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Abstract—With the technological progress of the Internet and 

5G communication network, more and more Internet of Things 

devices are used in it. Limited by the cost, power consumption 

and other factors of Internet of Things devices, the systems 

carried by the Internet of Things devices often lack the security 

protection provided by larger equipment systems such as desktop 

computers. Because the current personal computers and servers 

mostly use the x86 architecture, and the previous research on 

security tools or hardware-based security analysis feature 

support is mostly based on the x86 architecture, the traditional 

security analysis techniques cannot be applied to the current 

large-scale ARM-based and MIPS-based Internet of Things 

devices. Based on this, this paper studies the firmware binary 

program of common Linux-based Internet of Things devices. A 

binary static instrumentation technology based on taint 

information analysis is proposed. The paper also analyzes how to 

use the binary static instrumentation technology combined with 

static analysis results to rewrite binary programs and obtain 

taint path information when binary programs are executed. 

Firmware binary fuzzing technology based on model constraints 

and path feedback is studied to cover more dangerous execution 

paths in the target program. Finally, iootfuzzer, a prototype 

vulnerability mining system for firmware binaries of Internet of 

Things devices, is used to test and analyze the two technologies. 

The results show that its fuzzing efficiency for Internet of Things 

devices is better than other fuzzing technologies such as boofuzz 

and Peach 3. It can fill in some gaps in the current security 

analysis tools for the Internet of Things devices and improve the 

efficiency of security analysis for Internet of Things devices, 

which contributes to the field through automated security 

vulnerability detection systems. 

Keywords—Internet of things; system vulnerabilities; source 

code; fuzz testing; instrumentation technology 

I. INTRODUCTION 

At present, the interaction between IoT devices and the 
outside world is mostly carried out through the network. 
Usually, the software monitors the input data of external users, 
and the user's operation on the device is received and processed 
through several specific softwares [1]. Therefore, to analyze 
the vulnerability of this software, it is necessary to start from 
the code path through which external user data flows and find 
the problem code that external users, or attackers, can reach [2]. 

At the same time, in the past commonly used fuzzy testing 
based on path feedback, almost all of them adopt the way of 
the full instrumentation, such as path record instrumentation 
for all jump instructions at the end of the code block [3]. This 

instrumentation method will lead to a lot of programs internal 
processing codes unrelated to user input being instrumented, 
and then will make the code unrelated to external input data 
generate a new execution path so that the fuzz test tool will 
mistakenly think that the new execution path is caused by the 
fuzz test sample, and use the fuzzing test sample to further 
mutate and test in the follow-up. This will reduce the efficiency 
of fuzz testing. 

At present, the work of source code vulnerability mining 
mostly depends on manually defined rules, but this method has 
some drawbacks: on the one hand, manually defined 
vulnerability mining rules often need to rely on the expertise 
and work experience of experts [4]. It is difficult to ensure full 
coverage of the possible causes of vulnerabilities, and it is easy 
to have the possibility of false positives and underreporting. On 
the other hand, it takes a lot of manpower to mine loopholes 
according to the rules. Due to manual judgment, the 
phenomenon of false underreporting will still occur [5]. With 
the development of technology, researchers began to use 
machine learning methods for vulnerability mining. This 
method does not need to define vulnerability rules, but still 
needs to define vulnerability features. Although it has reduced 
the manual workload, there are still drawbacks to feature 
coverage. In recent years, with the increasing popularity of 
deep learning, many scholars have begun to try to apply deep 
learning methods to vulnerability mining, and have made good 
progress [6]. In the process of data preprocessing, only whether 
the source code contains vulnerabilities is divided, and the 
types of vulnerabilities are not classified, so the existing work 
can only detect whether a piece of code contains vulnerabilities, 
and cannot accurately detect the types of vulnerabilities. 

Scandariato et al. [7] tested the bag-of-words technique 
with a hybrid approach combining N-gram parsing and 
statistical feature selection to predict vulnerable software 
components. Yamaguchi [8] proposed a new graphical 
representation, called the code property graph, by traversing 
the graph to discover vulnerabilities. However, designing 
effective traversals to detect complex vulnerabilities can be 
very difficult. Thus, the authors propose an automatic method 
for traversing code attribute graphs to effectively locate taint-
style vulnerabilities generated by uncleaned data streams, and 
use it to experiment with five popular open-source projects. 
The number of source codes without vulnerabilities in the data 
set is much larger than the number of source codes with 
vulnerabilities. It is difficult to learn the characteristics of a 
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small number of samples, while a large number of samples are 
prone to over-fitting during training. 

To solve the problem that it is difficult to apply the fuzzing 
technology based on path feedback to the firmware binary 
program of ARM and MIPS Internet of Things devices and the 
efficiency of fuzzing test is low, this paper proposes a binary 
static instrumentation technology based on the taint 
information analysis. Firmware binary fuzzing testing 
technology based on model constraints and path feedback is 
studied in depth. The binary static instrumentation technology 
based on taint information analysis is studied, which can solve 
the problem that the current ARM and MIPS architectures lack 
taint information analysis tools. It analyzes and instruments the 
conditional branch jump of the target program in firmware 
affected by external input data to provide information feedback 
to the fuzz testing tool. The firmware binary fuzzing testing 
technology based on model constraints and path feedback is 
studied, which can improve the efficiency of fuzzing testing 
technology such as model constraints and path feedback 
combined with the above technology applied to the 
vulnerability mining of the target device, and focus the fuzzing 
test on the dangerous path to achieve the effect of improving 
the efficiency of fuzzing testing. The abstract syntax tree of 
function is used to represent the function, and multiple 
functions are annotated in open source datasets to capture the 
intrinsic representation of vulnerabilities, which proves that the 
model is effective for cross-project vulnerability detection at 
the functional level. Finally, the effectiveness of the above 
technology is proved by comparative experiments. 

The main innovations of this paper are: 

1) Adopt a feedback type fuzz test technology to carry out 

vulnerability mine on that firmware of the Internet of things 

equipment, and select the conditional branch jump points 

influenced by external user input data, namely taint 

information, as path feedback data of the fuzz test. 

2) Design and implement a firmware vulnerability mining 

prototype system based on binary static instrumentation and 

feedback fuzzing for ARM and MIPS architectures. 

3) Based on the results of taint information analysis, the 

target binary program is instrumented to improve the 

execution efficiency of the fuzz testing process. 

Through the binary static technology based on the Internet 
of Things device vulnerability analysis, the fuzzing testing tool 
can obtain the feedback information of the relevant test 
samples in the process of fuzzing testing, and guide the 
generation of the fuzzing test samples. At the same time, the 
relevant algorithm is designed to select more valuable samples, 
and the model constraints are used to make the fuzzy test 
towards a higher coverage. 

II. RELATED WORK 

A. Binary Static Instrumentation Technique 

Static Binary Instrumentation (SBI) modifies the binary 
program file stored in the storage medium to generate an 
instrumented binary file and save it to the storage medium. 
When the program is executed, the instrumented binary file is 
run [9]. The idea of binary static instrumentation technology is 

very simple, which is to modify the binary file through the 
target file format to achieve the purpose of adding specific new 
code, but it needs to statically analyze the instrumented 
program in advance or describe it through the configuration file 
[10]. One of the core parts of binary static instrumentation 
technology is the selection of instrumentation positions. An 
example of an instrumentation error is shown in Fig. 1. 

Static instrumentation technology modifies and hijacks the 
original code execution flow of the program so that the 
program jumps to the instrumentation code to execute when it 
runs to a specific location and completes the specific functions 
inserted by developers [11]. The selection of the insertion point 
will not only affect the efficiency of the program execution but 
also affect whether the program can be executed normally. In 
instrumentation tools that use binary static instrumentation 
techniques, directly editing the target binary file format and 
modifying and inserting code is the most common 
implementation. 

B. Feedback Fuzzy Test Technique 

Under the condition that the source code can be 
instrumented, AFL, honggfuzz, and other fuzzing tools all 
adopt the feedback fuzzing technology. These fuzz testing tools 
use the execution path information of fuzz test samples as 
feedback information to guide the sample generation tool to 
generate samples that can improve the coverage of fuzz test 
code (path) [12]. AFL uses customized GCC to insert the 
functional code of path recording and path feedback into the 
compiled binary program through source code instrumentation 
so that the program can record and feedback the execution 
information of fuzzy test samples during running [13]. In the 
absence of source code, binary instrumentation is generally 
used to obtain the key information in the running process of the 
target program, which requires researchers to develop and 
customize it for specific situations. Under the condition of no 
source code, AFL can still fuzz binary programs with the 
QEMU tool, but the efficiency of fuzz testing is low [14]. 
InsFuzz uses binary static instrumentation to interpolate non-
source binary programs, inserting path records and feedback 
code into binary programs to achieve the same effect as source 
instrumentation [15]. Through the feedback fuzzing testing 
technology, the efficiency of fuzzing testing can be effectively 
improved. Inefficient fuzzing test samples can be discarded in 
time, and only the fuzzing test samples which may generate 
new execution paths can be mutated so that the whole fuzz 
testing work can be carried out in the direction of improving 
the code test coverage. 

Original instruction 1 Original instruction 2

Jump instruction

Porch jump instruction Disabled instruction

Other 

addresses

Before the pile

After inserting the pile
 

Fig. 1. Example of CISC Instrumentation Causing Program Runtime Errors. 
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III. RESEARCH ON BINARY STATIC INSTRUMENTATION 

TECHNOLOGY BASED ON STAIN INFORMATION ANALYSIS 

C. Analysis Flow and Algorithm of Taint Information 

To improve the effective code coverage rate of the 
subsequent fuzz testing tool, the technology performs 
simulation execution on the target binary program, and 
therefore, more functional codes need to be analyzed as much 
as possible in the taint information analysis process. Because 
the target binary program in this paper is the network program 
in the firmware of the Internet of Things device, which uses 
socket, bind, accept, fgets, send, and other functions to build 
the data receiving and sending part of the network application 
program. These programs all have a clear function to receive 
external input data. The Internet of Things device firmware 
program uses the fgets function to receive external data packets 
transmitted through the network through the file descriptor of 
the socket. 

Since program codes are executed in a simulation execution 
mode when taint information analysis is carried out [16], even 
if the analysis is not purely static, partial run-time information 
is missing. The coding fragments are shown in Table I. 

TABLE I. CODE FRAGMENT 

Code fragment: 

<META HTTP-EQUIV="0,0x271t" CONTENT="no-cache"> 
If iggate,10000,(ffile * dword_654BC 

V0=400; 

V1=”Bad Request”; 
V2=”No request found” 

Return sub_D343（V0, V1, V2）; 

<META HTTP-EQUIV="Cache-Control" CONTENT="no-cache, must-

revalidate"> 

As shown in the variable s in Table I, during simulation 
execution and taint analysis, it is impossible to accurately 
assign the external input variable or simulate the external input 
that can explore all execution paths [17]. Therefore, it is 
necessary to apply some methods to analyze the code that 
operates on the external input data as much as possible during 
simulation execution and taint analysis. 

D. Research on Firmware Binary Fuzz Testing Technology 

for Internet of Things Devices based on Model Constraints 

and Path Feedback 

 Fuzz testing coverage and sample selection algorithm 

When the feedback information received by the sample 
variation module finds that an execution path is generated, it 
indicates that the current fuzzy test sample triggers a new 
execution path [18], which means that the change of some 
fields in the sample triggers the change of the flow direction of 
the program control stream, and by performing sample 
variation on the sample again and generating a new sample. 
There is a greater probability that the code coverage of the fuzz 
test can be improved, so it is placed in the queue of samples to 
be mutated. 

In the whole process of fuzzing testing, this paper defines 
an index of dangerous branch jump coverage, which is used to 
record and judge the index data in the process of fuzzing 
testing: 

100%executed
d

all

anger

DB
C

DB
 

            (1) 

In Formula 1, allDB
 represents the number of branch 

jumps influenced by the external user input data in the target 

binary program, and executedDB
 represents the number of 

branch jumps influenced by the external user input data that 
have been executed in the current fuzz test. 

A queue 
 0 1, , , nQ S S S

 and a queue 

 0 1, , , nM m m m
 of fuzzing test samples to be tested are 

defined for the fuzzing test samples transmitted to the fuzzing 
testing module. During the fuze testing process, the fuze test 
samples in the queue Q are transmitted to the fuzz testing 
module in a first-in first-out order [19]. If a new execution path 
is generated after the fuzz test samples are executed, then pass 
it to the use case generation function and add the newly 
generated fuzzing test sample to the fuzzing test sample 
queue M. 

 Target feedback data processing 

An array 
 0 1, , , nDB DB DB DB

 is used to record the 
execution of the current fuzz test sample in the target binary 
program. This data is fed back after the target binary program 
executes the external input data processing function. At the 

same time, the array 
 0 1, , , nAC AC AC AC

 is defined 
to record the total number of times that the branch jump of 
each taint condition is executed in the fuzz test so far. 

As shown in Equation 2, a weight must be defined for each 
fuzzy test sample to represent the "value" of the fuzzy test 
sample: 
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The weight of each branch is 
1000 / iAC

. When a taint 
condition branch jumps in the fuzz test and the total number of 

times it has been executed so far is iAC
, its reciprocal is 

multiplied by 1000 to get its weight. The factor of 1000 is used 
to prevent too many executions from causing the reciprocal to 
be too small, and the value becomes 0 after the decimal place is 
normalized. The factor can increase with the number of fuzz 
tests without affecting the weight ordering. 
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IV. EXPERIMENTAL ANALYSIS 

E. Function Comparison of Stain Analysis Tool 

At present, there is no mainstream tool of the same type 
supporting ARM and MIPS that is open source or available for 
download for comparison, as shown in Table II. 

TABLE II. COMPARISON RESULTS OF STAIN ANALYSIS TOOLS 

Tool name x86 arm mips 
Required 
documents 

Pin Y N N Source Code 

Taintgrind Y Y N Source Code 

TaintEraser Y N N Source Code 

TEMU Y N N Source Code 

PyDaint 
Reserved 

interface 
Y Y Binary 

Most mainstream tools rely on the source code to recompile 
the analysis target before running the analysis. PyDaint not 
only supports the ARM and MIPS architectures studied in this 
paper, but also can be extended to further support x86 
architectures [20]. 

The test framework is shown in Fig. 2. 

Sample generation 

and mutation

data input

Test goal Feedback
Abnormal 

monitoring

 

Fig. 2. Basic Framework of Paste Test. 

F. Instrumentation Performance Test of Tainted Information 

Flow 

Because this project uses QEMU user mode to run 
simulation on x86 _ 64 computers for ARM and MIPS 
architectures, it is difficult to carry out relevant timing statistics. 
Therefore, to test the effect of binary static instrumentation 
based on taint information analysis on the execution efficiency 
of the original binary program, the Web service programs of 
ASUS AC88U router based on ARM architecture and D-
LinkDIR882 router based on MIPS architecture are 
instrumented respectively. It takes for normal user interaction 
(simulated access and packet reception through a Python 
program) before and after instrumentation in a test 
environment. The experimental results are shown in Table III 
and Table IV. 

TABLE III. COMPARISON OF EXECUTION EFFICIENCY BEFORE AND AFTER 

HTTPD INSTRUMENTATION IN ARM ARCHITECTURE 

                            Test object 

Sample number 
Before insertion After insertion 

100 432.58ms 846.39ms 

1000 4545.74ms 8682.94ms 

The average time for httpd to send and receive data is about 
4.3ms before instrumentation, and 8.7ms after instrumentation. 
In the experimental environment, the instrumentation loses 
about 1.02 times of performance. 

TABLE IV. COMPARISON OF EXECUTION EFFICIENCY OF LIGHTTPD 

BEFORE AND AFTER INSTRUMENTATION OF MIPS ARCHITECTURE 

Test object 

Sample number 
Before insertion After insertion 

100 32.59ms 96.34ms 

1000 228.39ms 972.21ms 

The average time for lighttpd to send and receive data is 
about 0.28ms before instrumentation, and 0.99ms after 
instrumentation. In the experimental environment, the 
instrumentation loses about 2.5 times of performance. 

G. Fuzzy Test Function Comparison 

Before analyzing the experimental results of fuzz testing 
efficiency, as shown in Table V, we first compare the functions 
of several common fuzz testing tools with the fuzz testing tool 
iboofuzzer implemented in this paper. 

TABLE V. COMPARISON RESULTS OF FUZZ TEST TOOLS 

Tool names 

Network 

Program 

Fuzziness Test 

Path 

feedback 

Path feedback 

without 

source code 

Model 

constraints 

AFL N Y 
Partially 

supported 
N 

AFL-net Y Y 
Partially 
supported 

N 

Peach 3 Y N N Y 

boofuzz Y N N Y 

iboofuzzer Y Y Y Y 

Iboofuzzer is a fuzzy testing subsystem developed for the 
network binary program in the Internet of Things device 
firmware in this paper, which supports model constraints and 
path feedback, and can obtain the feedback information of the 
target binary program by using instrumentation tools in 
common use scenarios without source code. 

H. Fuzzy Test Efficiency Test 

When using the original boofuzz for fuzz testing, the 
sample random mutation function is added to avoid the 
premature end of the fuzz test due to sample exhaustion. At the 
same time, the iboofuzzer framework is used to count the 
coverage information of boofuzz and Peach 3 tests, but it is not 
fed back to the sample generation module for analysis and 
comparison. In the testing process, the original boofuzz is 
tested based on model constraints and random data. For Peach 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 7, 2022 

696 | P a g e  

www.ijacsa.thesai.org 

3, its listening mode is used, and the fuzzy test samples are 
actively obtained from Peach through the framework of 
iboofuzzer and then sent to the target binary program. The test 
parameters are shown in Table VI. 

TABLE VI. FUZZY TEST TOOL EXPERIMENTAL VARIABLES 

Tool names Sample generation method Information feedback 

boofuzz Random data No 

boofuzz Model constraints No 

Peach 3 Model constraints No 

iboofuzzer Model constraints Path feedback 

For each of the four test conditions in Table VI, a blur test 
was performed for about 8 hours. 

 Comparison of coverage rate of insertion point in fuzzy 
test 

The coverage rate of instrumentation points in the fuzzing 
test process represents the proportion of different branches of 
instrumented points executed in the whole fuzzing test process, 
as shown in Fig. 3. 

In this comparative experiment, the coverage of boofuzz, 
which uses random data generation for fuzz testing, is the 
lowest in the whole 8-hour test. The second-lowest is boofuzz, 
which uses model constraints to generate samples. It is lower 
than Peach 3 in the first few hours, and then gradually 
approaches. Peach 3 has the second-highest coverage and 
iboofuzzer has the highest coverage. That is to say, the quality 
of samples generated by iboofuzzer is higher, and the test 
coverage of dangerous paths is larger. In the experimental 
environment, the coverage rate of the algorithm in this paper is 
the highest, and the target binary program after interpolation 
can still process a single fuzzy test sample in milliseconds. 

 Comparison of the number of new execution paths for 
fuzz testing 

The number of new execution paths generated during fuzz 
testing represents the ability of the fuzz testing tool to find new 
code test paths throughout the fuzz testing process, which is 
shown in Fig. 4. 

 

Fig. 3. Comparison of Fuzz Test Instrumentation Point Coverage. 

 

Fig. 4. Comparison Chart of the Number of New Execution Paths for Fuzz 

Testing. 

Peach 3 and boofuzz with random data both generate fewer 
new path samples, while iboofuzzer generates the newest path 
samples, that is, the samples generated by iboofuzzer are more 
effective in discovering new paths. The distortion efficiency is 
improved by increasing the proportion of the effective 
distortion in the total distortion. Samples with effective 
distortion can reach the target basic block faster, while samples 
with invalid distortion will make the program fall into the 
situation of path explosion. 

The object of vulnerability mining in this paper is the 
network binary program in the Internet of Things devices, 
which has certain format requirements for the input data, so the 
generation of samples based on model constraints can not only 
solve the problem of lack of original data samples in fuzzy 
testing, but also improve the code penetration of samples, and 
avoid the samples being abandoned in the format check 
function of the target program. At the same time, the fuzzy test 
focuses on the dangerous path affected by the external input 
data, and mutates new fuzzy test samples to improve the 
coverage of the dangerous path. To improve the efficiency of 
fuzzy testing, the path feedback information and the calculated 
sample weight are used to guide the mutation generation of 
fuzzy testing samples. 

V. CONCLUSION 

In this paper, we study the static instrumentation of the 
firmware binary program of the Internet of Things device 
based on ARM and MIPS architecture, and innovatively 
combine the taint information analysis with the binary 
instrumentation and apply it to the firmware program of the 
Internet of Things device to improve the efficiency of fuzzing 
the dangerous path in the tested program of the firmware 
program of Internet of Things devices. The main work includes: 

1) Analyze the taint information with the firmware binary 

program of the Internet of Things device based on ARM and 

MIPS architecture. 

2) The feedback fuzzing technology is applied to the 

firmware binaries of the IoT devices based on ARM and MIPS 

architectures, and the target binaries are moved from the IoT 
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devices to desktop computers for fuzzing by using QEMU 

open source tools and binary static instrumentation technology. 

3) Select some of the common security tools to compare 

with the subsystems of the prototype system iootfuzzer in 

different types, and use the tools that can fuzze the research 

goal of this paper to carry out the comparison experiment of 

fuzzing efficiency. 

The fuzz testing subsystem in this paper is implemented 
based on boofbzz, and it needs to write samples to generate 
template files for different test objectives, which is a heavy 
workload. In the future, we can consider implementing the 
technology of automatically generating the corresponding 
template through the captured network communication packets 
to reduce the cost of preparation work in the early stage of fuzz 
testing. Complex vulnerabilities usually have a long ROC 
chain. These vulnerabilities may not only be related to one file, 
but also to multiple files, which will greatly affect the effect of 
vulnerability mining. Dynamic analysis is to detect 
vulnerabilities in the process of program running, which makes 
dynamic analysis more complex. In the future, the above two 
directions will be studied in depth. 
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