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Abstract—Artificial Neural Networks (ANN) is one of the 
main and widespread tools for creating intelligent systems. And, 
they are actively used for data analysis in many areas such as 
robotics, computer vision, natural language processing, etc. The 
learning process of ANN is one of the most labor-intensive stages 
in ANN. There are many different modifications of ANNs and 
methods for their training. Currently, deep neural networks are 
becoming one of the most popular methods of machine learning 
due to their effectiveness in areas such as speech recognition, 
medical informatics, computer vision, etc. It is known that ANN 
training depends on the type of input data. In this paper, 
reinforcement learning is considered, as popular method used in 
cases where information is reinforced by signals from the 
external environment with which the model interacts. The 
purpose of this paper is to develop a reinforcement meta-learning 
algorithm that would be efficient in terms of quality and speed of 
learning. However, despite the significant scientific progress in 
deep learning, existing algorithms are not efficient enough to 
solve problems in the real world. In addition, such algorithms 
require a significant amount of learning time, which complicates 
the development process. To solve these problems, the use of 
meta-learning or “learning to learn” algorithms has recently 
been especially relevant. The paper proposes an approach to 
reinforcement meta-learning using a multitasking weight 
optimizer. experimentally shown that the proposed approach is 
more efficient than the known MAML (Model-Agnostic Meta-
Learning) algorithm. The proposed MAML SPSA-Track method 
shows an improvement in efficiency by an average of 4%, and 
MAML SPSA-Delta by 8%, respectively. Moreover, the last 
algorithm spends on average 2 times less time on push-v2 and 
pick-place-v2 tasks. 

Keywords—Multitasking; meta-learning; reinforcement 
learning; neural networks; optimization 

I. INTRODUCTION 
Humans have an innate ability to learn new skills quickly 

and easily. For example, we can look at one instance of a knife 
and distinguish all knives from other cutlery such as spoons 
and forks. Our ability to learn new skills and quickly adapt to a 
new environment based on a small number of examples is not 
just limited to identifying new objects, learning a new 
language, or figuring out how to use a new tool; our 
possibilities are much more diverse. [1], [2]. In contrast, 
machines—specifically, deep reinforcement learning 
algorithms—generally learn quite differently [3]. They require 
very large amounts of data and computational resources to 
achieve acceptable performance. The reason why people can 
learn quickly and adapt to a new environment is that they use 
the knowledge gained from previous experience to solve new 

problems. Similarly, meta-learning uses little experience 
gained from data to solve new problems quickly and 
efficiently. Through this method, it is possible to significantly 
speed up the training of neural networks with reinforcement 
significantly. Neural networks with reinforcement require quite 
large amounts of training data and computational resources. 
Creating such datasets is costly, especially when you need to 
involve a domain expert. While pre-training is useful, these 
approaches become less efficient for domain-specific 
problems, which it still requires large amounts of task-specific 
labeled data to achieve good performance. In addition, some 
existing problems are characterized by a wide and unbalanced 
distribution of data, which can make it difficult to collect 
training examples [4]. On the other hand, it is possible to use a 
pre-trained network from another task and then finish training 
it on the current small training set. However, depending on the 
specifics of the problem, this is not always possible, especially 
if the task on which the neural network was trained is 
significantly different. It is important to note that the ability to 
quickly learn new tasks during model inference is something 
traditional machine learning approaches do not attempt. This is 
what makes meta-learning especially attractive. Meta-learning 
is particularly interesting and can be used for the following 
reasons [5]. 

• The ability to learn from just a few examples. 

• Quick adaptation to new tasks. 

• The ability to create more versatile systems. 

Meta-learning is especially successful in situations where a 
large amount of data is required; for example, robots are tasked 
with learning new skills in the real world and often encounter 
new environments [6]. 

Finally, the task was formally set to develop a meta-
learning algorithm with reinforcement of a machine learning 
model that would be efficient in terms of learning. 

II. LITERATURE REVIEW 
Meta-learning tries to gain general knowledge about the 

target area by learning the set of tasks belonging to it [7]. The 
idea of meta-learning is to train the model by showing it only a 
few examples for each class and [8] then test it on new 
examples from the same classes that were taken from the 
original dataset. 

The author in [9] proposed a formal description of the few-
shot learning task as meta-learning. The data set of each class 
is randomly divided into a support set and a query set. The 
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support set consists of labeled examples that are used to predict 
classes of untagged examples from the query set. The set of 
classes at the training stage does not intersect with the set of 
classes at the testing stage. 

The author in [10] introduced a multitasking loss function 
based on maximizing the Gaussian likelihood with a task-
dependent uncertainty. The proposed single model for all tasks 
outperformed separate models for each task. 

Subsequently, a multitasking approach was applied in [11] 
to solve the problem of character recognition from a small 
number of examples, which led to an improvement in the 
overall recognition efficiency compared to the base model. 

The author in [12] established a close relationship between 
the optimization problems of multitask learning and 
optimization-based meta-learning. Different from existing 
works, this paper focuses on improving the meta-learning 
stage. Only inductive methods that use a meta-learning process 
without prior training are considered. To do this, MAML was 
chosen as an example of the use of optimization-based 
learning, since the works describing this method are among the 
most cited in this field. 

III. MATERIAL AND METHOD 

A. The Task of Reinforcement Meta-Learning 
Reinforcement learning (RL) is one of the methods of 

machine learning, the purpose of which is to find an optimal 
strategy for the behavior of the model in the environment and 
maximize the reward received from the environment 
throughout the entire time the model interacts with the 
environment. The main concepts in RL are the agent and the 
environment: The environment represents the world in which 
the agent lives and interacts. In Fig. 1, at each interaction step, 
the agent observes (perhaps only partially) the state of the 
environment [3]. While the agent then decides what action to 
take. The environment changes when the agent acts on it, but it 
can also change by itself. The agent also receives a reward 
from the environment, a number that tells him how good or bad 
the current state of the world is. Accordingly, the agent's goal 
is to maximize his total reward, called profitability. 
Reinforcement learning methods are approaches by which an 
agent can learn the desired behavior to achieve a goal [13]. 

Reinforcement meta-learning is meta-learning in the field 
of reinforcement learning. Usually, training and test problems 
are different, but they are taken from the same family of 
problems. 

Let's we have a distribution of tasks, each of which is The 
Markov Decision Process (MDP). 

 
Fig. 1. The Cycle of Interaction between the Agent and the Environment [3]. 

 
Fig. 2. A Meta-RL representation Containing Two Optimization Loops [4]. 

𝑀𝑖 ∈ 𝑀 , where 𝑀𝑖 is defined by the set ⟨𝑆,𝐴,𝑃𝑖 ,𝑅𝑖⟩ . In 
Fig. 2, at each iteration of the external cycle, a new 
environment is selected and the parameters that determine the 
behavior of the agent are adjusted using the metal earning 
algorithm. In the inner loop, the agent interacts with the 
environment and maximizes the reward using a reinforcement 
learning algorithm [4], [14]. Note that the general state 𝑆 and 
action space A, so the stochastic policy is: 

𝜋𝜃: S ×  A →  R+ 

Will receive input data that is compatible with different 
tasks. Test items are selected from the same or slightly 
modified distribution M. In general, reinforcement meta 
learning is very similar to regular reinforcement learning, 
except that the last reward 𝑟𝑡−1 and the last action 𝑎𝑡−1are also 
included in the observation in addition to the current state. 𝑠𝑡: 

• In reinforcement learning 𝜋𝜃(𝑠𝑡) → 𝑎 

• In Reinforcement Meta-learning 𝜋𝜃(𝑎𝑡−1,  𝑟𝑡−1, 𝑠𝑡) → 𝑎 

This is done so that the policy will learn the changes 
between states, rewards and actions in the current MDP and 
can adjust its strategy accordingly. This is done so that the 
policy can assimilate the changes between states, rewards and 
actions in the current MDP and can adjust its strategy 
accordingly. 

IV. DEVELOPMENT OF THE TRAINING METHOD 

A. MAML Meta-Learning Algorithm 
Reinforcement meta-learning uses two optimization loops: 

external and internal. During the outer loop, a meta-learning 
algorithm is applied. It is important to note that MAML is 
compatible with any model that can be trained using gradient 
descent, which is its main advantage. There aren’t any 
restrictions on the loss function. The algorithm is applicable to 
such a wide range of problems as regression, classification, and 
reinforcement learning. MAML does not change the structure 
of the learning model, but only changes the network 
parameters in such a way that a small number of gradient 
descent steps are required on a small training dataset of a new 
problem to obtain a good generalization ability on this problem 
[15]. However, this algorithm requires taking second-order 
derivatives, which is the main disadvantage of this algorithm. 

B. Method Formulation of the Problem 
Despite the fact that there are a number of algorithms that 

do a good job of this kind of task, the speed of learning these 
algorithms, even on the most productive equipment, takes an 
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extremely long time. Moreover, due to the dynamism and 
variety of tasks in the real world, the quality of the solution on 
new test problems can be much worse than the quality of 
training ones. So, the goal of this thesis is to develop a 
reinforcement meta-learning algorithm that would be effective 
in terms of quality and speed of learning. Also, during the 
execution of the work, the following tasks were set: 

• Modify the basic MAML (Model-Agnostic Meta-
Learning). An algorithm based on a multitasking 
approach. 

• The tasks of deep learning, reinforcement learning, 
meta-learning, multitasking learning, and reinforcement 
meta-learning have been described. 

• The main approaches to meta-learning were analyzed - 
based on models, metrics and optimization, and modern 
meta-learning algorithms for each approach. 

• Compare the efficiency of the modified and unmodified 
algorithms. 

• The common problem of low efficiency for these 
methods was analyzed in terms of both data and time 
resources spent on training the model. 

• Formally, the task was to develop a meta-learning 
algorithm with reinforcement of a machine learning 
model that would be effective in terms of quality and 
speed of learning. 

V. SOFTWARE IMPLEMENTATION OF THE CONSOLE 
APPLICATION 

A. Architecture and Composition 
 The console application was developed in the popular 

Python programming language for further experiments. Fig. 3 
describes the standard process for developing a strategy model, 
along with the important modules associated with solving the 
problem. 

Meta-World's ML1 environment was used as an 
environment for the agent. To implement the neural network of 
the agent, the torch.nn module of the well-known PyTorch 
framework was used. [16]. 

To realize the basic MAML algorithm and the proposed 
SPSA-Delta and SPSA-Track algorithms, the modules were 
optim and torch. Autograd was used, which presents various 
standard optimization algorithms for training neural networks. 
The training results were written to the hard disk using the 
torch.utils.tensorboard module. PyTorch is one of the most 
popular open-source machine learning frameworks in the 
Python programming language. 

The main PyTorch modules that are used in the software 
implementation are: torch.nn, torch.optim, torch.autograd, 
torch.utils.tensorboard. The torch.nn module defines 
computational graphs and works with gradients, which makes 
it easy to build neural networks. The following module 
torch.optim introduces various optimization algorithms for 
training neural networks. The torch.autograd module 

implements the automatic differentiation method. The 
torch.utils.tensorboard module helps to save and visualize the 
results. 

The first step in any deep learning project involves loading 
and processing training data. Reinforcement learning of a 
model consists of its interaction with the simulated 
environment. Meta-World allows you to design environments 
according to the Env interface of the Gym framework. First, 
we need to create the desired test, and then an instance of the 
environment. A task is assigned to the environment using the 
set_task() method from the corresponding already defined 
training and test tasks of the created test. In the current project, 
a function was described that returns an instance of the 
environment given the benchmark test and the task name task 
name. 

The process of creating the environment of the Meta-World 
framework for the subsequent training of the model is shown in 
Fig. 4. The agent's interaction with the environment is 
implemented through the environment's step() method. For the 
convenience of interacting with the environment, the Runner 
class was described, an instance of which receives from the 
model the action to be performed, passes it to the simulated 
environment and receives from it information about the current 
state, the value of the reward, success rate and other metadata. 
Then, an instance of the ReplayMemory class collects all the 
received information about states, actions, etc. into the 
corresponding tensors in order to further transfer it to the main 
MAML algorithm for processing. The strategy is presented as a 
neural network. To create it, PyTorch uses the corresponding 
torch.nn module. It provides the implementation of all 
commonly used neural network components such as fully 
connected and convolutional layers, activation layers and 
associated loss functions. 

The neural network representing the main strategy consists 
of one hidden layer with a size of 128 neurons and an 
activation function nn.Tanh() between the layers Fig. 5. 

The input of the neural network is a vector of length 39 
about the state of the ML1 Meta-World test environment, at the 
output the neural network gives a vector of length 4 about the 
next action by the agent in the environment. 

 
Fig. 3. Diagram of the Development Process of a Neural Network Model. 
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Fig. 4. The Initialization of the Meta-World Environment. 

 
Fig. 5. The Strategy Neural Network Initialization. 

For each iteration of the meta-learning stage 10 training 
tasks were selected to obtain the needed data. The number of 
adaptation steps of the MAML algorithm was equal to 1, i.e. 
during testing, adaptation to a new problem occurred in one 
step of the gradient descent algorithm. The maximum length 
for a single task in the environment was 500. The maximum 
length for a single task in the environment was 500. The 
reward discount factor was 0.99. 

During the adaptation phase, the weights of the neural 
network were changed with a learning rate factor of 1 × 10−4, 
during the meta-learning phase 1 × 10−3 . The optimization 
method TRPO was used as a meta-optimizer with a maximum 
number of steps for linear search of 15 and a step of 5 × 10−3. 

The neural network was trained for 600 epochs for 
environment with reach-v2, pick-place-v2 tasks and 1200 
epochs for push-v2. Also, the multitasking weight optimizer 
only started optimization after 50 epochs so that the model had 
time to adjust the initially randomized weights according to the 
task and environment. 

B. General Description of the MetaWorld Environment 
Meta World is an open-source simulated test for 

reinforcement meta-learning and multitasking learning, 
consisting of 50 different environments with robotic 
manipulations [17]. Task T in Meta World is defined as a set 
consisting of a reward function, an object's starting position, 
and its target position. Metal-earning makes two important 
assumptions: 

1) Meta-training and meta-testing tasks have a common 
distribution 𝑝(𝑇). 

2) The task distribution 𝑝(𝑇), has a general structure that 
can be used to effectively adapt to new tasks. 

If 𝑝(𝑇) , is defined as a family of variations within a 
specific problem, as in previous works [6], [10], then it is 
unreasonable to hope for a generalization to completely new 
problems. For example, an agent has little chance of being able 
to quickly learn to open a door without ever hitting a door 
before if it has only been trained on a set of uniform and 
narrow tasks during meta-learning. Thus, in order to allow 
reinforcement meta-learning methods to adapt to completely 
new tasks, a sufficiently large set of tasks is needed, where 
continuous changes in parameters cannot be used to describe 
the differences between tasks. In Meta World, all tasks are 
performed by a robotic arm. The action space is a set of two 
elements, consisting of changing the 3D space of the gripper. 

Actions in this space range from -1 to 1. The observation 
space is represented as a set of 6 3D Cartesian positions of the 
gripper, a normalized measurement of how open the grip is, the 
3D position of the first object, the quaternion of the first object, 
the 3D position of the second object, the quaternion of the 
second object, all previous measurements in the environment, 
and finally 3D position of the target. If there is no second 
object or the target is not supposed to be included in the 
observation, then the values corresponding to them are set to 
zero. The state space is always 39-dimensional. The reward 
functions for all tasks have the same value, which is in the 
range from 0 to 10, where 10 always corresponds to the fact 
that the task was solved. It should be noted that all tasks were 
implemented using the MuJoCo physics engine [18], [19], 
which allows to simulate the physical laws of the real world 
quickly and efficiently. The Multi-world interface [20] and 
interfaces of the popular OpenAI Gym environment [21] were 
taken as the basis, which makes this framework quite easy to 
use. 

VI. EXPERIMENTAL METHODOLOGY 
As an applied task for solving and evaluating the efficiency 

of the developed algorithms, we consider the ML1 test in the 
Meta-World environment. ML1 is aimed at evaluating the 
adaptation of the algorithm in several steps to change the goal 
within the same task. ML1 uses separate Meta-World tasks, 
where training tasks correspond to 50 random initial positions 
of objects and targets, and testing tasks correspond to 50 held 
positions. Algorithms are evaluated on three tasks from Meta-
World: 

• reach-v2. 

• push-v2. 

• pick-place-v2. 

where either the position to be reached or the target 
position of the object varies. Target positions are not specified 
in world states, which forces reinforcement meta-learning 
algorithms to adapt to the target through trial and error. 
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In the reach-v2 task, the robotic arm needs to reach a target 
position, which is given randomly. The next push-v2 challenge 
is to push the puck towards the net. In the pick-place-v2 
problem, it’s important to take and place the puck in the goal. 
The positions of the puck and the goal in the tasks are set 
randomly. 

Since the reward values do not directly indicate the success 
of the chosen policy, Meta-World defines an interpretable 
success metric for each task, which is used as the main 
criterion. Since all tasks involve the manipulation of one or 
more objects in the target configuration, this success metric is 
usually based on the distance between the task-relevant object 
and its final target position, i.e.,�|𝑜 − 𝑗|� < 𝜀, where 𝜀 is the 
threshold, for example, 5 cm. The software implementation 
was carried out in the Python programming language version 
3.8. The environment was modeled using the Meta-World 
framework version 2.0 together with the OpenAI Gym 
framework version 0.19. As noted earlier, MetaWorld contains 
ready-made implementations of various environments for 
meta-reinforcement learning and agent testing. To build 
models of neural networks, the PyTorch framework version 
1.10 was used, which contains implementations of various 
layers and algorithms for optimizing neural networks. 

VII. ANALYSIS OF RESULTS 
Fig. 6 shows the maximum success rate, averaged over 5 

runs, in the ML1 Meta-World test environment. Based on the 
results obtained, all 3 algorithms do an excellent job of solving 
the reach-v2 problem both at the training and testing stages. On 
more complex push-v2 and pick-place-v2 tasks, the MAML 
SPSA-Delta algorithm is the most efficient among all those 
considered. The improvement relative to the basic algorithm 
was 17% at the training stage and 21% at the testing stage on 
the push-v2 task, 8% and 3% on the pick-place-v2 task, 
respectively. However, on the pick-place-v2 problem, the 
ability of the MAML SPSA-Delta method to generalize is not 
much higher than the MAML SPSA-Track algorithm (60% for 
MAML SPSA-Delta and 59% for MAML SPSA-Track). The 
following figures show examples of the moving average 
success rate for the reach-v2 task over 6 × 107steps in a test 
environment (Fig. 6 is the training phase, Fig. 7 is the testing 
phase). For all constructed charts, the moving average 
coefficient is 0.8. As can be seen from the graph, the modified 
MAML algorithms solve the problem no worse than the 
original MAML algorithm environment (Fig. 7 is the training 
phase; Fig. 8 is the testing phase). For all constructed charts, 
the moving average coefficient is 0.8. 

As can be seen from the graph, the modified MAML 
algorithms solve the problem better than the original MAML 
algorithm. Now let's look at the moving average success rate 
plots for the following push-v2 task over 2 × 108steps in a 
test environment (Fig. 9 is the training phase, Fig. 10 is the 
testing phase). Compared to other tasks, the SPSA-Delta 
MAML algorithm took significantly longer to adapt to the 
environment and overtake the basic MAML method. The 
SPSA-Track algorithm also shows good results, but they do not 
differ significantly from the results of the unmodified MAML 
algorithm. Finally, let's analyze the constructed plots of the 
moving average success rate for the last pick-place-v2 task 

over 6 × 107 steps in the test environment (Fig. 11 is the 
training phase, Fig. 12 is the testing phase). It follows from the 
graph that both MAML algorithms with modifications are 
significantly more efficient at the testing stage than the original 
MAML algorithm. 

 
Fig. 6. The Maximum Success rate of Algorithms in the ML1 Meta-World 

Test Environment. 

 
Fig. 7. Average Success Rate of Algorithms on the Reach-v2 Problem at the 

Training Stage. 

 
Fig. 8. Success Rate of Algorithms on the Reach-v2 Problem at the Testing 

Stage. 
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Fig. 9. Success Rate of Algorithms on the Push-v2 Problem at the Training 

Stage. 

 
Fig. 10. Success Rate of Algorithms on the Push-v2 Task at the Testing 

Stage. 

 
Fig. 11. Success Rate of Algorithms on the Pick-place- v2 Problem at the 

Training Stage. 

 
Fig. 12. Success Rate of Algorithms on the Pick-place-v2 Task at the Testing 

Stage. 

Moreover, the MAML SPSA-Delta and MAML with 
SPSA-Track algorithms achieve the same high success rate, but 
the first algorithm learns 2 times faster than the second. 

Consider the average maximum success rate achieved by 
each algorithm in the ML1 Meta-World test environment, 
information about which is shown in Table I. 

Based on the results of experiments in the ML1 MetaWorld 
test environment with three different methods of deep 
reinforcement meta-learning: the original MAML algorithm, 
MAML SPSA-Delta, MAML SPSA-Track, the proposed 
MAML SPSA-Track method shows an average efficiency 
improvement of 4%, and MAML SPSA-Track Delta by 8%, 
respectively. Moreover, the latter spends on average 2 times 
less time for training on push-v2 and pick-place-v2 tasks. 
According to the obtained results, it is safe to say that the use 
of a multitasking loss function and its stochastic approximation 
with simultaneous perturbation can significantly improve the 
efficiency of deep reinforcement learning algorithms. 

TABLE I. MAXIMUM SUCCESS RATE AVERAGED OVER ALL TASKS IN 
THE ML1 META-WORLD TEST ENVIRONMENT. 

Algorithms Learning Phase Testing Phase 

MAML 76% 75% 

MAML SPSA-Delta 84% 83% 

MAML SPSA-Track 80% 79% 

VIII. CONCLUSION 
Based on the tasks of deep learning, reinforcement 

learning, meta-learning, meta-learning with reinforcement and 
multitasking learning and their relevance are described. 

After making comparison of the basic MAML algorithm 
with the proposed MAML SPSA-Delta and MAML SPSA-
Track by conducting computational experiments to train the 
agent on reach-v2, push-v2, pick-place-v2 tasks in the ML1 
Meta World test environment, it was concluded that the 
MAML SPS-Track algorithm is on average 4% more efficient 
compared to the original MAML method, and the MAML 
SPSA-Delta algorithm is 8% more efficient. Moreover, the last 
algorithm spends on average 2 times less time on push-v2 and 
pick-place-v2 tasks. 
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