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Abstract—Diabetic retinopathy (DR) is among the most dan-
gerous diabetic complications that can lead to lifelong blindness
if left untreated. One of the essential difficulties in DR is early
discovery, which is crucial for therapy progress. The accurate
diagnosis of the DR stage is famously complicated and demands
a skilled analysis by the expert being of fundus images. This
paper detects DR and classifies its stage using retina images
by applying conventional neural networks and transfer learning
models. Three deep learning models were investigated: trained
from scratch CNN and pre-trained InceptionV3 and Efficient-
NetsB5. Experiment results show that the proposed CNN model
outperformed the pre-trained models with a 9 to 25% relative
improvement in F1-score compared to pre-trained InceptionV3
and EfficientNetsB5, respectively.
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I. INTRODUCTION

Diabetic retinopathy (DR) is one of the diseases associated
with diabetes and causes blindness to 4.4 million Americans
over age 40 [1]. DR is an eye condition developed quickly in
diabetes mellitus patients in type 1 or 2 [2]. DR often has no
obvious symptoms in the early stages, but it becomes more
pronounced as the disease progresses to more severe stages.
An experienced ophthalmologist schedules a plan, which may
run from weeks to months, to examine diabetic patients to
determine their stage based on the retina’s lesions and the
severity level. Essentially, DR affects light-sensitive tissue
blood vessels (i.e., retina) [3]. DR can be either nonprolif-
erative or proliferative. In nonproliferative DR (NPDR), no
abnormal blood vessel growth is found in the retina. Still,
small outpouchings exist as the wall of retinal capillaries is
weakened due to high blood glucose. These outpouchings are
known as microaneurysms. NPDR can be mild, moderate,
or severe based on the number of found microaneurysms
and distortion of the blood vessels in the retinal exam. As
the disease progresses, blood vessels may grow abnormally
covering the retina; hence, DR becomes proliferative (PDR),
leading to severe visual consequences.

In preventing blindness caused by the DR, detection, diag-
nosis, and treatment in earlier stages will control the disease
and reduce vision loss. Diagnosis of the DR is complicated and
requires high potential abilities [4]. One well-known obstacle
for DR is that even for diabetic macular oedema, there are no
early warning signs. Therefore, it is highly desirable to detect
DR on time. Currently, DR diagnosis needs a well-trained
doctor to diagnose the disease and manually evaluate digital
images of the fundus of the retina. DR is recognised through

identifying lesions connected with vascular malformations
resulting from diabetes. This process may require longer time
and effort depending on the experience and efficiency of the
examiner doctor.

With the recent advancements in intelligent solutions, deep
learning and transfer learning techniques showed significant
success in object recognition and detection tasks. This research
aims to automate DR diagnosis through exploiting convolu-
tional neural networks (CNN) and transfer learning to identify
DR from retina images. The Asia Pacific Tele-Ophthalmology
Society (APTOS) dataset was used for blindness diagnosis and
detection in this research. In addition, a comparison of the
evaluation of different models to detect the disease effectively.
This intelligent solution would help the health community
diagnose the disease more efficiently, using less time and
resources.

The remainder of this paper is organised as follows. In
Section II, the related studies on the topic have been reviewed.
Section III presents the research models used in this study
followed by a description of the dataset used in the diagnosis
DR in Section IV. Section V lays evaluation metrics and
experimental design. Section VI presents the results of the
experiments, and finally, the study is concluded in Section VII.

II. RELATED WORK

Early DR detection is critical and time-consuming, and
ophthalmologists are burdened. This attracted many re-
searchers to develop early DR detectors and classifiers. Here,
an overview of the deep learning techniques used in the
previous literature is presented. Also, the used DR datasets
in those studies are summarised. All of the reviewed literature
detected DR from retinal fundus images. If detected, DR was
classified into one of four severity levels: mild, moderate,
severe NPDRs and PDR.

In the deep learning approach, CNN extracts features from
input images and feeds them to the deeper layer in the model.
Shan et al. [19] distinguished microaneurysms from fundus
images using stacked sparse autoencoder (SSAE). Their model
reached 91.3% for F1-score and an AUC of 96.2%. Singh et al.
[20] employed a densely connected neural network architecture
to detect the DR severity efficiently. Experimental findings
showed that the DR severity could be successfully identified
through the model with an accuracy of 83.6%.

Some researchers fine-tuned pre-trained models, known as
transfer learning (TL), instead of training their models from
scratch. These pre-trained models were initially trained using a
large amount of out-of-domain data for object recognition and
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TABLE I. PREVIOUS WORK IN EARLY DR DETECTION USING TRANSFER LEARNING. PREPROCESSING COLUMN INDICATES WHETHER ANY IMAGE
PROCESSING WAS APPLIED BEFORE MODEL FINE-TUNING.

Work Preprocessing Pre-trained models Dataset Performance

Nquyen et al. [5]
Highlight spot, Crop, Drop outliers,
Convert B/W, Rotate tree, Special Filtering

VGG-16, VGG-19 EyePACS

(Ensemble)
Accuracy 82%
Sensitivity 80%
Specificity 82%

Masood et al. [6]
Downsize to a common radius, Normalize,
Crop a borders

InceptionV3 EyePACS Accuracy 48.2%

Maswood et al. [7] Ben’s preprocessing EfficientNet-B5 APTOS2019 Accuracy 93%

AbdelMaksoud et al. [8]
Filtering using median filter, Resize into
256 × 256, Transformation Processes,
Normalize

EffecientNet-B0 IDRiD Accuracy 86%

Qummar et al. [9] Resize into 786 × 512, Mean normalized
Resnet50, Inceptionv3,
Xception,Dense121,
Dense169

EyePACS

(Ensemble)
Accuracy 80.8%
Sensitivity 51.5%
Specificity 86.7%

Gao et al. [10]
Remove black borders, Resize into
672 × 672

(modified) MobileNet-Dense,
MobileNetV2

MESSIDOR,
EyePACS

(Ensemble)
Accuracy 96.2%

Taufiqurrahman et al. [11] Resize 224 × 224
MobileNetV2-SVM,
MobileNetV2

APTOS2019
(MobileNetV2-SVM)
Accuracy 85%

Khojasteh et al. [12] Patch Exraction
SVM/KNN/OPF,
DRBM,ResNet-50

DIARETDB1,
e-Ophtha

(ResNet-50-SVM)
Accuracy 98.2%
Sensitivity 99%
Specificity 96%

Hemanth et al. [13] Histogram equalisation — MESSIDOR
Accuracy 97%
Sensitivity 94%
Specificity 98%

Kose et al. [14] Kirsch’s template — MESSIDOR
Accuracy 89.8%
Sensitivity 79.6%
Specificity 93.2%

Pham et al. [15]
Subtracting the average local colour using
a Gaussian mask

EfficientNet-B5 APTOS2019 —

Shankar et al. [16] Histogram based segmentation ResNet50 MESSIDOR
Accuracy 99.28%
Sensitivity 98%
Specificity 99%

Jiang et al. [17] —
Inception V3, Resnet152,
Inception-Resnet-V2

Beijing Tongren
Hospital

(Ensemble)
Accuracy 88.21%
Sensitivity 85.57%
Specificity 90.85%

Tymchenko et al. [18] —
EfficientNet-B4, EfficientNet-B5,
SE- ResNeXt50

MESSIDOR,
APTOS2019,
EyePACS,
IDRiD

(Ensemble)
Accuracy 99%
Sensitivity 99%
Specificity 99%

detection. Then, only the output layer is replaced according
to the given task and number of classes. Table I lists some
of these studies along with the used pre-trained models and
their performance. Whenever a study investigated more than
one pre-trained model, an ensemble was applied to combine
all these models and produce an optimal model.

Traditionally, the output layer of pre-trained models is
replaced by a multi-layer neural network classifier and a
softmax layer with a size equivalent to the number of classes
to be recognised. Nevertheless, Taufiqurrahman et al.[11] sug-
gested restructuring the MobileNetV2 model by replacing the
fully connected layer with a Support Vector Machine (SVM)
classifier. This modified version, MobileNetV2-SVM, obtained
better performance than its original model. MobileNetV2-SVM
achieved an accuracy of 85% and AUC of 92.8%. In a similar
fashion, Khojasteh et al.[12] replaced the softmax layer with

several classifiers: OPF, SVM, and KNN. Combing Resnet-
50 and SVM outperformed other models with an accuracy of
98.2%, a sensitivity of 99%, and a specificity of 96%.

Several models can be combined using ensemble learning
to improve prediction performance or reduce the bias in the
learning process. Jiang et al. [17] introduced an image-based
method to detect the DR early using an interpretable ensemble
deep learning model. The proposed model is working on three
main steps. Firstly, the fundus images preprocessing. Secondly,
three different deep learning models have been used inde-
pendently and trained sufficiently: Inception V3, Resnet152,
and Inception-Resnet-V2. Finally, the Adaboost optimiser al-
gorithm combined all the models’ results to generate the final
score. The integrated model proved a high performance in
all evaluation metrics used: sensitivity, specificity, accuracy,
AUC, 85.57%, 90.85%, 88.21%, and 0.946, respectively. Also,
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Tymchenko et al. [18] developed a DR detector using three-
head CNN, which trained classification, regression and ordinal
model. They used the output of these three heads for DR
detection and achieved the sensitivity and specificity of 0.99.

As in the research, [17], [8], [6], [11], [7], this research
aims to use InceptionV3, CNN, EfficientNetsB5 to detect DR
due to their efficiency previous studies. However, these models
will be validated using the same dataset to compare their
results. Besides handling the issue of imbalanced distribution
of classes on APTOS 2019 dataset, that not highlighted in
previous researches.

III. METHODOLOGY

The purpose of this research is to classify a retinal fundus
image whether it has a DR and at which severity. According to
previous literature, deep learning and transfer learning models
can solve this task. Transfer learning is a method that allows
using the knowledge gained from other tasks to tackle new sim-
ilar problems quickly and effectively. Hence, CNN models that
are pre-trained will be fine-tuned utilizing domain dataset. Two
pre-trained models will be selected for this study, InceptionV3
and EfficientNetsB5, for their effectiveness in diagnosing DR
in the work of [17], [8], [6], [11], [7]. The performance of
the fine-tuned pre-trained models will be compared with the
performance of a CNN without pre-training.

A common issue in medical imaging datasets is the dispar-
ity in the number of samples within classes due to the difficulty
of obtaining such samples. This problem is known as the
class imbalance, and it pushes classifiers to prefer classes with
higher training samples, reducing classification performance.

This section describes the techniques mentioned above.

A. Convolutional Neural Network (CNN)

Deep neural networks are artificial neural networks with
more hidden layers to perform more complicated tasks and deal
with massive amounts of data. The convolutional neural net-
work (CNN) is one of the deep learning model networks with
multiple layers such as convolution, pooling, fully connected,
and non-linearity layer. CNN has been used with many ap-
plications, especially those that deal with spatial information,
such as document analysis, image and video recognition, and
computer vision [21]. The main aim of CNN is to increase or
decrease the image dimensions into a more manageable form
and extract the significant features, then process it to provide
better predictions.

In this study, three convolution layers were employed with
the same kernel size of (3,3). ReLU is used as an activation
function with all layers, followed by a max-pooling layer with
(2,2) pooling size to reduce the size of the large images. The
results were flattened before the fully connected layer with a
dropout of 0.2 to avoid overfitting. A softmax activation layer
was used as the output layer. The architecture of the model
is shown in Fig. 1. Some of the model’s configurations were
based on the work of [22], [23], [24].

B. Pre-Trained CNN Models

It has become customary to utilize a pre-trained CNN
model and fine-tune it with in-domain dataset for the majority

of computer vision applications. A pre-trained CNN model
is a CNN model that has been trained on a large volume of
data, such as ImageNet, for image classification [25]. Two
pre-trained CNN models will be investigated in this paper:
InceptionV3 and EfficientNetsB5.

Inception-v3 is a CNN architecture from the Inception fam-
ily that contains 48 deep layers. Inception is characterised by
implementing multiple kernels of different sizes in each layer
(means become wider) instead of increasing the number of
layers and going deeper in the network [26]. Each unit consists
of four parallel operations: 1×1, 3×3, 5×5 conv layers and
3×3 max-pooling. All feature maps that come from different
paths are concatenated together as the input of the next layer.
Because in the image classification, the feature size of the
image can diversify and deciding a fixed kernel size is difficult.
Lager kernels are effective when the features are distributed
over a wide area in the image. On the contrary, smaller kernels
are useful and give excellent results in detecting small areas
distributed across the image frame. To effectively recognise
this variable size feature, kernels of different sizes are needed,
which are provided in Inception models [27], [28].

EfficientNets family has a highly significant performance
that achieves state-of-art on ImageNet, CIFAR-100, Flowers,
and three other transfer learning datasets [29]. The architecture
of the EfficientNets model involves convnet designs to reduce
the space of the model with each layer to be scaled uniformly
with a constant ratio to optimise the accuracy performance.
It focuses on three aspects of scaling width, depth, and
resolution. According to that, the EfficientNets family produces
seven models with different image dimensions, and there is no
change of layers operator of baseline network. This research
proposes to apply EfficientNets B5 version.

C. Data Augmentation

Many approaches have been proposed to overcome the
imbalanced dataset problem that can be classified into two
categories: creating algorithms to resample the data and data
preprocessing to generate new samples [30]. Resampling a
dataset is a method used to balance the class distribution
of the dataset. This is achieved by either adding samples to
the minority class (oversampling) or removing samples from
the majority class to balance the data (undersampling) [31].
However, data augmentation is a common technique used to
generate new samples of the data to provide the image in a
different representation.

Data augmentation techniques help improve the deep learn-
ing model’s ability by generating artificial new images to
achieve high variation in the training dataset and avoid overfit-
ting problems. Many transform operations could be applied for
data augmentation, such as random rotation, brightness, zoom,
and image preprocessing techniques, such as Gaussian blur
or CLAHE [32]. The data augmentation techniques included
in this research are horizontal and vertical flip, zoom, and
rotation. Fig. 2 shows a sample image from class 0 augmented
after preprocessing image phase.

IV. DIABETIC RETINOPATHY DATASET

Several datasets are available for the retina to detect DR
and the vessels. Often these datasets are utilised for training,
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Fig. 1. CNN Module Architecture used in this Study.

Original Image Zoom range = 0.1 Horizontal Flip Vertical Flip Rotation range = 180

Fig. 2. Applying Data Augmentation Techniques in a Sample of Retinal Fundus Image.

validation, and testing deep learning models. The Asia Pacific
Tele-Ophthalmology Society (APTOS) published this dataset
in the second quarter of 2019. As shown in Table I, several
studies used the APTOS2019 dataset [33] for blindness de-
tection, containing a large set of retina images taken using
fundus photography. Initially, two sets were published: labelled
images, known as the train set, and unlabelled images, known
as the test set. Only the labelled images were included in
this study, consisting of 3662 fundus images. Each image was
labelled into one of five classes, representing the severity of
DR. Table II shows samples of each class and its characteristics
that differentiate it from the others. As many of the medical
dataset, APTOS2019 suffers from class imbalance as shown
in Fig. 3 with majority of the cases towards healthy images
without DR. However, there is a balance between the sum of
all DR images regardless of their severity and healthy images.

The image size is a more critical factor that will impact
the classification tasks. As shown in Fig. 4, there is a different
distribution of image height and width, which suggests that
not all images are in a perfect square shape.

V. EXPERIMENTS

A. Experimental Design

All experiments were implemented and evaluated using
Python [34] and leverage TensorFlow and Keras library [35]
using Kaggle GPUs, Kaggle presents free access to NVidia
K80 GPUs in kernels. In particular, these GPUs can be used to
train deep learning models [33]. For this study, the labelled set
was split into three homogeneous sets: training, validation and
testing sets with a ratio of 68%, 20%, and 12%, respectively.

Fig. 3. Class Distribution among APTOS2019 Training Set.

The distribution of classes within each split is shown in Table
III. Two sets of experiments were performed: fine-tuning and
training using an imbalanced training set, 2489 samples, and
a balanced training set after augmentation, 6158 samples.

B. Data Preprocessing

As most of the pre-trained models in this study were trained
using images of size 224×224, images of APTOS2019 were
rescaled accordingly. Moreover, images were converted into
grayscale, which increases the visibility of some abnormalities.
Following [18], [7], further image processing processes were
applied: uninformative black areas were removed using circu-
lar crop, blending using Gaussian blur with alpha=4, beta=-4,
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TABLE II. LABEL DESCRIPTION AND CHARACTERISTICS OF DR SEVERITY LEVELS WITH ITS SAMPLES FROM APTOS2019

Sample Characteristics

Label 0: No diabetic retinopathy (NoDR)

Label 1: Mild nonproliferative retinopath: In this early stage of the disease,
small patches of balloon-like swelling in the small blood cells in the retina,
known as microaneurysms. The fluid will leak into the retinas through these
microaneurysms as shown in the left images.

Label 2: Moderate nonproliferative retinopathy: As the disease progresses,
Blood vessels feeding the retina may swell and distort and also lose blood trans-
portation capacity. These conditions cause significant changes to the appearance
of the retina and can contribute to diabetic macular edema (DME) as shown in
the left images.

Label 3: Severe nonproliferative retinopathy: Many further blood vessels are
blocked, which deprive the retinal region of blood supply. These regions secrete
growth factors that suggest that the retina is forming new blood vessels as shown
in the left images.

Label 4: Proliferative diabetic retinopathy (PDR): This more serious form
called proliferative diabetic retinopathy. Damaged blood vessels are blocked in
the retina in this case, causing the development of irregular new blood vessels,
and can flow into the clear, jelly-like substance that fills the center of the eye
(vitreous). Scar tissue stimulated through new blood vessel growth can gradually
separate the retina from the posterior of the eye. Therefore, retinal detachment
could lead to permanent eyesight loss as shown in the left images.
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Fig. 4. Distribution of Image Width and Height in APTOS2019.

TABLE III. THE SPLIT OF APTOS2019 TRAIN SET USED IN THIS STUDY
AND ITS CLASS DISTRIBUTION.

Class Training set Testing set Validation set
No DR 1229 217 359
Mild 265 43 62
Moderate 670 124 205
Proliferative DR 132 25 36
Severe 193 31 71
Total 2489 440 733

and gamma=128. Consequently, the resulting images are not
entirely greyscaled as modifications were applied separately
on every pixel’s colour channel. This helps improve the blood
vessel’s visibility and its growth in the eye, as shown in Fig. 5.
All image preprocessing techniques was applied using Python
(cv2) OpenCV library [36], [37].

C. Data Augmentation

Data augmentation was implemented using ‘ImageData-
Generator’ class from Keras library [35]. As shown in Fig. 3,
the number of cases in each category varies significantly, with
no DR as the majority class (49.3% of total images). The num-
ber of the augmented images is different based on the number
of the original images, as shown in Fig. 6. The augmentation
phase enriched the diversities of the classes to provide high-
quality images to the learning models. This operation was
performed only on the training dataset. Image augmentation
for the minority classes was applied via zooming, flipping,
and rotation, which acquired a dataset three times larger than
the original set.

D. Fine-Tuning the Pre-Trained CNN Models

For every pre-trained model included in this study, the input
layer was set to be 224×224 and three channels. However, the
output layer was modified to match the number of classes in
this task, i.e. five classes. Then, all layers were frozen during
the fine-tuning process except for the modified last layers.
The last layers were trained using Adagrad optimiser with
a learning rate of 0.01 and for 30 epochs. Similar training
configurations were employed when training CNN model.

E. Evaluation Metrics

A multi-class classification task necessitates factors such as
class balance and expected outcomes when picking the optimal

TABLE IV. EVALUATION METRICS AND THEIR FORMULAS.

Metric Description Formula

Accuracy The average number of
correct predictions. Acc =

∑C

i=1

TPi+TNi
TPi+FNi+FPi+TNi

C

Precision
Capability of identifying
the correct instances for
each class. Pre =

∑C

i=1
TPi∑C

i=1
TPi+FPi

C

Recall
Capability to recognise
the true positive out of the
total true positive cases. Rec =

∑C

i=1
TPi∑C

i=1
TPi+FNi

C

F1-score The harmonic average of
precision and recall. F1 = 2 ∗ PreM∗RecM

(PreM+RecM )

TABLE V. RESULTS WHEN TRAINING MODELS USING THE IMBALANCED
DATASET.

Precision Recall F1-score Accuracy kappa
Training set

CNN 61% 69% 69% 67% 61%
Inceptionv3 84% 71% 74 % 88% 84 %

EfficientNet B5 35% 34% 32% 62% 29%
Validation set

CNN 58% 65% 61% 65% 58 %
Inceptionv3 51% 51% 51% 76% 70%

EfficientNet B5 40% 36% 34% 64% 30%
Testing set

CNN 64% 71% 67% 73% 65%
Inceptionv3 62% 53% 54% 78% 72%

EfficientNet B5 30% 34% 31% 63% 30%

metrics to evaluate the performance of a particular classifier
against a given dataset. One performance metric may assess
a classifier from a specific perspective while others can not,
and vice versa. Hence, there is no standardised (unified) metric
for defining the generalised performance measurement of the
classifier. In this paper, several metrics are chosen to measure
the models’ performance: Accuracy, Precision, Recall and F1-
score. Table IV. summarises how each of the first four metrics
is calculated for a multi-class classifier with C classes, where
TPi and TNi are the number of cases correctly diagnosed
for class Ci or not, respectively. And FPi and FNi are the
number of cases that were incorrectly diagnosed to the class
Ci or not, respectively.

As one of the experiments uses an imbalanced dataset,
Cohen’s kappa was used as an additional metric. It can be
computed as follows:

K =
P0 − Pe

1− Pe
,

where P0 denotes the overall accuracy and Pe denotes
a measure of the probability of the agreement between the
prediction class values and the actual class values as it occurs
by chance [38]. K = 1 if classes are in complete agreement
while K = 0 proves the opposite.

VI. RESULTS AND DISCUSSION

A. Training with Imbalanced Dataset

Each pre-trained model was fine-tuned using the imbal-
anced training set, with 2489 samples and no DR as the
majority class. When training the CNN model from scratch,
the same imbalanced set was used for training. Table V. lists
the results obtained during models training. Since accuracy is
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Fig. 5. Applying Image Preprocessing Techniques on Some Samples from APTOS2019. The First row Shows the Original Sample from each Class. The
Second Row Shows the Same Samples after Converting them into Grayscale using the cvtColor Function and COLOR BGR2GRAY as a Parameter. The Third

Row Shows the Same Samples after Applying Gaussian Blur and Circular Cropping.

Fig. 6. Samples Per Class in APTOS2019 Training Set. Class 0 (no DR) is
the Majority Class so Other Classes were Augmented with Different

Numbers of Samples to Obtain a Balanced Training Set.

unreliable when evaluating models trained on an imbalanced
dataset, F1-score and kappa are the primary evaluating metric.
CNN model achieves the highest F1-score with 67%, while
the InceptionV3 model obtained 54%. On the other hand, the
EfficientNetB5 model has the lowest performance.

To investigate the reasons for EfficientNetB5 performance,
the learning curve for each of these models are depicted in Fig.
7. As shown in the figures, the learning curves of the CNN
and InceptionV3 model in training and validation phases was
improving smoothly, while the EfficientNetB5 model suffered
from a high overfitting problem, which caused its low results.

Fig. 8 visualises the confusion matrix of these models,
which indicates the number of predictions produced by the
model where it classified the classes correctly or incorrectly.
The diagonal expresses the correctly diagnosed states for
each class, where the off-diagonal elements represent the
misclassified samples. In general, all models have their best
recognition for Class 0 (no DR) and 2 (mild NPDR) aligned
with the class majority shown in Fig. 3. with Class 0 and 2 with
the largest samples, respectively. However, most confusion
was between different classes of DR, not no DR and any
DR. This observation was accurate for all models. In other
words, these models have good DR detection but poor severity
level classification. The detection rate can be calculated by
mapping all DR severity levels 1-4 to 1. Hence, the obtained
detection rates are 90%, 96% and 83% for CNN, InceptionV3
and EfficientNetB5, respectively.

B. Training with Balanced Dataset

In this experiment, pre-trained models were fine-tuned
using the balanced training set via augmentation, with 6158
samples. The same set was used for training when training the
CNN model from scratch. Table VI lists the results obtained
during models training. CNN model achieves the highest F1-
score with 64%, while the InceptionV3 model obtained 58%.
On the other hand, the EfficientNetB5 model has the lowest
performance with a 48% F1-score. Looking at the learning
curves for these models in Fig. 9. the performance of the
validation set improved better than the training set for the CNN
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(a) CNN (b) InceptionV3 (c) EfficientNetB5

Fig. 7. Learning Curves for the Models Trained using the Imbalanced Dataset using the Train Set (2489 Samples) and the Validation Set (733 Samples).

(a) CNN (b) InceptionV3 (c) EfficientNetB5

Fig. 8. The Confusion Matrix when Evaluating on the Test Set (440 Samples) for the Models Trained using the Imbalanced Dataset. The x-Axis Represents
the Actual Labels, while the y-axis Represents Predicted Labels. Label 0: no DR, Label 1: mild NPDR, Label 2: Moderate NPDR, Label 3: Severe NPDR,

and Label 4: PDR.

TABLE VI. RESULTS WHEN TRAINING MODELS USING THE BALANCED
DATASET

Precision Recall F1-score Accuracy kappa
Training set

CNN 50% 50% 49% 50% 28%
Inceptionv3 76% 75% 75% 75% 64%

EfficientNet B5 59% 59% 59% 59% 33%
Validation set

CNN 57% 65% 61% 65% 53%
Inceptionv3 64 % 60% 60% 79% 69%

EfficientNet B5 59% 47% 47% 74% 62%
Testing set

CNN 61% 68% 64% 68% 57%
Inceptionv3 59% 59% 58% 78% 70%

EfficientNet B5 57% 46% 48% 73% 60%

model, which indicates that some samples were difficult for
the models to learn from the features. However, this was not
observed for InceptionV3 and EfficientNetB5 models, which
means the performance of training and validation sets were
approximate are similar.

Fig. 10 visualises the confusion matrix of these models.
In general, all models could not recognise Class 4 (PDR)
successfully compared to other classes. As in the previous
experiment, most confusion was between different classes of
DR, not no DR and any DR. The obtained detection rates
here are 84%, 95% and 90% for CNN, InceptionV3 and
EfficientNetB5, respectively.

This study performed two experiments; the first was on
a dataset imbalanced between classes and only processed by
scaling and resizing the image. The second experiment was on
a balanced dataset by utilising augmentation data and applying
image preprocessing techniques. F1-score was used to measure
and compare the performance in both experiments because
it is a standard measure of imbalanced data classification,
in addition to the rest metrics mentioned in Section V-E.
The performance was improved when using balanced since
the InceptionV3 and EfficientNetB5 models obtained higher
results. InceptionV3 model’s performance improved in Recall
and F1-score when using a balanced training set while the
results of the CNN model decreased in all measures. On the
other hand, the results of the EfficientNetB5 model improved
in all metrics when using a balanced training set. Hence, fine-
tuning pre-trained models could benefit from the augmented
samples and enhanced features, which was not the case for the
CNN model.

Furthermore, the CNN model achieves the highest results
in the two experiments which are 67% and 64% of F1-score, in
the first and second experiments, respectively. When looking
at their learning curves, overfitting was an issue in pre-trained
models, indicating the need for more powerful regularisation
for these advanced architectures. In other words, the more
complex the architecture, the more prone to overfit.

In general, the detection ability of these models was better
than its classification between DR severity levels. For Efficient-
NetB5, the DR detection was improved by 7% absolute when
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(a) CNN (b) InceptionV3 (c) EfficientNetB5

Fig. 9. Learning Curves for the Models Trained using the Balanced Dataset using the Augmented Train Set (6158 Samples) and the Validation Set (733
Samples).

(a) CNN (b) InceptionV3 (c) EfficientNetB5

Fig. 10. The Confusion Matrix when Evaluating on the Test Set (440 Samples) for the Models Trained using the Augmented Balanced Dataset. The x-Axis
Represents the Actual Labels, while the y-Axis Represents Predicted Labels. Label 0: no DR, Label 1: mild NPDR, Label 2: Moderate NPDR, Label 3:

Severe NPDR, and Label 4: PDR.

using a balanced training set, while it was the opposite case
for CNN as its detection accuracy dropped by 6% absolute.

VII. CONCLUSION

DR is currently one of the dominant diseases that sig-
nificantly affect people with diabetes. The paper covers the
details of the implementation and evaluation of several deep
learning models: CNN, InceptionV3, and EfficientNetsB5 for
classifying DR using the APTOS2019 dataset. Two different
experiments were conducted, the first with the original images
and the second after processing the images and balancing the
classes. The InceptionV3 model performed the best accuracy
on the dataset in both experiments, while the CNN model
got the highest F1-score in both experiments. Using these
prediction results, effective DR detection systems can be
implemented using deep learning models so that the patient can
be treated and dealt with in the early stages. The results of this
research may not be the same as previous research due to the
difference in the dataset used and the data processing method.
This research’s main challenges and limitations are that the
image dataset was imbalanced, and there was a shortage of
efficiency of the devices utilised in processing even when using
online GPU, such as Kaggle, the allotted time was limited.
For further work, this research can expand to address these
deficiencies by using other methods to balance data and apply
other pre-trained models to diagnose DR.
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