# Comparison of Image Enhancement Algorithms for Improving the Visual Quality in Computer Vision Application

Jenita Subash<sup>1</sup>\* Department of ECE Cambridge Institute of Technology, Bangalore, India

Dr. Jharna Majumdar<sup>2</sup> Department of CSE Cambridge Institute of Technology, Bangalore, India

Abstract-Computer vision has its numerous real-world applications on Visual Object Tracking which includes humancomputer interaction, autonomous vehicles, robotics, motionbased recognition, video indexing, surveillance and security, human-computer interaction, autonomous vehicles, robotics, motion-based recognition, video indexing, surveillance and security. The factors affecting the tracking process is due to low illumination, haze and cloudy environment and noisy environment. In this paper, we aim to extensively review the latest trends and advances in adaptive enhancement algorithm and evaluate the performance using Full reference like, SSIM (Structure Similarity Index Measure), MS-SSIM (Multi-scale Structure Similarity Index Measure), ESSIM (Edge Strength Structural Similarity Index), FSIM (Feature Similarity Index Measure), VIF (Visual Information Fidelity), CW-SSIM (complex wavelet structural similarity), UQI (Universal Quality Index), IEF (Image Enhancement Factor), IQI (Image Quality Index), EME (Enhancement Measurement Error), CVSI (Contrast and Visual Salient Information), MCSD (Multiscale contrast similarity deviation), NQM (Noise Quality Measure), Gradient Magnitude Similarity Mean (GMSM), Gradient Magnitude Similarity Deviation (GMSM) and no-reference image quality measures Perception based Image Quality Evaluator (PIOE), Blind/Reference less Image Spatial Quality Evaluator (BRISOUE), Naturalness Image Quality Evaluator (NIQE), Average Gradient (AG), Contrast, Information Entropy (IE), Lightness order Error (LOE). The main purpose of adaptive image enhancement is to smooth the uniform area and sharpen the border of an image to improve its visual quality. In this paper, fourteen image enhancement algorithms were tested on LoL dataset to benchmark the time taken to process them and their output quality was evaluated. Results from this study will give insights to image analysts for selecting image enhancement algorithms which acts as a pre- processing stage for Visual object Tracking.

#### Keywords—Tracking; robotics; surveillance; enhancement

#### I. INTRODUCTION

In weakly illuminated environments, the images and video quality are often degraded. This leads to reduction in the performance of particular systems, such as those used in consumer electronics, visual surveillance and intelligent traffic analysis. For example, the low lighting conditions in nighttime environments can produce images and video with low contrast, which reduces the visibility [1]. Digital images used with contemporary imaging- and vision-related applications

\*Corresponding Author.

[2] and capturing the image in inappropriate lighting environment have a low-light effect, deficient contrast, and improper colors [3]. Therefore, it is very difficult to capture images with high-quality in that the low-light effect environment which may reduce the performance related to image processing and computer vision applications [4, 5], and such images usually comprise of vast dark regions with reduced visibility [6]. Samples of such images are shown in Fig. 1. There exist various image enhancement algorithms for improving the quality of images acquired under cloudy or other conditions.



Fig. 1. Various Types of Low-light Images. (a) Night Time Image; (b) Unevenly illuminated Image; c) Shadowed Environment Image; d) Image with a Dark Appearance.

Lowlight images are images that have a dark appearance, have uneven illumination, and they are captured in a shadowed environment [7]. The input parameters for these algorithms can vary from very minimal to relatively extensive. Depending on the algorithm the time taken to process an image can also vary. Based on the type of algorithm used and the input parameters specified the output quality of the resultant image will be different. Given with numerously available image enhancement algorithms, it is not feasible to evaluate all of them to determine their suitability. The primary objective of this study is to evaluate a suite of commonly used image enhancement algorithms on low-illumination images. In the first phase of this study, fourteen image enhancement algorithms like Improved Type-II Fuzzy Set-based Algorithm, Retinex-based Multiphase Algorithm, Fusion-based enhancing method, Adaptive Image Enhancement Method for Correcting Low-Illumination Images, Fast efficient algorithm for enhancement of low lighting, A Multiscale Retinex, Bioinspired multiexposure fusion frame work, Deep low light image enhancement, Adaptively Increasing Value Histogram Equalization (AIVHE)) were tested on LOL dataset to benchmark the quality of the output image and the time taken to process them.

Due to the rapid development of image enhancement technology, various enhancement algorithms such as retinex model [9–11], fuzzy theory [12, 13], Fusion based approach [14, 15], Deep learning Approach [16,17], Histogram Equalization based approach [18,19] etc. were developed. For example, as shown in Fig. 2, around 250 literatures on image enhancement algorithms were studied. The methods involved mainly include histogram equalization, Retinex model, Fusion based Approach, Fuzzy based approach and deep learning methods. Each of the image enhancement methods has their own advantages as well as disadvantages. The eye of a human has the ability of filtering the influence of light and obtains the reflectivity of the surface of the object to determine colour. Therefore, the formation of a low-light image can be described as follows:

$$L(x,y) = R(x,y) \cdot B(x,y) \tag{1}$$

where L(x, y) is the original image, R(x, y) is the reflection image, B(x, y) is the illuminance image and (x, y) is the pixel coordinates.

In this paper, we provide the progress of image enhancement algorithms during the past two decades. We mainly introduce the image enhancement methods separately in three aspects based on supervised methods, unsupervised methods and quality evaluation. The block diagram of the whole framework is shown in Fig. 3 in this paper.

The rest of paper is organized as follows. Section III introduces the image enhancement techniques based on Fuzzy based, Retinex based and Fusion based, Histogram based and Deep learning-based approach. Section IV elaborates in detail the image quality assessment using Full-reference, Noreference and Image Error Measurement. Section V deal with the results and discussions. Sections VI elaborates about results and discussions.





Fig. 3. Block Diagram of the Workflow.

#### II. DATASETS USED

The LOL dataset comprise of 500 low-light and normallight image pairs and divided into 485 training pairs and 15 testing pairs. Most of the images are indoor scenes. The resolution of all images is  $400 \times 600$ .

## III. T2FS, RB AND HE BASED IMAGE ENHANCEMENT

## A. T2FS[20]

A Type-II fuzzy set (T2FS) based algorithm [20] was introduced for enhancing the contrast of grayscale medical images. This algorithm improves the contrast by Fuzzifying the image. Then, apply the Type-II fuzzy membership function are determined with the lower and upper ranges of the Hamacher t-conorm, where,  $\alpha$  is a parameter that controls the amount of contrast enhancement, in that it should satisfy 0  $< \alpha \le 1$ , when  $\alpha > 0.6$ , better contrast enhancement is obtained [20]. An improved type-II fuzzy set (IT2FS) algorithm [21], using Fuzzified image followed by Hamacher t-conorm method and then finally applying Gamma Correction The enhanced output of Improved Type-II fuzzy set-based algorithm with different  $\alpha$  values is as shown in the Fig. 4(a) When  $\alpha$  is between 0.3.5 and 0.55, the results will be obtained with satisfactory visual quality. When increasing  $\alpha$ , the brightness is reduced while the contrast is enhanced selecting the proper value of  $\alpha$  leads to desired results. To produce satisfactory results the proper gamma value can be around 0.50.

## B. Retinex based Algorithm

Zou, Y et al. [22] and Kallel, F et al. [23] introduced various image enhancement algorithms for contrast enhancement in CT images. There exists different low-intricacy concept which improves the image illumination. Among such concepts, the single-scale retinex (SSR) model proposed by Jobson et al. [24] was examined because it involves simple calculations and improves the illumination of images. In brief, the SSR model works by estimating an illumination image from its degraded counterpart by performing a discrete 2D Gaussian surround function (DGSF) [25].

Fig. 2. Statistics of Percentage of Papers Published on Image Enhancement.



Fig. 4. (a) Type-II Fuzzy Set-based Algorithm with different α Values, (b) Retinex-based Multiphase Algorithm with different γ Values.

1) RBMA [26]: Mohammad Abid et al. [26] proposed RBMA which involves in determining the log of the illumination and the original images followed by computation of GCS (Gama Corrected Sigmoid function) .The enhanced output of Retinex-based Multiphase Algorithm with different values of  $\gamma$  is as shown in the Fig. 4(b).

Intensive experiments reveal that acceptable quality results are obtained when the  $\gamma$  value is between 0.1 and 0.35.

2) FBEM [27]: Xueyang Fu et al. [27] employed an illumination estimating algorithm based on morphological closing image and an illumination image. The two inputs - improved and contrast-enhanced versions of the first decomposed illumination were derived using the sigmoid function and adaptive histogram equalization. Designing two weights based on these inputs, an adjusted illumination is produced by fusing the derived inputs with the corresponding weights in a multi-scale fashion. Through a proper weighting and fusion strategy, the advantages of different techniques are

blended to produce the adjusted illumination. The final enhanced image is obtained by compensating the adjusted illumination back to the reflectance.

In this fusion-based framework, images under different weak illumination conditions such as non-uniform illumination, backlighting, and nighttime can be enhanced.

3) AIEM [28]: Wencheng Wang et al. [28] proposed Adaptive Image Enhancement Method for Correcting Low-Illumination Images. The original RGB image is converted to HSV color space, and the V component is used to extract the illumination component of the scene using the multiscale Gaussian function. Then based on the Weber-Fechner law, a correction function is constructed, and two images are obtained through adaptive adjustments to the image enhancement function parameters based on the distribution profiles of the illumination components. Finally, an image fusion strategy is formulated and used to extract the details from the two images. Compared with the classic algorithm, the AIEM algorithm can improve the overall brightness and contrast of an image and the enhanced images appear clear, bright, and natural.

4) FEAE [29]: Xuan Dong et al. [29] proposed a Low lighting video enhancement algorithm by applying the invert operation on low lighting video frames, and then performing haze removal on the inverted video frames, before performing the invert operation again to obtain the output video frames.

5) *LIME [30]:* Xiaojie Guo et al. [30] proposed an effective low-light image enhancement (LIME) method. More concretely, the illumination of each pixel is first estimated individually by finding the maximum value in R, G and B channels. Further, we refine the initial illumination map by imposing a structure prior on it, as the final illumination map. Having the well-constructed illumination map, the enhancement can be achieved accordingly.

6) *BIMEF* [31]: Zhenqiang Ying et al. [31] proposed a framework mainly consists of four main components:

The first component, named Multi-Exposure Sampler, determines how many images are required and the exposure ratio of each image to be fused; the second component, named Multi-Exposure Generator, use a camera response model and the Specified exposure ratio to synthetic multi-exposure images; the third component, named Multi-Exposure Evaluator, determines the weight map of each image when fusing; the last component, named Multi-Exposure Combiner, is to fuse the generated images to the final enhanced result based on the weight maps.

7) *SRIE [32]:* In this paper, a weighted variational model for simultaneously estimating reflectance and illumination is presented. First, by analyzing the characteristic of the logarithmic transformation, we show that the logarithmic transformation is not proper to be directly used as regularization terms. Then, based on the previous analysis, a weighted variational model is introduced for better prior representation and an alternating minimization scheme is adopted to solve the proposed model.

8) NPEA [33]: Shuhang Wang et al. [33] proposed an enhancement algorithm for non-uniform illumination images. In general, this paper makes the following three major contributions. First, a lightness-order error measure is proposed to access naturalness preservation objectively. Second, a bright-pass filter is proposed to decompose an image into reflectance and illumination, which, respectively, determine the details and the naturalness of the image. Third, a bi-log transformation is applied, which is utilized to map the illumination to make a balance between details and naturalness.

9) *BPHE [34]:* In Brightness Preserving Bi-Histogram Equalization (BBHE) [34], the Input image is splitted into two sub images based on the mean of the input image. Samples of the input image which are less than or equal to mean forms one sub image, the other sub image consists of samples which

are greater than the mean. Each of these sub images are independently equalized based on their respective histograms. The first sub image, containing samples less than or equal to mean, are mapped into the range from the minimum gray level to the input mean. The second sub image, containing samples greater than the mean are mapped into the range from the mean to the maximum gray level.

10)MSRA [36]: Daniel J. Jobson et al. [36] extend the designed single-scale center/surround retinex to a multiscale version that achieves simultaneous dynamic range compression/color consistency/ lightness rendition. This extension fails to produce good color rendition for a class of images that contain violations of the gray-world assumption implicit to the theoretical foundation of the retinex. Therefore, we define a method of color restoration that corrects for this deficiency at the cost of a modest dilution in color consistency.

11)LightenNet [38]: The purpose of LightenNet [38] is to learn a mapping, which takes a weakly illuminated image as input and outputs its illumination map that is subsequently used to obtain the enhanced image based on Retinex model. The architecture is LightenNet. LightenNet consists of four convolution layers, *i.e.*, patch extraction and representation, feature enhancement, nonlinear mapping, and reconstruction.

# IV. IMAGE QUALITY ASSESSMENT

Image Quality Assessment (IQA) is considered as a characteristic property of an image. Degradation of perceived images is measured by image quality assessment. Usually, degradation is calculated compared to an ideal image. Quality of image can be described technically as well as objectively to indicate the deviation from the ideal or reference model. It also relates to the subjective perception or prediction of an image [8], such as an image of a human look. Image Quality Assessment is grouped into two categories based on the availability of a reference image. The categories of Image Quality assessment methods are as shown in Fig. 5.



Fig. 5. Categories of Image Quality Assessment Methods.

## V. RESULTS AND DISCUSSION

A comparison is made with fourteen methods that are, T2FS [20], RBMA [26], FBEM [27], AIEM [28], FEAE [29], LIME [30], BIMEF [31], SRIE [32], NPEA [33], BPHE [34], CAVIEHE [35], MSRA [36], MSRCR [37], LightenNet [38] and the outcomes of such comparisons are evaluated by 30 metrics. Fig. 6 to 9 demonstrates the comparison results.

Table I to Table XXIX exhibit the recorded metrics scores and processing times of the conducted comparison. Fig. 6 demonstrates the comparison results. Fig. 10 shows the GMS map for the entire different algorithm (Table I to Table XXIX) exhibit the recorded metrics scores and processing times of the conducted comparison.



Fig. 6. The Comparison Outcomes Test Image1 (a) Real Low-light Image; The following Images are enhanced by: (b) IT2FB [20], (c) RBMA[26], (d) FBEM [27], (e) AIEM [28], (f) FEAE [29], (g) MSRA [30], (h) CAVIEHE [31], (i) LIME [32], (j) BIMEF [33], (k) LNET [34], (l) NPEA[35] [m] SRIE [36] [n]BPHE[37] [o] MSRCR [38].



(a)Reference Image 1





Fig. 7. Gradient Magnitude of Reference Image and Noisy Image.

(c)Gradient Magnitude of Noisy Image



Fig. 8. The Comparison Outcomes Test Image2 (a) Real Low-light Image; The following Images are enhanced by: (b) IT2FB [20], (c) RBMA[26], (d) FBEM [27], (e) AIEM [28], (f) FEAE [29], (g) MSRA [30], (h) CAVIEHE [31], (i) LIME [32], (j) BIMEF [33], (k) LNET [34], (l) NPEA[35] [m] SRIE [36] [n]BPHE[37] [o] MSRCR [38].



(a)Reference Image 2

(b)Gradient Magnitude of Reference image

(c)Gradient Magnitude of Noisy Image

Fig. 9. Gradient Magnitude of Reference Image2 and Noisy Image.



Fig. 10. The Comparison Outcomes Ref. Image1 (a) Reference Image; The following Images are enhanced by: (b) IT2FB [20], (c) RBMA[26], (d) FBEM [27], (e) AIEM [28], (f) FEAE [29], (g) MSRA [30], (h) CAVIEHE [31], (i) LIME [32], (j) BIMEF [33], (k) LNET [34], (l) NPEA[35] [m] SRIE [36] [n]BPHE[37] [o] MSRCR [38].

| TABLE I. | THE RECORDED MSE SCORES FOR THE COMPARATIVES (LOWEST SCORE IS THE BEST) |
|----------|-------------------------------------------------------------------------|
|          |                                                                         |

| Image    | IT2FS    |       | RBMP    |        | FBEM      |    | AIEM      | F | TEAE      | LIME   |          | BIMEF     |     | SRIE      |
|----------|----------|-------|---------|--------|-----------|----|-----------|---|-----------|--------|----------|-----------|-----|-----------|
| TestImg1 | 0.295778 | 3     | 0.09336 | 71     | 0.0285043 |    | 0.0764384 | 0 | .0578257  | 0.1863 | 3743     | 0.0378418 |     | 0.0137192 |
| TestImg2 | 0.533083 | 5     | 0.18110 | 75     | 0.0440756 |    | 0.0213309 | 0 | .0116832  | 0.1065 | 525      | 0.0159348 |     | 0.0069661 |
| TestImg3 | 0.431168 | 6     | 0.18847 | 65     | 0.0257584 |    | 0.0761735 | 0 | .0856139  | 0.1251 | 811      | 0.0475861 |     | 0.0212036 |
| TestImg4 | 0.325093 | 6     | 0.11691 | 17     | 0.0256007 |    | 0.1254773 | 0 | .0850932  | 0.2084 | 432      | 0.0461444 |     | 0.0220777 |
| Image    | NPE      | EA    |         | BPHE   |           | С  | AVIEHE    |   | MSRA      |        | MSRCR    |           | LN  | ET        |
| TestImg1 | 0.10     | 84480 |         | 0.0078 | 458       | 0. | .0429760  |   | 0.2861314 |        | 0.288586 | 52        | 0.0 | 045625    |
| TestImg2 | 0.07     | 49098 |         | 0.0845 | 492       | 0. | .0009261  |   | 0.3079275 |        | 0.284119 | 03        | 0.0 | 029567    |
| TestImg3 | 0.06     | 94492 |         | 0.0267 | 625       | 0. | .0333089  |   | 0.3367357 |        | 0.358088 | 89        | 0.0 | 080669    |
| TestImg4 | 0.15     | 19172 |         | 0.0239 | 108       | 0. | .0644361  |   | 0.3583796 |        | 0.330062 | 25        | 0.0 | 045718    |

TABLE II. THE RECORDED RMSE SCORES FOR THE COMPARATIVES (LOWEST SCORE IS THE BEST)

| Image    | IT2FS     | RBMP      | FBEM      | AIEM      | FEAE      | LIME      | BIMEF     | SRIE      |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| TestImg1 | 0.5438550 | 0.3055603 | 0.1688320 | 0.2764750 | 0.2404697 | 0.4317110 | 0.1945297 | 0.1171289 |
| TestImg2 | 0.7301257 | 0.4255673 | 0.2099419 | 0.1460511 | 0.1080888 | 0.3264238 | 0.1262332 | 0.0834629 |
| TestImg3 | 0.6566343 | 0.4341388 | 0.1604943 | 0.2759956 | 0.2925986 | 0.3538094 | 0.2181423 | 0.1456145 |
| TestImg4 | 0.5701698 | 0.3419235 | 0.1600022 | 0.3542278 | 0.2917075 | 0.4565558 | 0.2148126 | 0.1485858 |

| Image    | NPEA      | BPHE      | CAVIEHE   | MSRA      | MSRCR     | LNET      |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| TestImg1 | 0.3293145 | 0.0885765 | 0.2073065 | 0.5349125 | 0.5372022 | 0.0675460 |
| TestImg2 | 0.2736965 | 0.2907734 | 0.0304320 | 0.5549121 | 0.5330284 | 0.0543757 |
| TestImg3 | 0.2635322 | 0.1635924 | 0.1825072 | 0.5802893 | 0.5984053 | 0.0898158 |
| TestImg4 | 0.3897656 | 0.1546313 | 0.2538426 | 0.5986481 | 0.5745107 | 0.0676148 |

TABLE III. THE RECORDED PSNR SCORES FOR THE COMPARATIVES (HIGHEST SCORE IS THE BEST)

| Image    | IT  | 2FB        | RBMP    |        | FBEM       |    | AIEM       | ŀ | FEAE       | LIMI  | E        | BIMEF      |      | SRIE       |
|----------|-----|------------|---------|--------|------------|----|------------|---|------------|-------|----------|------------|------|------------|
| TestImg1 | 53. | 4551363    | 58.4628 | 604    | 63.6157018 |    | 59.3316821 | 6 | 60.5435907 | 55.46 | 09380    | 62.3850827 | 7    | 66.7915145 |
| TestImg2 | 50. | 8968467    | 55.5854 | 348    | 61.7228179 |    | 64.8747043 | 6 | 57.4891830 | 57.88 | 91633    | 66.1413308 | 3    | 69.7349266 |
| TestImg3 | 51. | 8183279    | 55.4122 | 275    | 64.0556064 |    | 59.3467575 | 5 | 58.8393542 | 57.18 | 94109    | 61.3900027 | 7    | 64.9007048 |
| TestImg4 | 53. | 0447151    | 57.4862 | 196    | 64.0822808 |    | 57.1791464 | 5 | 58.8658485 | 54.97 | 49219    | 61.5236057 | 7    | 64.7252557 |
| Image    |     | NPEA       |         | BPHE   |            | CA | AVIEHE     |   | MSRA       |       | MSRCR    |            | LN   | ЕТ         |
| TestImg1 |     | 57.8125822 |         | 69.218 | 4311       | 61 | .8325401   |   | 53.5991442 |       | 53.56204 | 41         | 71.  | 5728084    |
| TestImg2 |     | 59.4194148 |         | 58.893 | 7050       | 78 | 3.4981783  |   | 53.2803149 |       | 53.62979 | 26         | 73.4 | 1567085    |
| TestImg3 |     | 59.7481264 |         | 63.889 | 5391       | 62 | 2.9391988  |   | 52.8919083 |       | 52.62489 | 05         | 69.0 | 977402     |
| TestImg4 |     | 56.3487290 |         | 64.378 | 8502       | 60 | 0.0735098  |   | 52.6213668 |       | 52.97883 | 70         | 71.  | 5639629    |

TABLE IV. THE RECORDED WPSNR SCORES FOR THE COMPARATIVES (HIGHEST SCORE IS THE BEST)

| Image    | IT  | 2FB        | RBMP    |        | FBEM       |    | AIEM       | F | FEAE       | LIMI  | C        | BIMEF      |      | SRIE       |
|----------|-----|------------|---------|--------|------------|----|------------|---|------------|-------|----------|------------|------|------------|
| TestImg1 | 11. | 3176642    | 16.3443 | 338    | 21.5312272 |    | 17.2358092 | 1 | 8.3756584  | 13.35 | 39544    | 20.2668132 | 2    | 24.6841020 |
| TestImg2 | 8.7 | 625898     | 13.5024 | 273    | 19.6510197 |    | 22.7892871 | 2 | 25.2990697 | 15.79 | 56793    | 24.0579747 | 7    | 27.6668179 |
| TestImg3 | 9.6 | 761380     | 13.2787 | 880    | 31.7233984 |    | 17.2394699 | 1 | 6.7057388  | 15.09 | 55838    | 19.263233  | 3    | 22.7914569 |
| TestImg4 | 10. | 9035732    | 15.3530 | 057    | 21.9893547 |    | 15.0685158 | 1 | 6.7149919  | 12.86 | 58475    | 19.3981699 | Ð    | 22.6181768 |
| Image    |     | NPEA       |         | BPHE   |            | C  | AVIEHE     |   | MSRA       |       | MSRCR    |            | LN   | ЕТ         |
| TestImg1 |     | 15.7201659 |         | 27.149 | 0633       | 19 | 9.7112954  |   | 11.4881722 |       | 14.03739 | 19         | 29.4 | 4550061    |
| TestImg2 |     | 17.3674225 |         | 16.818 | 2650       | 36 | 6.3993706  |   | 11.1827298 |       | 14.52948 | 31         | 31.  | 3554380    |
| TestImg3 |     | 17.6404362 |         | 21.961 | 3413       | 20 | 0.8354621  |   | 10.7732827 |       | 12.52624 | -27        | 26.9 | 9895351    |
| TestImg4 |     | 14.2447339 |         | 22.387 | 5860       | 17 | 7.9577614  |   | 10.5024942 |       | 13.52437 | 76         | 29.  | 5050471    |

TABLE V. THE RECORDED SSIM SCORES FOR THE COMPARATIVES (HIGHEST SCORE IS THE BEST)

| Image    | IT2FB   | RBMI   | )       | FBEM    |     | AIEM    | FEAE    | LIM   | E       | BIMEF   |      | SRIE    |
|----------|---------|--------|---------|---------|-----|---------|---------|-------|---------|---------|------|---------|
| TestImg1 | 0.99785 | 0.9952 | 3       | 0.98434 |     | 0.99278 | 0.98891 | 0.996 | 82      | 0.98747 |      | 0.97937 |
| TestImg2 | 0.98168 | 0.9997 | 5       | 0.99264 |     | 0.98822 | 0.98320 | 0.997 | 36      | 0.98685 |      | 0.98275 |
| TestImg3 | 0.97072 | 0.9923 | 0       | 0.99961 |     | 0.99918 | 0.99866 | 0.996 | 92      | 0.99994 |      | 0.99934 |
| TestImg4 | 0.99031 | 0.9998 | 1       | 0.99570 |     | 0.99967 | 0.99922 | 0.997 | 14      | 0.99822 |      | 0.99520 |
| Image    | NPEA    |        | BPHE    |         | C   | AVIEHE  | MSRA    |       | MSRCR   |         | LN   | ЕТ      |
| TestImg1 | 0.97678 |        | 0.97538 | 3       | 0.9 | 98724   | 0.99913 |       | 0.98008 |         | 0.92 | 7369    |
| TestImg2 | 0.99597 |        | 0.99509 | )       | 0.9 | 97725   | 0.99625 |       | 0.98523 |         | 0.92 | 7966    |
| TestImg3 | 0.99932 |        | 0.99870 | )       | 0.9 | 99982   | 0.98041 |       | 0.98312 |         | 0.99 | 9775    |
| TestImg4 | 0.99893 |        | 0.99338 | 3       | 0.9 | 99891   | 0.98940 |       | 0.98824 |         | 0.98 | 8988    |

| Image    | IT2FB   | RBMI   | þ      | FBEM    |     | AIEM    | F  | EAE     | LIME   |         | BIMEF   |     | SRIE    |
|----------|---------|--------|--------|---------|-----|---------|----|---------|--------|---------|---------|-----|---------|
| TestImg1 | 0.74861 | 0.9369 | 8      | 0.86088 |     | 0.94114 | 0. | 93022   | 0.8987 | 1       | 0.88115 |     | 0.74399 |
| TestImg2 | 0.69474 | 0.9689 | 4      | 0.81053 |     | 0.68657 | 0. | 72691   | 0.9508 | 4       | 0.57326 |     | 0.41762 |
| TestImg3 | 0.85948 | 0.9423 | 6      | 0.96641 |     | 0.90545 | 0. | 86561   | 0.8652 | 0       | 0.96931 |     | 0.94301 |
| TestImg4 | 0.83388 | 0.9788 | 6      | 0.93521 |     | 0.91537 | 0. | 85188   | 0.7731 | 7       | 0.96155 |     | 0.86016 |
| Image    | NPEA    |        | BPHE   | 2       | CA  | AVIEHE  |    | MSRA    |        | MSRCR   | ł       | LN  | ЕТ      |
| TestImg1 | 0.82446 |        | 0.7611 | 4       | 0.9 | 94778   |    | 0.95962 |        | 0.40466 |         | 0.6 | 7500    |
| TestImg2 | 0.78879 |        | 0.9374 | 13      | 0.1 | 18714   |    | 0.95356 |        | 0.42400 |         | 0.3 | 9128    |
| TestImg3 | 0.88723 |        | 0.7723 | 39      | 0.9 | 97376   |    | 0.80165 |        | 0.25599 |         | 0.9 | 0355    |
| TestImg4 | 0.86229 |        | 0.9487 | 70      | 0.9 | 97293   |    | 0.84677 |        | 0.41263 |         | 0.7 | 9696    |

TABLE VI. THE RECORDED CW-SSIM SCORES FOR THE COMPARATIVES (HIGHEST SCORE IS THE BEST)

TABLE VII. THE RECORDED VIF SCORES FOR THE COMPARATIVES (HIGHEST SCORE IS THE BEST)

| Image    | IT2FB   | RBM   | 1B      | FBEM    |      | AIEM    | FEAE    | LIM   | Е       | BIMEF   |      | SRIE    |
|----------|---------|-------|---------|---------|------|---------|---------|-------|---------|---------|------|---------|
| TestImg1 | 0.19582 | 0.464 | 423     | 0.48409 |      | 0.79706 | 0.81646 | 2.486 | 645     | 0.38585 |      | 0.30754 |
| TestImg2 | 0.19125 | 0.715 | 589     | 0.34668 |      | 0.16834 | 0.12851 | 0.85  | 126     | 0.09787 |      | 0.06581 |
| TestImg3 | 0.30926 | 1.057 | 753     | 0.90069 |      | 1.39086 | 1.72082 | 3.19  | 192     | 0.72948 |      | 0.73963 |
| TestImg4 | 0.22262 | 0.564 | 422     | 0.63636 |      | 1.41722 | 1.47031 | 3.517 | 728     | 0.61541 |      | 0.59447 |
| Image    | NPEA    |       | BPHE    |         | CA   | VIEHE   | MSRA    |       | MSRCR   |         | LN   | ET      |
| TestImg1 | 1.03547 |       | 0.29112 |         | 0.65 | 5896    | 1.82329 |       | 0.15908 |         | 0.17 | 7925    |
| TestImg2 | 0.46828 |       | 0.71736 |         | 0.0  | 0814    | 1.09521 |       | 0.09469 |         | 0.03 | 3815    |
| TestImg3 | 1.35298 |       | 1.82509 |         | 0.98 | 8186    | 4.11126 |       | 0.63433 |         | 0.44 | 4912    |
| TestImg4 | 1.82540 |       | 1.14454 |         | 1.32 | 2809    | 2.89510 |       | 0.33520 |         | 0.31 | 1034    |

TABLE VIII. THE RECORDED UQI SCORES FOR THE COMPARATIVES (HIGHEST SCORE IS THE BEST

| Image    | IT2FB   | RBM   | IB      | FBEM    |      | AIEM    | FEAE    | LIM   | Е        | BIMEF   |      | SRIE    |
|----------|---------|-------|---------|---------|------|---------|---------|-------|----------|---------|------|---------|
| TestImg1 | 0.50275 | 0.562 | 244     | 0.36204 |      | 0.48627 | 0.46478 | 0.47  | 524      | 0.44116 |      | 0.27996 |
| TestImg2 | 0.24627 | 0.373 | 394     | 0.28067 |      | 0.19893 | 0.11726 | 0.34  | 546      | 0.17189 |      | 0.10729 |
| TestImg3 | 0.39627 | 0.550 | )50     | 0.66431 |      | 0.60912 | 0.66688 | 0.502 | 212      | 0.69900 |      | 0.68206 |
| TestImg4 | 0.46861 | 0.619 | 940     | 0.51680 |      | 0.52719 | 0.63598 | 0.43  | 520      | 0.60771 |      | 0.51228 |
| Image    | NPEA    |       | BPHE    |         | CA   | VIEHE   | MSRA    |       | MSRCR    |         | LN   | ЕТ      |
| TestImg1 | 0.48282 |       | 0.19056 |         | 0.4  | 1242    | 0.55411 |       | 0.00088  |         | 0.16 | 6764    |
| TestImg2 | 0.33060 |       | 0.27312 |         | 0.02 | 2443    | 0.35001 |       | -0.00078 |         | 0.06 | 5231    |
| TestImg3 | 0.60753 |       | 0.40463 |         | 0.65 | 5395    | 0.36701 |       | 0.00070  |         | 0.56 | 6662    |
| TestImg4 | 0.48266 |       | 0.33248 |         | 0.58 | 8218    | 0.41976 |       | 0.00084  |         | 0.31 | 957     |

TABLE IX. THE RECORDED IEF SCORES FOR THE COMPARATIVES

| Image    | IT2FB | RBMP  | FBEM  | AIEM  | FEAE  | LIME | BIMEF | SRIE |
|----------|-------|-------|-------|-------|-------|------|-------|------|
| TestImg1 | 14.02 | 6.80  | 2.18  | 4.61  | 3.08  | 9.00 | 2.70  | 1.66 |
| TestImg2 | 1.38  | 36.40 | 3.50  | 2.21  | 1.56  | 8.85 | 1.98  | 1.52 |
| TestImg3 | 0.21  | 0.81  | 15.15 | 7.19  | 4.62  | 1.92 | 66.31 | 9.30 |
| TestImg4 | 1.51  | 55.29 | 3.58  | 28.64 | 17.87 | 4.36 | 8.47  | 3.22 |

| Image    | NPEA  | BPHE | CAVIEHE | MSRA  | MSRCR | LNET |
|----------|-------|------|---------|-------|-------|------|
| TestImg1 | 6.06  | 1.39 | 2.68    | 23.19 | 0.86  | 1.30 |
| TestImg2 | 6.04  | 5.07 | 1.15    | 6.04  | 0.72  | 1.29 |
| TestImg3 | 8.60  | 4.37 | 29.63   | 0.31  | 0.17  | 2.84 |
| TestImg4 | 10.63 | 2.27 | 13.12   | 1.32  | 0.43  | 1.54 |

TABLE X. THE RECORDED IMMSE SCORES FOR THE COMPARATIVES (LOWEST SCORE IS THE BEST)

| Image    | IT2FB     | RBM    | Р       | FBEM    |      | AIEM    | FEAE    | LIM   | Е       | BIMEF   |      | SRIE    |
|----------|-----------|--------|---------|---------|------|---------|---------|-------|---------|---------|------|---------|
| TestImg1 | 0.29578   | 0.093  | 37      | 0.02850 |      | 0.07644 | 0.05783 | 0.18  | 537     | 0.03784 |      | 0.01372 |
| TestImg2 | 0.53308   | 0.181  | 11      | 0.04408 |      | 0.02133 | 0.01168 | 0.10  | 655     | 0.01593 |      | 0.00697 |
| TestImg3 | 0.43117   | 0.1884 | 48      | 0.02576 |      | 0.07617 | 0.08561 | 0.12  | 518     | 0.04759 |      | 0.02120 |
| TestImg4 | 0.32509   | 0.116  | 91      | 0.02560 |      | 0.12548 | 0.08509 | 0.208 | 344     | 0.04614 |      | 0.02208 |
| Image    | NPEA BPHE |        | BPHE    |         | CA   | VIEHE   | MSRA    |       | MSRCR   |         | LN   | ET      |
| TestImg1 | 0.10845   |        | 0.00785 |         | 0.04 | 4298    | 0.28613 |       | 0.28859 |         | 0.00 | )456    |
| TestImg2 | 0.07491   |        | 0.08455 |         | 0.0  | 0093    | 0.30793 |       | 0.28412 |         | 0.00 | )296    |
| TestImg3 | 0.06945   |        | 0.02676 |         | 0.03 | 3331    | 0.33674 |       | 0.35809 |         | 0.00 | )807    |
| TestImg4 | 0.15192   |        | 0.02391 |         | 0.0  | 6444    | 0.35838 |       | 0.33006 |         | 0.00 | )457    |

TABLE XI. THE RECORDED MSSIM SCORES FOR THE COMPARATIVES (HIGHEST SCORE IS THE BEST)

| Image    | IT2FB     | C2FB RBMP |         | FBEM    |       | AIEM    | FEAE    | LIM   | Е       | BIMEF   |      | SRIE    |
|----------|-----------|-----------|---------|---------|-------|---------|---------|-------|---------|---------|------|---------|
| TestImg1 | 0.69711   | 0.570     | 042     | 0.61017 |       | 0.47714 | 0.47798 | 0.290 | )46     | 0.64615 |      | 0.71292 |
| TestImg2 | 0.49734   | 0.333     | 869     | 0.48442 |       | 0.60775 | 0.70339 | 0.341 | 148     | 0.67126 |      | 0.75477 |
| TestImg3 | 0.86260   | 0.753     | 360     | 0.82702 |       | 0.72642 | 0.66499 | 0.593 | 373     | 0.84162 |      | 0.84437 |
| TestImg4 | 0.80867   | 0.704     | 198     | 0.69829 |       | 0.50175 | 0.48395 | 0.347 | 765     | 0.74615 |      | 0.72605 |
| Image    | NPEA BPHE |           |         | CA      | VIEHE | MSRA    |         | MSRCR |         | LN      | ЕТ   |         |
| TestImg1 | 0.39561   |           | 0.79282 |         | 0.50  | 6256    | 0.33490 |       | 0.04524 |         | 0.86 | 5121    |
| TestImg2 | 0.39457   |           | 0.39503 |         | 0.9   | 5229    | 0.29305 |       | 0.04378 |         | 0.84 | 4538    |
| TestImg3 | 0.70558   |           | 0.61072 |         | 0.78  | 8073    | 0.55215 |       | 0.05001 |         | 0.90 | )839    |
| TestImg4 | 0.40896   |           | 0.58566 |         | 0.58  | 8085    | 0.38086 |       | 0.03150 |         | 0.88 | 3989    |

TABLE XII. THE RECORDED MAE SCORES FOR THE COMPARATIVES (LOWEST SCORE IS THE BEST)

| Image    | IT2FB     | RBM             | IP      | FBEM    |      | AIEM    | FEAE    | LIM   | E       | BIMEF   |      | SRIE    |
|----------|-----------|-----------------|---------|---------|------|---------|---------|-------|---------|---------|------|---------|
| TestImg1 | .54073    | 0.288           | 375     | 0.14273 |      | 0.24516 | 0.19210 | 0.357 | 733     | 0.17784 |      | 0.09783 |
| TestImg2 | 0.72464   | 0.385           | 529     | 0.17624 |      | 0.12211 | 0.06624 | 0.264 | 147     | 0.11178 |      | 0.07188 |
| TestImg3 | 0.65597   | 0.428           | 867     | 0.15295 |      | 0.26613 | 0.27547 | 0.335 | 508     | 0.21354 |      | 0.13846 |
| TestImg4 | 0.56909   | 0.335           | 592     | 0.14793 |      | 0.33768 | 0.26626 | 0.416 | 588     | 0.20788 |      | 0.13908 |
| Image    | NPEA BPHE |                 | BPHE    |         | CA   | VIEHE   | MSRA    |       | MSRCR   |         | LN   | ET      |
| TestImg1 | 0.28849   |                 | 0.06415 |         | 0.17 | 7191    | 0.49991 |       | 0.32936 |         | 0.05 | 5246    |
| TestImg2 | 0.23937   | 0.23937 0.21595 |         |         | 0.02 | 2866    | 0.52285 |       | 0.30042 |         | 0.04 | 276     |
| TestImg3 | 0.25134   |                 | 0.13097 |         | 0.1  | 7295    | 0.56538 |       | 0.43635 |         | 0.08 | 8162    |
| TestImg4 | 0.37019   |                 | 0.10905 |         | 0.23 | 3189    | 0.57767 |       | 0.38217 |         | 0.05 | 5915    |

| Image    | IT2FB   | RBM     | IP      | FBEM    |      | AIEM    | FEAE    | LIM   | E        | BIMEF   |      | SRIE    |
|----------|---------|---------|---------|---------|------|---------|---------|-------|----------|---------|------|---------|
| TestImg1 | 0.50275 | 0.562   | 44      | 0.36204 |      | 0.48627 | 0.46478 | 0.475 | 524      | 0.44116 |      | 0.27996 |
| TestImg2 | 0.24627 | 0.373   | 94      | 0.28067 |      | 0.19893 | 0.11726 | 0.345 | 546      | 0.17189 |      | 0.10729 |
| TestImg3 | 0.39627 | 0.550   | 50      | 0.66431 |      | 0.60912 | 0.66688 | 0.502 | 212      | 0.69900 |      | 0.68206 |
| TestImg4 | 0.46861 | 0.619   | 40      | 0.51680 |      | 0.52719 | 0.63598 | 0.436 | 520      | 0.60771 |      | 0.51228 |
| Image    | NPEA    |         | BPHE    |         | CA   | VIEHE   | MSRA    |       | MSRCR    |         | LN   | ET      |
| TestImg1 | 0.48282 |         | 0.19056 |         | 0.41 | 1242    | 0.55411 |       | 0.00088  |         | 0.16 | 5764    |
| TestImg2 | 0.33060 |         | 0.27312 |         | 0.02 | 2443    | 0.35001 |       | -0.00078 |         | 0.06 | 5231    |
| TestImg3 | 0.60753 | 0.40463 |         |         | 0.65 | 5395    | 0.36701 |       | 0.00070  |         | 0.56 | 6662    |
| TestImg4 | 0.48266 |         | 0.33248 |         | 0.58 | 8218    | 0.41976 |       | 0.00084  |         | 0.31 | .957    |

TABLE XIII. THE RECORDED IQI SCORES FOR THE COMPARATIVES (HIGHEST SCORE IS THE BEST)

TABLE XIV. THE RECORDED FSIM SCORES FOR THE COMPARATIVES (HIGHEST SCORE IS THE BEST)

| Image    | IT2FB   | RBM             | ſP      | FBEM    |      | AIEM    | FEAE    | LIM  | E       | BIMEF   |      | SRIE    |
|----------|---------|-----------------|---------|---------|------|---------|---------|------|---------|---------|------|---------|
| TestImg1 | 0.99089 | 0.998           | 812     | 0.99317 |      | 0.99212 | 0.99144 | 0.99 | 439     | 0.99806 |      | 0.99367 |
| TestImg2 | 0.98012 | 0.991           | 34      | 0.98658 |      | 0.98997 | 0.97504 | 0.98 | 937     | 0.99204 |      | 0.98644 |
| TestImg3 | 0.98496 | 0.988           | 344     | 0.99123 |      | 0.98093 | 0.98042 | 0.99 | 171     | 0.99419 |      | 0.99001 |
| TestImg4 | 0.99346 | 0.994           | 154     | 0.98943 |      | 0.98195 | 0.98285 | 0.99 | 169     | 0.99713 |      | 0.98671 |
| Image    | NPEA    | NPEA BPHE       |         |         | CA   | VIEHE   | MSRA    |      | MSRCR   |         | LN   | ET      |
| TestImg1 | 0.98372 |                 | 0.98823 |         | 0.99 | 9312    | 0.99382 |      | 0.89235 |         | 0.99 | 9166    |
| TestImg2 | 0.98348 | 0.98348 0.97946 |         |         | 0.9  | 9228    | 0.98625 |      | 0.85214 |         | 0.98 | 3798    |
| TestImg3 | 0.98111 |                 | 0.97666 |         | 0.99 | 9254    | 0.98894 |      | 0.87291 |         | 0.98 | 3457    |
| TestImg4 | 0.97952 |                 | 0.97625 |         | 0.99 | 9633    | 0.99078 |      | 0.88741 |         | 0.99 | 9364    |

TABLE XV. THE RECORDED EME SCORES FOR THE COMPARATIVES (LOWEST SCORE IS THE BEST)

| Image    | IT2FB    | RBMP     |        | FBEM     |    | AIEM     | F | <b>`EAE</b> | LIME   |         | BIMEF    |     | SRIE     |
|----------|----------|----------|--------|----------|----|----------|---|-------------|--------|---------|----------|-----|----------|
| TestImg1 | 2.59748  | 8.50280  |        | 15.49097 |    | 13.75025 | 1 | 2.11895     | 15.355 | 547     | 10.66295 |     | 15.38244 |
| TestImg2 | 2.50348  | 12.83307 |        | 14.85539 |    | 14.46187 | 1 | 1.29116     | 15.083 | 68      | 13.58085 |     | 14.86042 |
| TestImg3 | 1.1726   | 3.41829  |        | 7.41943  |    | 6.23491  | 5 | .58065      | 7.4223 | 19      | 4.84588  |     | 7.09565  |
| TestImg4 | 1.57324  | 4.42487  |        | 9.87638  |    | 8.28385  | 7 | .23544      | 9.6759 | 97      | 6.20972  |     | 9.56697  |
| Image    | NPEA     | BPHE     |        |          | С  | AVIEHE   |   | MSRA        |        | MSRCR   |          | LN  | ЕТ       |
| TestImg1 | 14.20973 | 1        | 17.299 | 08       | 1  | 1.87166  |   | 10.27982    |        | 6.84198 |          | 15. | 63085    |
| TestImg2 | 14.29100 | 1        | 16.610 | 80       | 8. | .13913   |   | 9.38662     |        | 7.12783 |          | 15. | 13008    |
| TestImg3 | 6.87650  | 1        | 15.089 | 32       | 7. | .21423   |   | 5.83274     |        | 11.2897 |          | 7.5 | 0607     |
| TestImg4 | 9.05361  | 1        | 19.593 | 07       | 8. | .44812   |   | 7.32125     |        | 9.20486 |          | 9.8 | 8048     |

TABLE XVI. THE RECORDED BRISQUE SCORES FOR THE COMPARATIVES (LOWEST SCORE GIVES BEST RESULT)

| Image    | IT2FB    | RBMP     | FBEM     | AIEM     | FEAE     | LIME     | BIMEF    | SRIE     |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| TestImg1 | 19.16849 | 26.79686 | 28.17226 | 40.12349 | 36.34488 | 31.19316 | 24.76338 | 27.94361 |
| TestImg2 | 38.52422 | 41.81477 | 39.58667 | 38.65845 | 46.63950 | 41.56760 | 37.20722 | 32.93015 |
| TestImg3 | 9.30332  | 23.98699 | 29.88640 | 31.15363 | 26.12095 | 34.16256 | 22.76009 | 22.46018 |
| TestImg4 | 13.33258 | 27.60852 | 27.55335 | 39.86039 | 24.63390 | 32.46380 | 24.94812 | 25.84723 |

| Image    | NPEA     | BPHE     | CAVIEHE  | MSRA     | MSRCR    | LNET     |
|----------|----------|----------|----------|----------|----------|----------|
| TestImg1 | 32.13035 | 27.45103 | 29.33331 | 28.04724 | 43.45818 | 29.61410 |
| TestImg2 | 41.17648 | 40.32965 | 20.65364 | 41.47551 | 43.45818 | 36.82453 |
| TestImg3 | 32.11621 | 35.37021 | 29.18756 | 34.10248 | 43.45818 | 20.30180 |
| TestImg4 | 34.58516 | 26.89832 | 29.00054 | 26.91344 | 43.45818 | 27.04023 |

TABLE XVII. THE RECORDED NIQE SCORES FOR THE COMPARATIVES (LOWEST SCORE GIVES BEST RESULT)

| Image    | IT2FB     | RBMP    | FBEM    |     | AIEM     | FEAE    | LIN  | ſĒ       | BIMEF   |      | SRIE    |
|----------|-----------|---------|---------|-----|----------|---------|------|----------|---------|------|---------|
| TestImg1 | 6.87128   | 7.69587 | 7.78807 |     | 9.30102  | 4.77781 | 8.65 | 645      | 7.26530 |      | 6.83867 |
| TestImg2 | 8.85253   | 9.66738 | 9.74843 |     | 9.22545  | 4.51997 | 9.62 | 537      | 8.55000 |      | 7.83046 |
| TestImg3 | 5.48614   | 6.63134 | 6.61409 |     | 7.71980  | 3.35362 | 6.89 | 375      | 6.35760 |      | 5.99619 |
| TestImg4 | 6.28973   | 7.31890 | 8.17693 |     | 10.12868 | 5.31512 | 9.25 | 940      | 7.41547 |      | 7.41176 |
| Image    | NPEA BPHE |         | E       | C   | AVIEHE   | MSRA    |      | MSRCR    |         | LNI  | ET      |
| TestImg1 | 8.31067   | 7.002   | 98      | 7.8 | 30821    | 8.38040 |      | 38.50599 |         | 6.34 | 044     |
| TestImg2 | 9.95520   | 9.336   | 42      | 6.4 | 45676    | 9.98429 |      | 30.40184 |         | 7.27 | 924     |
| TestImg3 | 6.83652   | 6.900   | 76      | 6.9 | 91004    | 7.41921 |      | 29.21334 |         | 5.64 | 895     |
| TestImg4 | 9.26341   | 7.938   | 60      | 8.4 | 48241    | 8.85040 |      | 35.71108 |         | 6.64 | 925     |

TABLE XVIII. THE RECORDED PIQE SCORES FOR THE COMPARATIVES ( LOW SCORE GIVES THE BEST RESULT

| Image    | IT2FB    | RBMP      |         | FBEM     |    | AIEM     | FEAI  | C    | LIMI  | £        | BIMEF    |      | SRIE     |
|----------|----------|-----------|---------|----------|----|----------|-------|------|-------|----------|----------|------|----------|
| TestImg1 | 26.42034 | 32.16037  | 7       | 7.78807  |    | 41.84593 | 32.86 | 864  | 42.84 | 311      | 26.99954 |      | 20.84821 |
| TestImg2 | 50.00359 | 60.81876  | 5       | 55.35629 |    | 47.18139 | 44.25 | 742  | 58.32 | 593      | 40.86070 |      | 33.82644 |
| TestImg3 | 16.83733 | 25.82195  |         | 29.24633 |    | 35.53923 | 26.52 | 064  | 44.85 | 693      | 21.50740 |      | 20.89448 |
| TestImg4 | 16.57803 | 26.45110  |         | 31.64320 |    | 43.47681 | 18.68 | 515  | 47.58 | 669      | 24.56774 |      | 28.06270 |
| Image    | NPEA     | NPEA BPHE |         |          | CA | AVIEHE   | MS    | RA   |       | MSRCR    |          | LN   | ET       |
| TestImg1 | 42.58162 | 1         | 16.0191 | 9        | 27 | .02401   | 42.6  | 2543 |       | 89.59252 |          | 11.7 | 76635    |
| TestImg2 | 59.50193 | 4         | 55.9196 | 9        | 31 | .78153   | 62.5  | 0870 |       | 91.13846 |          | 20.9 | 94066    |
| TestImg3 | 39.86982 | 4         | 48.4849 | 0        | 32 | .36529   | 46.3  | 1817 |       | 90.00533 |          | 17.3 | 35385    |
| TestImg4 | 46.15295 | 3         | 38.9195 | 1        | 36 | .72036   | 44.2  | 4773 |       | 93.80261 |          | 11.1 | 13506    |

TABLE XIX. THE RECORDED SCC SCORES FOR THE COMPARATIVES (HIGHEST SCORE GIVES BEST RESULT)

| Image    | IT2FB     | RBM          | IP      | FBEM    |       | AIEM    | FEAE    | LIM   | E        | BIMEF   |      | SRIE    |
|----------|-----------|--------------|---------|---------|-------|---------|---------|-------|----------|---------|------|---------|
| TestImg1 | 0.94437   | 0.963        | 385     | 0.94473 |       | 0.94454 | 0.94763 | 0.932 | 273      | 0.96627 |      | 0.93963 |
| TestImg2 | 0.89702   | 0.937        | /81     | 0.92440 |       | 0.92948 | 0.85067 | 0.916 | 588      | 0.94332 |      | 0.91973 |
| TestImg3 | 0.90259   | 0.924        | 60      | 0.95753 |       | 0.90317 | 0.89467 | 0.961 | 79       | 0.96355 |      | 0.94373 |
| TestImg4 | 0.93555   | 0.949        | 0.93647 |         |       | 0.90874 | 0.92014 | 0.944 | 16       | 0.96413 |      | 0.92855 |
| Image    | NPEA BPHE |              |         | CA      | VIEHE | MSRA    |         | MSRCR |          | LN      | ET   |         |
| TestImg1 | 0.87421   |              | 0.90175 |         | 0.9   | 5252    | 0.90587 |       | 0.03840  |         | 0.92 | 2522    |
| TestImg2 | 0.89164   | 0164 0.89831 |         |         | 0.9   | 5326    | 0.87015 |       | 0.02420  |         | 0.91 | 458     |
| TestImg3 | 0.87771   |              | 0.87153 |         | 0.9   | 5395    | 0.90131 |       | 0.01632  |         | 0.93 | 3460    |
| TestImg4 | 0.82583   |              | 0.89521 |         | 0.9   | 7046    | 0.89288 |       | -0.02249 |         | 0.94 | 405     |

| Image    | IT2FB   | RBM          | IP      | FBEM    |      | AIEM    | FEAE    | LIM  | E       | BIMEF   |      | SRIE    |
|----------|---------|--------------|---------|---------|------|---------|---------|------|---------|---------|------|---------|
| TestImg1 | 0.06229 | 0.014        | 37      | 0.03058 |      | 0.03095 | 0.04164 | 0.03 | 950     | 0.01836 |      | 0.04131 |
| TestImg2 | 0.12598 | 0.031        | 97      | 0.04038 |      | 0.04257 | 0.13080 | 0.05 | 623     | 0.02703 |      | 0.03347 |
| TestImg3 | 0.11777 | 0.049        | 21      | 0.02574 |      | 0.04486 | 0.04792 | 0.02 | 469     | 0.02188 |      | 0.02985 |
| TestImg4 | 0.08689 | 0.038        | 801     | 0.05750 |      | 0.07298 | 0.07639 | 0.07 | 271     | 0.02013 |      | 0.03138 |
| Image    | NPEA    | PEA BPHE     |         |         | CA   | VIEHE   | MSRA    |      | MSRCR   |         | LN   | ET      |
| TestImg1 | 0.04705 |              | 0.10903 |         | 0.05 | 5969    | 0.03166 |      | 0.13403 |         | 0.09 | 9452    |
| TestImg2 | 0.05480 | 5480 0.09028 |         |         | 0.03 | 3139    | 0.06614 |      | 0.15729 |         | 0.07 | 7505    |
| TestImg3 | 0.04386 |              | 0.05375 |         | 0.03 | 3633    | 0.04424 |      | 0.14413 |         | 0.04 | 1457    |
| TestImg4 | 0.09107 |              | 0.09174 |         | 0.03 | 3113    | 0.08400 |      | 0.15153 |         | 0.06 | 5126    |

TABLE XX. THE RECORDED CVSI SCORES FOR THE COMPARATIVES

TABLE XXI. THE RECORDED MCSD SCORES FOR THE COMPARATIVES SCORE: DEGREE OF DISTORTION-LEAST GIVES BEST RESULT

| Image    | IT2FB   | RBM   | IP      | FBEM    |      | AIEM    | FEAE    | LIM   | E       | BIMEF   |      | SRIE    |
|----------|---------|-------|---------|---------|------|---------|---------|-------|---------|---------|------|---------|
| TestImg1 | 0.00004 | 0.000 | 02      | 0.00002 |      | 0.00003 | 0.00001 | 0.000 | 008     | 0.00002 |      | 0.00003 |
| TestImg2 | 0.00006 | 0.000 | 01      | 0.00004 |      | 0.00006 | 0.00009 | 0.000 | 003     | 0.00008 |      | 0.00002 |
| TestImg3 | 0.00002 | 0.000 | 01      | 0.00002 |      | 0.00002 | 0.00002 | 0.000 | 003     | 0.00004 |      | 0.00003 |
| TestImg4 | 0.00003 | 0.000 | 01      | 0.00002 |      | 0.00003 | 0.00002 | 0.000 | 007     | 0.00001 |      | 0.00001 |
| Image    | NPEA    |       | BPHE    |         | CA   | VIEHE   | MSRA    |       | MSRCR   |         | LN   | ET      |
| TestImg1 | 0.00002 |       | 0.00004 |         | 0.00 | 0002    | 0.00003 |       | 0.00051 |         | 0.00 | 0005    |
| TestImg2 | 0.00003 |       | 0.00003 |         | 0.0  | 0014    | 0.00002 |       | 0.00054 |         | 0.00 | 0011    |
| TestImg3 | 0.00002 |       | 0.00002 |         | 0.0  | 0002    | 0.00007 |       | 0.00057 |         | 0.00 | )001    |
| TestImg4 | 0.00002 |       | 0.00002 |         | 0.0  | 0001    | 0.00006 |       | 0.00057 |         | 0.00 | 0002    |

TABLE XXII. THE RECORDED NQM SCORES FOR THE COMPARATIVES (LEAST SCORE GIVES THE BEST) (REFERENCE AND DENOISE)

| Image    | IT2FB    | RBMP     |        | FBEM     |    | AIEM     | F | 'EAE     | LIME   | 1        | BIMEF    |     | SRIE     |
|----------|----------|----------|--------|----------|----|----------|---|----------|--------|----------|----------|-----|----------|
| TestImg1 | 5.72822  | 10.90554 |        | 9.18275  |    | 13.25518 | 1 | 2.31878  | 5.9589 | 95       | 8.26158  |     | 6.81954  |
| TestImg2 | 5.21723  | 14.94767 |        | 7.43430  |    | 5.31561  | 5 | .02503   | 11.648 | 304      | 4.12727  |     | 3.28481  |
| TestImg3 | 4.50081  | 8.47573  |        | 13.19743 |    | 6.02085  | 4 | .20663   | 1.8509 | 97       | 14.00744 |     | 10.91840 |
| TestImg4 | 4.78090  | 12.59009 |        | 9.60334  |    | 7.75522  | 4 | .82721   | 0.6933 | 35       | 12.12942 |     | 9.03722  |
| Image    | NPEA     |          | BPHE   |          | С  | AVIEHE   |   | MSRA     |        | MSRCR    | 1        | LN  | ЕТ       |
| TestImg1 | 10.05271 |          | 5.7456 | 8        | 10 | 0.79705  |   | 10.65045 |        | -4.19388 |          | 4.8 | 9679     |
| TestImg2 | 8.25344  |          | 9.3807 | 4        | 1. | .68181   |   | 11.24193 |        | -2.71410 | )        | 3.1 | 4435     |
| TestImg3 | 3.55751  |          | 1.9767 | 8        | 11 | 1.71896  |   | 1.03840  |        | -12.4781 | 8        | 9.2 | 2515     |
| TestImg4 | 4.68356  |          | 5.9679 | 6        | 11 | 1.60276  |   | 1.77181  |        | -8.87400 | )        | 6.7 | 3111     |

TABLE XXIII. THE RECORDED GMSM SCORES FOR THE COMPARATIVES (HIGHER THE SCORE GIVES GOOD QUALITY

| Image    | IT2FB  | RBMP   | FBEM   | AIEM   | FEAE   | LIME   | BIMEF  | SRIE   |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| TestImg1 | 0.7755 | 0.8126 | 0.8048 | 0.7657 | 0.8248 | 0.6780 | 0.8284 | 0.8050 |
| TestImg2 | 0.7179 | 0.6582 | 0.7187 | 0.7539 | 0.6794 | 0.6614 | 0.7597 | 0.7455 |
| TestImg3 | 0.8649 | 0.8753 | 0.8897 | 0.8404 | 0.8837 | 0.7385 | 0.9106 | 0.9069 |
| TestImg4 | 0.8275 | 0.8406 | 0.8262 | 0.7037 | 0.8458 | 0.5951 | 0.8599 | 0.8377 |

| Image    | NPEA   | BPHE   | CAVIEHE | MSRA   | MSRCR  | LNET   |
|----------|--------|--------|---------|--------|--------|--------|
| TestImg1 | 0.7182 | 0.7511 | 0.8094  | 0.7114 | 0.3007 | 0.7517 |
| TestImg2 | 0.6626 | 0.6718 | 0.6316  | 0.6228 | 0.2666 | 0.7165 |
| TestImg3 | 0.8213 | 0.6868 | 0.8698  | 0.7111 | 0.3000 | 0.8970 |
| TestImg4 | 0.6381 | 0.7080 | 0.7877  | 0.6315 | 0.3038 | 0.8507 |

TABLE XXIV. THE RECORDED GMSD SCORES FOR THE COMPARATIVES

| Image    | IT2FB  | RBN  | МР     | FBEM   |     | AIEM   | ] | FEAE   | LIME   |        | BIMEF  |     | SRIE   |
|----------|--------|------|--------|--------|-----|--------|---|--------|--------|--------|--------|-----|--------|
| TestImg1 | 0.8806 | 0.90 | 015    | 0.8971 |     | 0.8751 | ( | 0.9082 | 0.8234 |        | 0.9101 |     | 0.8972 |
| TestImg2 | 0.8473 | 0.81 | 13     | 0.8477 |     | 0.8683 | ( | 0.8242 | 0.8132 |        | 0.8716 |     | 0.8634 |
| TestImg3 | 0.9300 | 0.93 | 56     | 0.9432 |     | 0.9167 | ( | 0.9400 | 0.8594 |        | 0.9542 |     | 0.9523 |
| TestImg4 | 0.9097 | 0.91 | 69     | 0.9089 |     | 0.8389 | ( | 0.9197 | 0.7714 |        | 0.9273 |     | 0.9153 |
| Image    | NPEA   |      | BPHE   |        | CA  | VIEHE  |   | MSRA   |        | MSRC   | R      | LN  | TET    |
| TestImg1 | 0.8475 |      | 0.8666 |        | 0.8 | 997    |   | 0.8434 |        | 0.5483 |        | 0.8 | 670    |
| TestImg2 | 0.8140 |      | 0.8197 |        | 0.7 | 947    |   | 0.7892 |        | 0.5163 |        | 0.8 | 3465   |
| TestImg3 | 0.9062 |      | 0.8287 |        | 0.9 | 327    |   | 0.8433 |        | 0.5478 |        | 0.9 | 9471   |
| TestImg4 | 0.7988 |      | 0.8414 |        | 0.8 | 875    |   | 0.7946 |        | 0.5511 |        | 0.9 | 0223   |

TABLE XXV. THE RECORDED AG SCORES FOR THE COMPARATIVES (HIGHER THE SCORE GIVES GOOD QUALITY)

| Image    | IT2FB   | RBM   | IP      | FBEM    |      | AIEM    | FEAE    | LIM   | E       | BIMEF   |      | SRIE    |
|----------|---------|-------|---------|---------|------|---------|---------|-------|---------|---------|------|---------|
| TestImg1 | 0.10996 | 0.157 | '97     | 0.15792 |      | 0.21128 | 0.14827 | 0.330 | )65     | 0.13524 |      | 0.11716 |
| TestImg2 | 0.13219 | 0.229 | 952     | 0.14650 |      | 0.09817 | 0.03967 | 0.209 | 956     | 0.07968 |      | 0.06527 |
| TestImg3 | 0.06604 | 0.119 | 023     | 0.11339 |      | 0.14094 | 0.11490 | 0.20  | 501     | 0.09822 |      | 0.09938 |
| TestImg4 | 0.07574 | 0.118 | 387     | 0.13126 |      | 0.20760 | 0.15153 | 0.30  | )25     | 0.11576 |      | 0.12324 |
| Image    | NPEA    |       | BPHE    |         | CA   | VIEHE   | MSRA    |       | MSRCR   |         | LNI  | ET      |
| TestImg1 | 0.24745 |       | 0.10121 |         | 0.02 | 2154    | 0.30972 |       | 0.78260 |         | 0.08 | 3131    |
| TestImg2 | 0.19189 |       | 0.18526 |         | 0.02 | 2162    | 0.27452 |       | 1.08063 |         | 0.04 | 1200    |
| TestImg3 | 0.14384 |       | 0.18717 |         | 0.1  | 1866    | 0.22959 |       | 0.85070 |         | 0.07 | 7664    |
| TestImg4 | 0.24331 |       | 0.17288 |         | 0.1  | 7302    | 0.28082 |       | 0.94841 |         | 0.07 | 7655    |

TABLE XXVI.

THE RECORDED CONTRAST SCORES FOR THE COMPARATIVES (HIGHER THE SCORE GIVES GOOD QUALITY)

| Image    | IT2FB   | RBM   | P       | FBEM    |      | AIEM    | FEAE    | LIM   | E       | BIMEF   |      | SRIE    |
|----------|---------|-------|---------|---------|------|---------|---------|-------|---------|---------|------|---------|
| TestImg1 | 0.07470 | 0.042 | 34      | 0.02362 |      | 0.03674 | 0.02989 | 0.05  | 101     | 0.02811 |      | 0.01785 |
| TestImg2 | 0.09490 | 0.051 | 39      | 0.02453 |      | 0.01756 | 0.01028 | 0.035 | 579     | 0.01622 |      | 0.01108 |
| TestImg3 | 0.09416 | 0.064 | .99     | 0.02966 |      | 0.04412 | 0.04521 | 0.053 | 306     | 0.03742 |      | 0.02774 |
| TestImg4 | 0.07958 | 0.049 | 60      | 0.02541 |      | 0.04981 | 0.04052 | 0.059 | 981     | 0.03320 |      | 0.02438 |
| Image    | NPEA    |       | BPHE    |         | CA   | VIEHE   | MSRA    |       | MSRCR   |         | LN   | ET      |
| TestImg1 | 0.04230 |       | 0.01353 |         | 0.01 | 1243    | 0.06943 |       | 0.04037 |         | 0.01 | 205     |
| TestImg2 | 0.03262 |       | 0.02960 |         | 0.01 | 1678    | 0.06900 |       | 0.03820 |         | 0.00 | 0734    |
| TestImg3 | 0.04213 |       | 0.0268  |         | 0.02 | 248     | 0.08262 |       | 0.05564 |         | 0.02 | 2049    |
| TestImg4 | 0.05392 |       | 0.02023 |         | 0.02 | 2123    | 0.08055 |       | 0.04698 |         | 0.01 | 408     |

 TABLE XXVII.
 THE RECORDED IE SCORES FOR THE COMPARATIVES (HIGHER THE SCORE GIVES GOOD QUALITY)

| Image    | IT2FB    | RBMP     |         | FBEM     |    | AIEM     | FE   | AE      | LIM   | E         | BIMEF    |      | SRIE     |
|----------|----------|----------|---------|----------|----|----------|------|---------|-------|-----------|----------|------|----------|
| TestImg1 | 15       | 15.87423 | 3       | 15.66459 |    | 15.75404 | 15.5 | 54836   | 15.63 | 918       | 15.80531 |      | 15.64746 |
| TestImg2 | 15.98439 | 15.80274 | 1       | 15.53808 |    | 15.53808 | 15.3 | 30713   | 15.57 | 657       | 15.74564 |      | 15.68848 |
| TestImg3 | 15.99621 | 15.97231 | l       | 15.89987 |    | 15.93132 | 15.8 | 88706   | 15.89 | 043       | 15.94712 |      | 15.89795 |
| TestImg4 | 15.99558 | 15.97075 | 5       | 15.79935 |    | 15.92798 | 15.8 | 88523   | 15.89 | 030       | 15.94342 |      | 15.89896 |
| Image    | NPEA     | 1        | BPHE    |          | CA | AVIEHE   | Μ    | ISRA    |       | MSRCR     |          | LN   | ЕТ       |
| TestImg1 | 15.73456 | 1        | 15.4974 | 9        | 15 | .37739   | 15   | 5.83352 |       | -14.71573 | 3        | -15. | 56715    |
| TestImg2 | 15.72043 | 1        | 15.5273 | 2        | 15 | .42732   | 15   | 5.82062 |       | -14.49740 | )        | -15. | 57494    |
| TestImg3 | 15.91559 | 1        | 15.6459 | 6        | 15 | .54596   | 15   | 5.93316 |       | -14.87595 | 5        | -15. | 86741    |
| TestImg4 | 15.92207 | 1        | 15.5710 | 2        | 15 | .43202   | 15   | 5.94793 |       | -14.50907 | 7        | -15. | 85952    |

#### TABLE XXVIII. RUN TIME FOR ALL ALGORITHMS

| Images   | IT2FS     | RBN  | /IP      | FBEM      |       | AIEM     | FEAE     | LI  | ME       | BIMEF    |      | SRIE      |
|----------|-----------|------|----------|-----------|-------|----------|----------|-----|----------|----------|------|-----------|
| TestImg1 | 0.345445  | 0.37 | 9292     | 6.800890  |       | 7.571706 | 3.968177 | 0.1 | 63928    | 0.256611 |      | 17.412172 |
| TestImg2 | 0.362200  | 0.35 | 28       | 14.746129 | )     | 6.500533 | 1.919185 | 0.1 | 48863    | 0.233173 |      | 12.652796 |
| TestImg3 | 0.199488  | 0.19 | 6766     | 23.093706 | 6     | 6.120637 | 1.797364 | 0.1 | 80001    | 0.223248 |      | 6.430840  |
| TestImg4 | 0.203637  | 0.16 | 4310     | 13.216258 | 3     | 7.291177 | 1.810248 | 0.1 | 43545    | 0.250914 |      | 9.901286  |
| Image    | NPEA      |      | BPHE     |           | CAV   | ЕНЕ      | MSRA     |     | MSRCR    |          | LNI  | ET        |
| TestImg1 | 9.307077  |      | 0.262238 |           | 0.912 | 000      | 1.343199 |     | 2.893714 |          | 8.80 | 9306      |
| TestImg2 | 9.362168  |      | 0.194414 |           | 0.478 | 139      | 1.264595 |     | 2.800885 |          | 5.86 | 62136     |
| TestImg3 | 9.325342  |      | 0.221893 |           | 0.732 | 831      | 1.166960 |     | 2.739701 |          | 6.66 | 51681     |
| TestImg4 | 10.921751 |      | 0.289308 |           | 1.464 | 919      | 1.209983 |     | 2.707332 |          | 7.04 | 5211      |

 TABLE XXIX.
 Run Time Evaluation of All Algorithms

| Sl.No | Algorithm | Run Time (sec) 400x600 | Run Time (sec) 701x1052 | Run Time (sec) 3264x2175 |
|-------|-----------|------------------------|-------------------------|--------------------------|
| 1     | IT2FB     | 0.350821               | 0.641391                | 6.538643                 |
| 2.    | RBMA      | 0.318945               | 0.7460                  | 4.922583                 |
| 3.    | FBEM      | 12.994208              | 18.771755               | 92.741121                |
| 4.    | AIEM      | 4.134789               | 6.267442                | 10.84552                 |
| 5.    | FEAE      | 1.953480               | 3.367680                | 12.701537                |
| 6.    | LIME      | 0.146787               | 0.529567                | 4.343078                 |
| 7.    | BIMEF     | 0.215428               | 0.582480                | 5.241805                 |
| 8.    | SRIE      | 17.259832              | 25.738757               | 695.323839               |
| 9.    | NPEA      | 9.267901               | 28.419136               | 427.278078               |
| 10.   | BPHE      | 0.304741               | 0.598509                | 5.122004                 |
| 11.   | CAVIEHE   | 0.974524               | 2.187483                | 35.554106                |
| 12.   | MSRA      | 1.354881               | 2.706997                | 17.385311                |
| 13    | MSRCR     | 2.815200               | 8.631183                | 150.519389               |
| 14    | LNET      | 7.112936               | 15.468000               | 45.789045                |

#### VI. CONCLUSION AND FUTURE WORK

Low Light image enhancement formulas are more helpful for various vision applications. It can be found that many of the existing scientific study have neglected a lot of issues; i.e. no technique is precise for different circumstances. The review has demonstrated the undeniable fact that shown methods have neglected the methods to reduce the noise concern which can be shown within the output images of the image enhancement algorithms. The issue of uneven and also over illumination may also be an issue for enhancement methods. So it will be expected to change the prevailing methods in this manner that altered strategy may continue steadily to function better. In near future, to eliminate the issues of present research a different integrated algorithm is going to be proposed.

Table XXX shows the performance evaluation of all Algorithms. In this paper fourteen Image enhancement algorithms were compared and finally LNET gives the best output quality image and LIME method gives the least run time.

| Sl.No | QM      | TestImg1 | TestImg2 | TestImg3 | TestImg4 |
|-------|---------|----------|----------|----------|----------|
| 1     | MSE     | LNET     | CAVIEHE  | LNET     | LNET     |
| 2.    | RMSE    | LNET     | CAVIEHE  | LNET     | LNET     |
| 3.    | PSNR    | LNET     | CAVIEHE  | LNET     | LNET     |
| 4.    | WPSNR   | LNET     | CAVIEHE  | LNET     | LNET     |
| 5.    | SSIM    | MSRA     | RBMP     | BIMEF    | RBMP     |
| 6.    | CW-SSIM | MSRA     | RBMP     | BIMEF    | RBMP     |
| 7.    | VIF     | MSRA     | MSRA     | MSRA     | MSRA     |
| 8.    | UQI     | MSRA     | BIMEF    | MSRA     | RBMB     |
| 9.    | IEF     | MSRA     | RBMP     | BIMEF    | RBMP     |
| 10.   | IMMSE   | LNET     | CAVIEHE  | LNET     | LNET     |
| 11.   | MSSIM   | LNET     | CAVIEHE  | LNET     | LNET     |
| 12.   | MAE     | LNET     | CAVIEHE  | LNET     | LNET     |
| 13    | IQI     | RBMP     | RBMP     | BIMEF    | FEAE     |
| 14    | FSIM    | RBMP     | CAVIEHE  | BIMEF    | BIMEF    |
| 15    | EME     | IT2FB    | IT2FB    | IT2FB    | IT2FB    |
| 16    | BRISQUE | IT2FB    | CAVIEHE  | IT2FB    | IT2FB    |
| 17    | NIQE    | FEAE     | FEAE     | FEAE     | FEAE     |
| 18    | PIQE    | FBEM     | CAVIEHE  | IT2FB    | IT2FB    |
| 19    | SCC     | CAVIEHE  | CAVIEHE  | CAVIEHE  | CAVIEHE  |
| 20    | CVSI    | MSRCR    | MSRCR    | MSRCR    | MSRCR    |
| 21    | MCSD    | FEAE     | RBMP     | RBMP     | LNET     |
| 22    | NQM     | LNET     | LNET     | NPEA     | NPEA     |
| 23    | GMSM    | BIMEF    | BIMEF    | BIMEF    | BIMEF    |
| 24    | GMSD    | BIMEF    | BIMEF    | BIMEF    | BIMEF    |
| 25    | AG      | MSRCR    | MSRCR    | MSRCR    | MSRCR    |
| 26    | С       | IT2FB    | IT2FB    | IT2FB    | IT2FB    |
| 27    | IE      | RBMP     | IT2FB    | IT2FB    | IT2FB    |

TABLE XXX. PERFORMANCE EVALUATION OF ALL ALGORITHMS

# ACKNOWLEDGMENT

Our heartfelt thanks goes to the Management and the Principal of CITech for providing infrastructure and a wholehearted support to conduct research at CITech.

#### REFERENCES

[1] Lee, C. Lee, C.S. Kim, Contrast enhancement based on layered difference representation of 2d histograms, IEEE Trans. Image Process. 22 (12) (2013) 5372–5384.

[2] Guo, X., Li, Y., Ling, H. (2016). LIME: Low-light image enhancement via illumination map estimation. IEEE Transactions on Image Processing, 26(2): 982-993. https://doi.org/10.1109/TIP.2016.2639450.

[3] Wang, Y.F., Liu, H.M., Fu, Z.W. (2019). Low-light image enhancement via the absorption light scattering model. IEEE Transactions on Image Processing, 28(11): 5679-5690. https://doi.org/10.1109/TIP.2019.2922 106.

[4] Park, S., Yu, S., Kim, M., Park, K., Paik, J. (2018). Dual autoencoder network for retinex-based low-light image enhancement. IEEE Access, 6: 22084-22093. https://doi.org/10.1109/ACCESS.2018.2812809.

- [5] Dai, C., Lv, Y., Long, Y., Sui, H. (2018). A novel image enhancement technique for tunnel leakage image detection. Traitement du Signal, 35(3-4): 209-222. https://doi.org/10.3166/TS.35.209-222.
- [6] Jung, C., Yang, Q., Sun, T., Fu, Q., Song, H. (2017). Low light image enhancement with dual-tree complex wavelet transform. Journal of Visual Communication and Image Representation, 42: 28-36. https://doi.org/10.1016/j.jvcir.2016.11.001.
- [7] Kim, W., Lee, R., Park, M., Lee, S.H. (2019). Low-light image enhancement based on maximal diffusion values. IEEE Access, 7: 129150-129163. https://doi.org/10.1109/ACCESS.2019.2940452.
- [8] Thung, K.-H. and Raveendran, P. (2009) A Survey of Image Quality Measures. IEEE Technical Postgraduates (TECHPOS ) International Conference, Kuala Lumpur, 14-15 December 2009, 1-4.
- [9] Jobson D, Rahman Z (1997) Properties and performance of a center/surround retinex. IEEE Trans Image Process A Publ IEEE Signal Process Soc 6(3):451–462.
- [10] Jobson DJ, Rahman Z, Woodell GA (2002) A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans Image Process 6(7):965–976.
- [11] Rahman Z, Jobson DJ, Woodell GA (2004) Retinex processing for automatic image enhancement.J Electron Imaging 13(1):100–110.
- [12] Zhengang S, Liqun G, Kun W (2007) A novel approach to image enhancement and thresholding based on fuzzy theory. In: IEEE Conference on industrial electronics and applications 2201–2205.
- [13] Kong XW (2007) The fuzzy image enhancement algorithm for iow snr image. Laser J 5:44–45.
- [14] Z.Ying, G. Li, and W. Gao, "A Bio-Inspired Multi-Exposure Fusion Framework for Low-light Image Enhancement," arXiv:1711.00591 [cs], Nov. 2017.
- [15] Z.Ying, G. Li, Y. Ren, R. Wang, and W. Wang, "A New Image Contrast Enhancement Algorithm Using Exposure Fusion Framework," in International Conference on Computer Analysis of Images and Patterns, 2017, pp. 36–46.
- [16] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Durand, "Deep bilateral learning for real-time image enhancement," ACM Trans. Graph., vol. 36, no. 4, pp. 1–12, Jul. 2017.
- [17] K. G. Lore, Adedotun Akintayo, and S. Sarkar, "LLNet: A deep autoencoder approach to natural low-light image enhancement," Pattern Recognition, vol. 61, pp. 650–662, Jan. 2017.
- [18] Abdullah-Al-Wadud M, Kabir M H, Dewan M A A, et al. A Dynamic Histogram Equalization for Image Contrast Enhancement[J]. IEEE Transactions on Consumer Electronics, 2007, 53(2):p.593-600.
- [19] Chulwoo Lee, Chul Lee, and Chang-Su Kim, "Contrast enhancement based on layered difference representation of 2D histograms," IEEE Transactions on Image Processing, vol. 22, no. 12, pp. 5372-5384, Dec. 2013.
- [20] Chaira, T. (2014). An improved medical image enhancement scheme using Type II fuzzy set. Applied Soft Computing, 25: 293-308. https://doi.org/10.1016/j.asoc.2014.09.004.
- [21] Zohair Al-Ameen (2021)"Contrast Enhancement of Digital Images Using an Improved Type-II Fuzzy Set-Based Algorithm", International Information and Engineeirng Technology Association, 38:39-50 https://doi.org/10.18280/ts.380104.
- [22] Zou, Y., Dai, X., Li, W., Sun, Y. (2015). Robust design optimisation for inductive power transfer systems from topology collection based on an evolutionary multi-objective algorithm. IET Power Electronics, 8(9): 1767-1776. https://doi.org/10.1049/iet-pel.2014.0468.
- [23] Kallel, F., Sahnoun, M., Hamida, A.B., Chtourou, K. (2018). CT scan contrast enhancement using singular value decomposition and adaptive

gamma correction. Signal, Image and Video Processing, 12(5): 905-913. https://doi.org/10.1007/s11760-017-1232-2.

- [24] Jobson, D.J., Rahman, Z.U., Woodell, G.A. (1997). Properties and performance of a center/surround retinex. IEEE Transactions on Image Processing, 6(3): 451-462. https://doi.org/10.1109/83.557356.
- [25] Hanumantharaju, M.C., Ravishankar, M., Rameshbabu, D.R. (2013). Design and FPGA implementation of an 2D Gaussian surround function with reduced on-chip memory utilization. In 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Mysore, pp. 604-609. https://doi.org/10.1109/ICACCI.2013.6637241.
- [26] Mohammad Abid Al-Hashim, Zohair Al-Ameen(2020) Retinex-Based Multiphase Algorithm for Low-Light Image Enhancement International Information and Engineeirng Technology Association 37:733-743, https://doi.org/10.18280/ts.370505.
- [27] Xueyang Fu, Delu Zeng, Yue Huang, Yinghao Liao, Xinghao Ding and John Paisley, A Fusion-based Enhancing Method for Weakly Illuminated Images, Signal Processing, http://dx.doi.org/10.1016/j.sigpro.2016.05.031.
- [28] Wencheng Wang, Zhenxue Chen, Xiaohui Yuan, Xiaojin Wu, "Adaptive Image Enhancement Method for Correcting Low-Illumination Images", Information Sciences-2019, https://doi.org/10.1016/j.ins.2019.05.015.
- [29] Dong, X., G. Wang, Y. Pang, W. Li, J. Wen, W. Meng, and Y. Lu. "Fast efficient algorithm for enhancement of low lighting video." Proceedings of IEEE® International Conference on Multimedia and Expo (ICME). 2011, pp. 1–6.
- [30] Guo, X.; Li, Y.; Ling, H. LIME: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 2017, 26, 982–993. [CrossRef] [PubMed].
- [31] Ying, Z.; Li, G.; Gao, W. A bio-inspired multi-exposure fusion framework for low-light image enhancement. arXiv, 2017; arXiv:1711.00591.
- [32] Fu, X.; Zeng, D.; Huang, Y.; Zhang, X.P.; Ding, X. A weighted variational model for simultaneous reflectance and illumination estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2782–2790.
- [33] Wang, S.; Zheng, J.; Hu, H.-M.; Li, B. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 2013, 22, 3538–3548. [CrossRef] [PubMed].
- [34] Contrast Enhancement Using Brightness Preserving Bi- Histogram Equalization, YEONG-TAEKGI M, 1997 IEEE.
- [35] S. Palanikumar1,\*, M. Sasikumar2, J. Rajeesh3 Entropy Optimized Palmprint Enhancement Using Genetic Algorithm and Histogram Equalization, International Journal of Genetic Engineering 2012, 2(2): 12-18 DOI: 10.5923/j.ijge.20120202.01.
- [36] Daniel J. Jobson, Member, IEEE, Zia-ur Rahman, Member, IEEE, and Glenn A. WoodellA Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes, IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 7, JULY 1997.
- [37] Jinxiang Maa,b, Xinnan Fana,c,d, Jianjun Nic,d, Xifang Zhub,\* and Chao XiongbMSRCR Image Enhancement Based on Gaussian Filtering and Guided Filtering, International Journal of Modern Physics B • May 2017, DOI: 10.1142/S0217979217440775.
- [38] Chongyi Li, Jichang Guo, Fatih Porikli, Yanwei Pang, LightenNet: a Convolutional Neural Network for weakly illuminated image enhancement, Pattern Recognition Letters (2018), doi: 10.1016/j.patrec.2018.01.010.