each requirement is
more important than the others [9]. Cumulative Voting (CV) is
a well-known ratio scale technique that depends on the users'
voting; each user has 100 points [9] and distributes the points
among the requirements based on their priority [15].
Hierarchical Cumulative Voting (HCV) is a new modification
of the CV technique [2]. The main difference is that HCV also
prioritizes the detailed requirements (prioritizes requirements
and their sub-requirements hierarchically).

Analytical Hierarchical Process (AHP) is multi-criterion
decision-making and mathematical method used in many
fields, including requirements prioritization [6], [9]. It selects
the best decision based on pairwise comparisons among all
decisions concerning many criteria [8], [13] (note that AHP
will be explained in detail in section three; because the
proposed algorithm is based mainly on it). It is good to use one
of these techniques when the project is critical, and it is
necessary to know the exact difference of importance among
all the requirements [11].

Most of the prioritization techniques can’t deal with large
requirements numbers and produce accurate results at the same
time [2], [5], [9], [11], [13], [14], [15]. Researchers [2], [7], [9],
[11], [12], [14], [15] agreed that AHP is the most accurate
prioritization technique, as it is a mathematical-based method
and produces highly accurate results. But they found that AHP
is suitable to be used only if the requirements number is small;
otherwise, it is not good as it is not scalable and sometimes
suffers from inconsistency problems. Scalability means the
ability of a technique to deal with a large number of
requirements efficiently, and inconsistency means it sometimes
produces elements that are semantically conflicting and not
compatible with each other. The limitations of AHP can be
summarized as follows:

• Sometimes, the results of AHP may be inconsistent
because of the high human involvement [13], especially
with large requirements numbers [5].

• AHP is not fast; it takes much time to work [8], [13].

• It is not easy for users to use as it needs an excellent
mathematical base. It also needs time to understand
how it works [13], [4].

• AHP performs n*(n-1)/2 comparisons [4], [9]where n is
the number of requirements ; that means when the
requirements numbers increases, the pairwise
comparisons number will increase exponentially [11],
which indicates it does not work well with a large
number of requirements and is not scalable [3], [13].

The previous AHP limitations have motivated us to search
for new ways to enhance it to deal efficiently with large
requirements numbers.

The main contributions of this paper can be summarized as
follows:

• Proposing a new algorithm that tries to solve the
scalability problem that faces the conventional AHP
and minimizes inconsistent and inaccurate results.

• An experiment that compares the proposed algorithm
against the AHP and one of the best recent algorithms
introduced to solve the scalability problem of AHP,
namely removing eigenvalues and introducing the
dynamic consistency checking algorithm into AHP
(ReDCCahp), is conducted. The experiment aims to test
the three algorithms' scalability, complexity, results'
accuracy, and consistency.

The rest of the paper is structured as follows: Section II
presents the related works on the recent techniques introduced
to solve the scalability and inconsistency problems of the
conventional AHP and other prioritization techniques. Section
III is the research background; it explains the conventional
AHP (as the proposed algorithm is a modification of AHP).
Section IV presents the proposed requirements prioritization
algorithm. Section V presents an experiment that compares the
proposed algorithm against the AHP and ReDCCahp
algorithms. Section VI presents the experimental results and
discussion. Section VII is the conclusion of the paper. Section
VIII is the limitations and future works.

II. RELATED WORK
Many researchers introduced several approaches and

techniques to prioritize a large number of requirements
efficiently. This section will briefly explain most of them.
Market-Driven Requirement Prioritization Model (MDRM)
[16] is an AHP modification model introduced to deal with
large requirements numbers by reducing the number of
pairwise comparisons. The main idea of MDRM is to divide all
the requirements into bins and prioritize all these bins by AHP.
The main limitations of this technique are that it can’t consider
the dependencies and conflicts among the requirements [3] and
cannot deal with large requirements number efficiently [13].

NAcAHP is another technique introduced to prioritize a
large number of requirements [17]; it combines the AHP
technique with the Numerical Assignment technique to reduce
the time that results from the pairwise comparisons [12], [11].
There are three main priority groups: Optional, Standard, and
Critical. AHP works only on ones in the Critical group. One of
the main limitations of this technique is that it works well only
if at least 80 % of all requirements are critical (because users
can't know their priorities until completing the prioritization
process) [18], [19]. Other limitations [2], [3] are that it does not
do consistency checking for the results, and it has not been
evaluated on large data sets [17].

Fuzzy AHP [20] is another approach introduced to solve
the scalability issue that faces AHP [11]. The main idea of
Fuzzy AHP is to use fuzzy scales [21], and the pairwise
comparison matrix consists of fuzzy triangle numbers. It

191 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

provides flexibility and efficiency to get benefits from the
decision-maker's preferences. This approach also addresses the
uncertainty in human judgment that AHP cannot address [3],
[18]. Fuzzy AHP has many limitations. One of them is that it is
not reliable [8], couldn't solve the scalability problem as it can't
deal with large requirements numbers and takes much time to
work [13]. Another limitation [22], [23] is that it doesn't
consider requirements dependencies. And also, fuzzy systems
are highly dependent on human expertise, have no systematic
problem-solving approach, and need a lot of validation and
testing. Researchers [22] proposed a goal-based requirements
prioritization technique. It depends on giving weights to the
requirements based on the different project's goals [3]. But this
technique is not scalable [13], suffers from the data vagueness
and uncertainty problems as it heavily relies on user
involvement, and does not consider the dependency
relationships among the requirements [22].

The Interactive Genetic Algorithm-based (IGA) technique
[24] was introduced to solve the scalability problem by
combining pairwise comparisons IGA [18]. This technique
uses the IGA to reduce the pairwise comparisons number [3],
[14], it’s working on extracting from the user the relevant
knowledge, and each user provides his preference values. IGA
algorithms don’t require much information about the problem.
But they have many limitations [2], [5]. Un-Scalability is a
major one, as the search space increases exponentially when
the number of problem elements increases [25]. Another is that
the experts choose the best solution only after comparing it to
the others, has no stopping criteria, and designing the objective
function and getting the correct operators and representation
needs effort [9].

Researchers [9] introduced an expert system, namely the
Priority Handler (PHandler), to solve the scalability issue. It
combines three approaches, Value-based Intelligent
Requirement Prioritization (VIRP), the Back Propagation
Neural Network (BPNN), and AHP. PHandler predicts the
values of the requirement priorities by applying the BPNN, and
then AHP. It can deal with large requirements numbers [13].
The main challenge of this system is choosing professional
business analysts because a strong analyst's knowledge is
necessary to estimate accurate values of requirements
classification factors. One of the main limitations [13] of this
system is that it neglects the dependency relationship among
requirements. And the expert systems do not explain the logic
behind taking a decision, cannot easily automate complex
processes, and have no common sense when making a
decision.

Fuzzy AHP ANN [21] is an artificial intelligence decision
support system proposed to deal with large requirements
numbers [18]. It integrates the Artificial intelligence Neural
Network (ANN) with AHP to select the best alternatives. It
determines the priority weights for the requirements using a
program, namely PECAR. After that, a supervised ANN is
trained (by applying a feed-forward back-propagation
algorithm) using results from the PECAR program. And the
decision-makers can apply different scenarios using the
PECAR program by entering several input parameters into it
and then observing the difference among the results. The main
challenge of this system is that it needs high experts’

involvement in the prioritization process. One of the main
limitations of this system [13] is that it does not produce
consistent results. Another limitation is that large neural
networks consume a high processing time, need a lot of data to
work, cannot specify a single solution for the problem, and not
scalable [2].

Researchers [26] introduced a graph-based approach to
prioritize a large number of requirements. It represents the
requirements as a directed graph; each node represents a
requirement and can be a pre-request for or dependent on other
nodes. The dependency relationships among nodes are
represented as directed arrows. After that, all spanning trees are
generated from the graph. In the end, requirements priorities
values will be calculated based on the number of requirements
dependent on them (the dependent requirements will have
lower priority than the pre-requisite requirements). The main
limitation of this approach [27] is the large memory
consumption. It is also hard to be implemented by users; its
representation is not structured, and has no specific spanning
concept [26]. Researchers [4] introduced an iteration model for
implementing large numbers of requirements. The main idea is
to implement the requirements in phases and not all at one
time. It uses the graph-based approach. One of the main
limitations of this model is it does not implement all the
requirements as it implements the critical ones only [4].
Another limitation is that system architecture issues will appear
as all the requirements have not been gathered together, it
needs more resources, and it doesn't consider the dependency
among the requirements.

Researchers [19] introduced another technique based on
AHP, namely, ReDCCahp. The main idea of ReDCCahp is to
put every pair of adjunct requirements from the requirements
list in one group and make the pairwise comparison among
these groups to reduce the number of pairwise comparisons and
matrix size. It is fast, simple, and does not need a strong
background in math, data science, or data structure; to
understand it. So it is easy to use and understand by users and
more effective than AHP when dealing with a medium number
of requirements. But this technique is not highly accurate as it
randomly groups the adjacent requirements in the list, which
means it does not have a specific requirements grouping
method, which is considered its main limitation [19]. It also
can deal with only small and medium requirements numbers
[13] and doesn’t consider the requirements dependencies.
Because ReDCCahp is one of the easiest and best new
requirements prioritization techniques, the proposed algorithm
tries to solve its limitation besides AHP limitations by
introducing an efficient method for requirements grouping. A
comparison has been made among the proposed algorithm, the
conventional AHP, and the ReDCCahp algorithms.

III. BACKGROUND: THE CONVENTIONAL AHP
This section explains the conventional AHP; because the

proposed algorithm is based on it. AHP is a multi-criterion
decision-making method developed by Saaty (1980) [28], [29]
to solve social science domain problems. It had been used in
many other fields, one of which is requirements engineering.
AHP is a mathematical technique based mainly on pairwise
comparisons; it selects the best decision based on comparisons

192 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

among all decisions concerning many criteria. It is one of the
efficient and best techniques for dealing with complex
decisions. AHP consists of two phases: 1. Construct the
reciprocal matrix and get the priority vector (PV). 2. Checking
the consistency of the results.

In the first phase, an n × n reciprocal matrix is constructed
(where n is the number of requirements) from the pairwise
comparisons among the requirements by letting the user choose
a value from a specified scale in AHP (each value in the scale
refers to a specific importance degree) between each pair of
requirements as follows: the user will put 1 in the cell(i, j) and
cell(j, i) in the matrix when the requirements i and j have the
same importance, and if i has more priority than j, the user
should put the value he chooses from the scale in cell (i, j), and
put the reciprocal of this value in cell (j, i) and vice versa.
Table I shows the pairwise comparison scale in AHP.

TABLE I. PAIRWISE COMPARISON SCALE IN AHP

Intensity of
importance Description Reciprocal

value

1 Equal importance 1

2 Equal to moderate difference in importance 1/2

3 Moderate difference in importance 1/3

4 Moderate to strong difference in importance 1/4

5 Strong difference in importance 1/5

6 Strong to very strong difference in
importance 1/6

7 Very strong difference in importance 1/7

8 Very strong to extremely difference in
importance 1/8

9 Extreme difference in importance 1/9

Then, each element in the matrix should be divided by the
sum of its columns to get a normalized matrix. After that, the
user should sum elements of each row in the matrix to get the
eigenvector. The last step is normalizing the eigenvector by
dividing each cell by the requirements number. The normalized
eigenvector is the PV, which describes the relative weights
among the requirements, and the summation of all values in PV
should equal one. After finishing these steps, user goes to the
second phase, the Consistency checking. It means that if there
are three requirements: R1, R2, and R3. R1 is more important
than R2, and R2 is more important than R3, then R1 should be
more important than R3. That check is called the Transitivity
check. So the user should ensure that all the elements in the
matrix are transitive (the matrix is a correct reciprocal matrix).
The percentage of inconsistent results is high as the matrix
produced by AHP is made by humans.

Professor Saaty defined a measure for consistency checking
called Consistency Index (CI), which is calculated using the
formula (λmax-n) / (n-1), where λmax means the maximum
eigenvalue of the matrix [30], and n is the number of pairwise
comparisons. To ensure that the matrix is consistent, CI should
equal zero (λmax should equal n), which means there is no
deviation or difference between the excepted reciprocal matrix
and the resulting one. But in real-life ideal cases rarely happen,
so; how much inconsistency is acceptable? Professor Saaty put

a specified percentage; if the error didn’t exceed it, then the
matrix is consistent (there is a minimum acceptable ratio for
the inconsistency).

Saaty defined this ratio as Consistency Ratio (CR), which is
a guide to checking whether the matrix is consistent or not. If
CR is more than 10%, then the matrix is inconsistent, and users
should repeat the process from the beginning, but if the CR
value is equal to or less than 10 %, then the matrix is
consistent. CR value is the value of CI divided by Random
Index (RI), where RI is the average CI value of several
comparison matrices sizes.

IV. E-AHP: THE PROPOSED ALGORITHM
Ma [31] has found that the user’s effort in the prioritization

process should be reduced to solve the AHP's scalability
problem. And that can happen by reducing the time pairwise
comparisons take. This section introduces an AHP-based
algorithm namely, Enhanced Analytical Hierarchal Process (E-
AHP). Which increases the scalability of AHP by reducing the
time AHP takes to construct a reciprocal matrix; its main idea
is to group similar requirements using a specific method. It also
decreases the inconsistent results by giving scores to the
requirements groups. E-AHP consists of five main steps that
will be explained in the following subsections.

A. Gathering the Requirements
First, the analysts should gather all the functional and non-

functional requirements, ensure they are consistent, discover
any dependencies among them [2] and make sure they are clear
and specific.

B. Scoring and Sorting the Requirements
In this step, each user assigns a score to each requirement,

and the score scale will equal the total requirements number.
More than one requirement can have the same score if they
have the same priority to the user. After finishing the scoring
process, the algorithm sorts the requirements in descending
order by their scores. For example, if there are three
requirements: R1, R2, and R3, in this case, the score scale will
be from 1 to 3. If the user assigns scores 1 to R1, 3 to R2, and 2
to R3, then the algorithm will sort them in descending order,
and the sorted requirements list will be 1. R2, 2. R3, 3. R1.

To sort the requirements’ scores list, a hybrid algorithm of
insertion sort algorithm [19] and merge sort algorithm [32] is
applied. The main idea of the hybrid algorithm is to divide the
list of requirements scores into chunks. The chunk is an
ascending or descending sorted sub-list that has the following
patterns: ai> a i+1> ... > an or ai<ai+1< ... <an where a is the score
of the requirement in position i, and n is requirements number.
For example, if there is a list {1, 5, 6, 4, 3, 2} then the first
chuck will be {1, 5, 6} (ascending order), and the second
chunk will be {4, 3, 2} (descending order). After that, the
algorithm reverses the first chunks to be sorted in descending
order. A minimum size for each chunk is defined. For example,
if the list is {2, 3, 1, 4, 5, 6} and the minimum pre-specified
chunk size is 3, then the first chunk should be {2, 3, 1} not {2,
3}, although the element 1 breaks the chunk's pattern. After
that, the algorithm does an insertion sort in descending order to
this chunk to be {3, 2, and 1}. That algorithm fastens the

193 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

sorting process (the complexity of the best case is O (n)) as it
benefits from the already existing sorted sub-lists. In the end,
the merge sort is applied to all these sub-lists to make a final
sorted list.

C. Grouping the Similar Requirements
After sorting the requirements list, the algorithm will group

all requirements that have the same score, or the difference
among their scores is <= MaxDRS. Where the MaxDRS
variable is the Maximum Difference of Requirements Scores in
the same group; and it is pre-specified by the user. The user
also specifies the value of MaxNR, which is the Maximum
Number of Requirements in one group. For example, if there
are five requirements: R1, R2, R3, R4, and R5. R1 and R2 have
a score of 1, R3 has a score of 2, R4 has a score of 5, R5 has a
score of 6, and MaxDRS = 1. Then the algorithm will put R1,
R2, and R3 in one group and R4; and R5 in another group. And
if MaxNR = 5 and seven of them have a score <= the specified
MaxDRS, in this case, only five of them will be in the same
group, and the rest two will be in another new group. To assign
a score for one group, the algorithm calculates the average
score of all its requirements. For example, if a group has three
requirements: R1, R2, and R3, and the score of R1, R2 is 1,
and the score of R3 is 2, then the score of their group will be
(1+1+2)/3 =1.3.

The different values of MaxNR and MaxDRS influence the
results, because there are negative relationships between the
values of MaxNR, MaxDRS, and time, and between them and
accuracy. If users aim to decrease the time taken, the MaxNR
and MaxDRS values should be increased, which reduces the
accuracy and vice versa. The best choice is to choose the
values of MaxNR and MaxDRS based on the total number of
requirements in the project. If the requirements number is
large, it's better to choose large values for them and vice versa.

D. Constructing the Reciprocal Matrix
In these steps, E-AHP constructs the reciprocal matrix like

AHP, but in E-AHP, the rows and columns of the matrix are
the requirements groups, and the matrix's elements are the
difference between the scores of the requirements groups. For
example, if the score of G1 is 4; and the score of G2 is 2, then
the element in the intersection of row G1, column G2 will be 2.
And will be -2 between row G2 and column G1. After that, E-
AHP normalizes the elements in the matrix and does the same
mathematical calculations in AHP to get the PV. The flow
chart in Fig. 1 and Algorithm I explain the steps to get the PV
in E-AHP.

Algorithm I. Construct PC matrix and get the PV
 Input: N - number of requirements

Input: RN - the requirements names list
Input: RS - the requirements scores list
Input: MaxDRS - maximum difference of requirements
scores in one group
Input: MaxNR - maximum numbers of requirements in one
group

 Output: List of prioritized requirements
 Initialize: R // list of requirements objects

Initialize: G // One group of requirements
Initialize: GL // One group length
Initialize: AG // List of all groups

 Initialize: NG // Number of all groups
Initialize: Sum // Counter
Initialize: M // The Reciprocal matrix
Initialize: CS // List of column sum

 Begin
 for i in N do
 requirement ← new Requirement()
 requirement.name ←RN[i]
 requirement.score ← RS[i]
 requirement.ingroup ← false
 R.append(requirement)
 end for
 R ← sort(R by names, reverse=true)
 for i in R.length do
 if R[i].ingroup == true then
 skip to next iteration
 G.reqList.append(R[i])
 R[i].ingroup ← true // R[i] is assigned to a group
 for j in R.length do
 if R[j].ingroup == true
 or (R[j].score - R[i].score) > MaxDRS
 or G.length > MaxNR then
 skip to next iteration
 else
 G.reqList.append(R[i])
 R[i].ingroup ← true
 end if
 G.reqList ← []
 G.avScore ← 0.0
 end for
 AG.append(G)
 end for
 NG ← AG.length
 for i in NG do
 if AG[i].length == 1 then
 AG[i].avScore←AG[i][0].score
 else
 GL ← AG[i].length
 for j in GL do
 AG[i].avScore ←AG[i].avScore +

AG[i].reqList[j].score
 end for
 AG[i].avScore←AG[i].avScore / GL
 end if
 end for
 for i in NG do
 for j in NG do
 if AG[i].avScore == AG[j].avScore then
 M[i][j] ← 1
 else if AG[i].avScore > AG[j].avScore then
 M[i][j]←AG[i].avScore - AG[j].avScore
 else
 M[i][j] ←1 / (AG[i].avScore -

AG[j].avScore)
 end if
 end for
 end for
 Sum ←0
 for j in NG do
 for i in NG do
 Sum ← Sum + M[i][j]
 end for

194 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

 CS[j] ←Sum
 Sum ← 0
 end for
 for j in NG do
 for i in NG do
 M[i][j] ← M[i][j] / CS[j]
 end for
 Sum ←0
 end for
 for i in NG do
 PV[i] ←PV[i] / NG
 end for
 for i in NG do
 for j in AG[i]
 print(AG[i].reqList[j].name "has relative weight

: " + PV[i])
 end for
 end for
 End

Fig. 1. A Flowchart shows Steps to Get the PV in the E-AHP Algorithm.

E. Consistency Check of the Results
In this step, a new consistency check algorithm is applied to

ensure that the results are consistent. This step has three inputs:
X, Y, and Z. X is a list of the most critical requirements to the
user, and Y is the number of first groups from the resulting PV
that will be checked. And Z is the minimum acceptable number
of requirements in the list X that must be in the Y groups. The

user fills the list (X), and to prove consistency, the algorithm
checks that at least (Z) of them are in the (Y) groups from the
resulting PV; otherwise, the result is inconsistent. And users
should repeat the prioritization process from the beginning and
re-evaluate their preference judgments. For example, if the size
of the list X =5, Y=6 and Z=3, which means the user will
choose the most critical five requirements for him, and then to
prove the consistency of the results, the algorithm must find at
least three of these requirements in the first sex groups from
the resulting PV. These variables influence the results as the
more the values of X, Z and the less the value of Y, the more
accurate the results will be.

The flow chart in Fig. 2 and Algorithm II explain the
consistency check step in E-AHP.

Algorithm II. Consistency checking of the results
 Input: X - list of most important requirements

Input: Y - number of requirements for check
Input: Z – minimum accepted number of found requirements
Input: PV - priority vector result from phase 1

 Output: print whether the results are consistent or not
 Initialize: XL // length of most important requirements list

Initialize: nXF // number of important requirements found
 Begin
 nXF ← 0
 for i in XL do
 for j in Y do
 if X[i] == PV[j] then
 nXF ← nXF + 1
 end if
 end for
 end for
 if nXF >= Z
 print ("Results are consistent")
 else print ("Results are not consistent")
 end if
 End

Fig. 2. A Flowchart shows the Consistency Check Step in the E-AHP

Algorithm.

195 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

V. AN EXPERIMENT COMPARING THE PROPOSED
ALGORITHM (E-AHP) AGAINST AHP AND REDCCAHP

ALGORITHMS
This section will explain the experiment that compares the

E-AHP against the AHP and ReDCCahp. It will mention the
experiment objectives, variables, and setup.

A. Experimental Objective
This experiment aims to validate that E-AHP (the proposed

algorithm) is better than AHP and ReDCCahp; by proving that
it solves the scalability, inconsistency, and accuracy problems
(as AHP suffers from scalability and inconsistency problems,
and ReDCCahp suffers from accuracy problems). The
experiment has compared the three algorithms (AHP,
ReDCCahp, and E-AHP) against each other to test which one
can deal with large numbers of requirements efficiently.

The research aims to answer the following questions:

• Which algorithm among the three algorithms takes the
least time?

• Which algorithm among the three algorithms uses the
least memory?

• Which algorithm among the three algorithms produces
the most consistent results (produces results with
minimum CR value)?

• Which algorithm among the three algorithms is the
most scalable?

• Which algorithm among the three algorithms produces
the most accurate results?

B. Experimental Variables
The experiment has three independent variables: AHP,

ReDCCahp, and E-AHP, and three dependent variables: time,
memory, and CR value. A brief definition for these dependent
variables is given below.

• Time: representing the time each algorithm takes to
prioritize the requirements (completion time of each
algorithm), and it is measured in minutes.

• Memory: representing the memory needed for each
algorithm to prioritize the requirements, and it is
measured in megabytes (MB).

• CR: is the main criterion to check whether the results
are consistent. It is calculated in the experiment by the
same equation used in AHP (CI / RI) [28], [29].

C. Experimental Setup
The time consumption, memory usage, and CR values are

evaluated by implementing and running the algorithms' codes
and comparing their results. They have been written in the
JAVA programming language and run on a machine with a
Processor: Intel(R) Core(TM) i7-6500U CPU @ 2.50 GHz
2.60 GHz, and Installed Memory (RAM): 8.00 GB and System
type: 64-bit operating system, x64-based processor.

Researchers [9], [31] considered the requirements numbers
small when they are less than 20; medium when they are

between 20 and 50; Otherwise, large. Several data set sizes
(small, medium, and large) that range from 10 to 500
requirements are used in the experiment to prove the efficiency
of E-AHP over AHP and ReDCCahp when dealing with
various requirements numbers. The input will be a list of
requirements objects (R1, R2, and R3…Rn), where n is the
requirements number. Each requirement object has the name
and score of the requirement. The requirements names are
according to their order in the list. To consider the different
scores for the requirements, the codes of the three algorithms
have run ten times, each with different scores values, and then
the average results are taken. Only the requirements numbers
and their scores are important in the experiment, and it doesn’t
matter about their meaning.

VI. DISCUSSION AND RESULTS
A. Discussion

This section presents and discusses the experiment results;
it compares the performance of AHP, ReDCCahp, and E-AHP.
It will show the time taken, memory used, and CR values of
the algorithms after running their Java code with different
numbers of requirements ranging from 10 to 500. Tables II and
III present the average time taken and memory used by AHP,
ReDDCahp, and E-AHP, respectively. Table IV presents the
CR values of the AHP, ReDCCahp, and E-AHP results.

TABLE II. THE AVERAGE TIME TAKEN (IN MINUTES) BY THE AHP,
REDDCAHP AND E-AHP ALGORITHMS

Number of requirements AHP ReDDCahp E-AHP

10 2.501 1.391 0.297

25 9.647 3.675 0.972

50 17.533 6.988 2.326

100 27.091 13.962 4.955

150 49.081 22.491 6.883

200 74.718 28.541 13.481

300 109.981 46.846 25.236

400 136.345 61.932 36.766

500 161.709 95.961 45.152

TABLE III. THE AVERAGE MEMORY USED (IN MB) BY THE AHP,
REDDCAHP AND E-AHP ALGORITHMS

Number of requirements AHP ReDDCahp E-AHP

10 0.0681 0.0344 0.0293

25 0.2133 0.0939 0.0845

50 0.3312 0.1997 0.1497

100 0.5508 0.3138 0.2349

150 0.7019 0.4609 0.2911

200 0.9402 0.5011 0.3278

300 1.3082 0.7443 0.4026

400 1.8708 0.9952 0.5133

500 2.8937 1.1960 0.6479

196 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

TABLE IV. THE AVERAGE CR VALUE OF THE AHP, REDCCAHP AND E-
AHP ALGORITHMS' RESULTS

Number of requirements AHP ReDDCahp E-AHP

10 0.0791 0.0504 0.0193

25 0.1944 0.0905 0.0337

50 0.2908 0.0981 0.0617

100 0.3873 0.1649 0.0729

150 0.4521 0.2591 0.0801

200 0.5091 0.3287 0.0896

300 0.6099 0.4926 0.11091

400 0.7011 0.6608 0.1482

500 0.8019 0.7492 0.1615

Charts in Fig. 3 and Fig. 4 visualize results in Table II and
Table III, respectively. Chart in Fig. 5 visualizes results in
Table IV. Tables II, III, Fig.3, and Fig. 4 show that ReDCCahp
and E-AHP take less time and memory than AHP. When the
requirements number is from 10 to 50, the difference between
the time taken and memory used by the algorithms is small,
larger when the number of requirements becomes > 50, and
significant when > 150. That happens because they apply the
grouping method, which decreases their matrix size (when the
matrix size decreases, the memory and time needed to
complete the operations to get the final PV decreases).

Fig. 3. The Average Time taken by the AHP, ReDCCahp and E-AHP

Algorithms.

Fig. 4. The Average Memory used by the AHP, ReDCCahp and E-AHP

Algorithms.

Fig. 5. The Average CR Value of the AHP, ReDCCahp and E-AHP

Algorithms' Result.

It also can be noticed that E-AHP takes less time and
memory than ReDCCahp, especially when the requirements
number is > 100 (large). Because, in ReDCCahp, the group
size is fixed (each group has only two requirements), but in E-
AHP, the group size is variable (one group can have any
requirements number). So in most cases, E-AHP produces less
number of groups than ReDCCahp, which makes its pairwise
comparison matrix size smaller than ReDCCahp.

Table IV and Fig. 5 show that the results of AHP becomes
inconsistent (CR > .1) when the number of requirements is > =
25. That happens because it requires the users to make pairwise
comparisons among all requirements; not among requirements
groups, which increases the human error proportion; and hence
decreases the results consistency. ReDCCahp produces
consistent results when the number of requirements is < =50,
and E-AHP produces consistent results when the requirement
number is < 300. Although E-AHP and ReDCCahp both group
the requirements, E-AHP produces more consistent results than
ReDCCahp. That happens because E-AHP uses the scoring
method instead of the pairwise comparisons, which decreases
the human error proportion and increases results consistency.
Moreover, the scoring method takes less time than the pairwise
comparisons method, as the pairwise comparisons increase the
time exponentially when the requirements number increases.

B. Results
The results that can be concluded from the experiment are

as follows:

• AHP consumes more time than ReDCCahp and E-AHP,
and E-AHP uses the least time among the three
algorithms.

• AHP uses more memory than ReDCCahp and E-AHP,
and E-AHP uses the least among the three algorithms.

• AHP produces less consistent results than ReDCCahp
and E-AHP, and E-AHP produces the most consistent
results among the three algorithms.

• AHP has less scalability than ReDCCahp and E-AHP,
and E-AHP is the most scalable algorithm among the
three algorithms.

197 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

• AHP produces less accurate results than ReDCCahp and
E-AHP, and E-AHP produces the most accurate results
among the three algorithms.

So among the three algorithms, E-AHP is the best one as it
takes the least time, uses the least memory, has the highest
scalability, and produces the most consistent and accurate
results. All of that becomes remarkable when the number of
requirements increases.

VII. CONCLUSION
This research proposes a new software requirements

prioritization algorithm to solve the scalability and
inconsistency problems faced by the AHP, namely E-AHP. A
performance evaluation of the E-AHP algorithm against the
AHP and ReDCCahp algorithms (ReDCCahp is one of the best
recent algorithms that try to solve the AHP problems) was
done to prove the effectiveness and efficiency of E-AHP. The
java codes of the three algorithms have been implemented and
run on the same machine with various requirements numbers
ranging from 10 to 500 (small, medium, and large). The time
taken, the memory used, and CR values of the results are
measured. Results show that E-AHP takes much less time, uses
less memory, and produces more consistent and accurate
results than AHP and ReDCCahp, especially with large
requirements numbers, which means that E-AHP has high
scalability. So E-AHP is better than AHP and ReDCCahp as it
can deal efficiently with large numbers of requirements.

VIII. LIMITATIONS AND FUTURE WORK
Some cases will reduce the speed and accuracy of the E-

AHP algorithm: first, if the difference among most of the
requirements scores is more than the MaxDRS value, in this
case, most of the groups will have one requirement, and the
number of groups will increase (will almost equal to the
requirements number), which will cause a scalability problem.
Second, if the difference among most requirements scores is
the same, then each group will have many requirements, which
will decrease the accuracy of the results. The negative effect is
reduced in these cases by choosing small values for MaxDRS
and MaxNR. So in the future, we plan to enhance the E-AHP
algorithm to deal with the previous cases efficiently. We also
plan to conduct an experiment using a large number of
software analysts as participants to validate the applicability
and usability of the proposed algorithm on large real-life
software projects.

REFERENCES
[1] Rashidah Kasauli, Eric Knauss, Jennifer Horkoff, Grischa Liebel,

Francisco Gomes de Oliveira Neto,"Requirements engineering
challenges and practices in large-scale agile system development",
Journal of Systems and Software, 2021.

[2] Naila Jan, Irum Inayat, and Muhammad Abbas, "An Empirical
Evaluation of Requirements Prioritization Techniques." , Marketing and
Branding Research,2020.

[3] Faiza Allah Bukhs , Zaharah Allah Bukhsh , and Maya Daneva, "A
systematic literature review on requirement prioritization techniques and
their empirical evaluation", Computer Standards,2020.

[4] Muhammad Yaseen, Noraini Ibrahim, and Aida Mustapha,
"Requirements prioritization and using iteration model for successful
implementation of requirements", International Journal of Advanced
Computer Science and Applications, 2019.

[5] Khaled AbdElazim, Ramadan Moawad, and Essam Elfakharany, "A
framework for requirements prioritization process in agile software
development", Journal of Physics: Conference Series, 2020.

[6] Emmanuel OC Mkpojiogu, and Nor Laily Hashim, "Quality based
prioritization: An approach for prioritizing software requirements",
Journal of Telecommunication, Electronic and Computer Engineering,
2018.

[7] Hanny Tufail, Iqra Qasim, Muhammad Faisal Masood, Sara Tanvir,
Wasi Haider Butt, "Towards the selection of Optimum Requirements
Prioritization Technique: A Comparative Analysis.", 2019 5th
International Conference on Information Management (ICIM). IEEE,
2019.

[8] Iroju Olaronke, Rhoda Ikono, Ishaya Gambo, "An Appraisal of Software
Requirement Prioritization Techniques", Asian Journal of Research in
Computer Science, 2018.

[9] Muhammad Imran Babar, Masitah Ghazali, Dayang N.A. Jawawi, Siti
Maryam Shamsuddin, and Noraini Ibrahim, "PHandler: an expert system
for a scalable software requirements prioritization process", Knowledge-
Based Systems, 2015.

[10] Jamilah Din, Muhammed Basheer Jasser, "Software Requirements
Prioritization Tool using a Hybrid Technique ", International Journal of
Engineering and Advanced Technology (IJEAT), 2019.

[11] Philip Achimugu, Ali Selamat, Roliana Ibrahim, and Mohd Nazri
Mahrin, "A systematic literature review of software requirements
prioritization research", Information and software technology, 2014.

[12] Nayak, Soumen, Chiranjeev Kumar, and Sachin Tripathi. "Analytic
hierarchy process-based regression test case prioritization technique
enhancing the fault detection rate.", Soft Computing 26.15, 2022.

[13] Fadhl Hujainah, Rohani Binti Abu Bakar, Mansoor Abdullateef
Abdulgabber,and Kamal Z. Zamli, "Software requirements
prioritisation: a systematic literature review on significance,
stakeholders, techniques and challenges.", IEEE Access ,2018.

[14] Noor Hazlini Borhan, Hazura Zulzalil, Sa’adah Hassan, Norhayati Mohd
Ali,"Requirements Prioritization Techniques Focusing on Agile
Software Development:A Systematic Literature review ", International
Journal of Scientific and Technology Research, 2019.

[15] Amjad Hudaib, Raja M.T Masadeh, Mais Qasem, and Abdullah Issa
Alzaqebah, "Requirements prioritization techniques comparison."
Modern Applied Science, 2018.

[16] Muhammad Atif Iqbal, Athar Mohsin Zaidi, and Saeed Murtaza, "A new
requirement prioritization model for market driven products using
analytical hierarchical process", 2010 International Conference on Data
Storage and Data Engineering .IEEE, 2010.

[17] Srinivas Nidhra, Likith Poovanna, Kelapanda Satish, and Vinay Sudha
Ethiraj, "Analytical Hierarchy Process issues and mitigation strategy for
large number of requirements", 2012 CSI Sixth International Conference
on Software Engineering (CONSEG). IEEE, 2012.

[18] Naila Jan, Irum Inayat,and Muhammad Abbas, ", An Empirical
Evaluation of Requirements Prioritization Techniques ,Marketing and
Branding Research", 2020.

[19] Iyas Ibriwesh, Sin-Ban Ho, and Ian Chai, "Overcoming scalability issues
in analytic hierarchy process with ReDCCahp: An empirical
investigation", Arabian Journal for Science and Engineering, 2018.

[20] Xiaojun Wang, Hing Kai Chan, Rachel W.Y. Yee , and Ivan Diaz-
Rainey, "A two-stage fuzzy-AHP model for risk assessment of
implementing green initiatives in the fashion supply chain",
International Journal of Production Economics, 2012.

[21] Yash Veer Singh, Bijendra Kumar, Satish Chand, and Jitendra Kumar
,"A comparative analysis and proposing ‘ANN fuzzy AHP model’for
requirements prioritization.", I.J. Information Technology and Computer
Science, 2018.

[22] Mukhtar Elsood, A. Abo, Hesham A. Hefny, and Eman S. Nasr, "A
goal-based technique for requirements prioritization", 2014 9th
International Conference on Informatics and Systems. IEEE, 2014.

[23] YanLiu, Claudia M.Eckert,and ChristopherEarl. "A review of fuzzy
AHP methods for decision-making with subjective judgements", Expert
Systems with Applications, 2020.

198 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 7, 2022

[24] Paolo Tonella, Angelo Susi, and Francis Palma, "Using interactive GA
for requirements prioritization", 2nd International Symposium on Search
Based Software Engineering. IEEE, 2013.

[25] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar, "A review on
genetic algorithm: past, present, and future", Multimedia Tools and
Applications, 2021.

[26] Muhammad Yaseen , Noraini Ibrahim , Aida Mustapha, "Prioritization
of Software Functional Requirements: Spanning Tree based Approach
",International Journal of Advanced Computer Science and
Applications,2019.

[27] Lafore, Robert. Data structures and algorithms in Java. Sams publishing,
2017.

[28] Thomas L. Saaty, "What is the analytic hierarchy process? ",
Mathematical models for decision support.Springer, Berlin, Heidelberg,
1988.

[29] Bruce L. Golden, Edward A. Wasil, and Patrick T. Harker, "The analytic
hierarchy process", Applications and Studies, Berlin, Heidelberg, 1989.

[30] Chatelin, Françoise, ed. Eigenvalues of matrices: revised edition.
Society for Industrial and Applied Mathematics, 2012.

[31] Qiao. Ma, The effectiveness of requirements prioritization techniques
for a medium to large number of requirements: a systematic literature
review", Diss. Auckland University of Technology, 2009.

[32] Kurt. Mehlhorn, "Data structures and algorithms 1: Sorting and
searching", Springer Science & Business Media, 2013.

199 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. Background: The Conventional AHP
	IV. E-ahp: The Proposed Algorithm
	A. Gathering the Requirements
	B. Scoring and Sorting the Requirements
	C. Grouping the Similar Requirements
	D. Constructing the Reciprocal Matrix
	E. Consistency Check of the Results

	V. An Experiment Comparing the Proposed Algorithm (E-AHP) Against AHP and ReDCCahp Algorithms
	A. Experimental Objective
	B. Experimental Variables
	C. Experimental Setup

	VI. Discussion and Results
	A. Discussion
	B. Results

	VII. Conclusion
	VIII. Limitations and Future Work

