
(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

Recognition of Odia Character in an Image by
Dividing the Image into Four Quadrants

Aradhana Kar, Sateesh Kumar Pradhan

Department of Computer Science & Applications
Utkal University

Bhubaneswar, Odisha, India

Abstract—This paper deals with optical character recognition
of Odia characters written in a particular font family
‘AkrutiOriAshok-99’ with different font sizes 18, 20, 22, 24, 26,
28, 36, 48 and 72 in Bold style. The font ‘AkrutiOriAshok-99’ is a
font from the typing software ‘Akruti’. The basic idea behind the
approach followed in this paper is the character decomposition
into four quadrants and then extracting features from each
quadrant. The image processing techniques like converting the
image to gray, resizing of image and converting gray image to
binary are used in this approach. The system explained in this
paper has two major parts: DictionaryBuilding and
FindingMatch. For DictionaryBuilding, dictionary of images
which are created either by scanning a document or a document
converted to image, both written in same font family in different
sizes. The features are extracted from each image in any font size
in the ‘Dictionary’ using Preprocessing, FindPath,
GettingFeaturesLeft or GettingFeaturesRight, VisitSubQuad,
RemainingSubQuad, WriteToExcel and CommonFeature
modules. The part FindingMatch is responsible for finding a
correct match in the dictionary for the input image. For this,
FeatureExtraction and Recognition modules have been used.
Longest Common Subsequence (LCS) has been used for finding
the common feature in DictionaryBuilding as well as finding the
correct match. A total of 1800 characters, 200 characters of each
font size have been tested and 98.1% of correctness has been
achieved.

Keywords—Odia characters; image processing; character
decomposition; machine learning; optical character recognition

I. INTRODUCTION
In present days, the textual data are either scanned or

converted to image by using software to store the data in the
form of image. It is required to recognise the characters
present in the scanned document or document converted to
image by using some algorithm. For recognition of characters
in an image, efficiency in the segmentation of lines, words and
characters should be achieved.

In Odia language, the alphabets are grouped into three
categories: Swara Barna, Byanjana Barna and Atirikta Barna
[1] (Fig.1). Only Chandra Bindu (), Anusara () and

Bisarga (), which are part of Byanjana Barna can be used
with all the alphabets of Swara Barna, other alphabets of
Byanjana Barna and all alphabets of Atirikta Barna to form
words. When a Swara Barna is used with the alphabets of
Byanjana Barna and Atirikta Barna, the former is used as a
symbol with latter to form words. These symbols are known
as Matras [2]. When a Byanjana Barna alphabet is used as a
symbol with the other alphabets of Byanjana Barna, these are
called Juktakhyara [2].

There are different types of software available for typing
Odia language in a computer. Akruti and Microsoft Indic
Language Input tool for Odia are some popularly used typing
software.

This paper has concentrated on the recognition of Swara
Barna, Byanjana Barna and Atirikta Barna. The alphabet is
written in a document in a particular font family
‘AkrutiOriAshok-99’ in a particular font size in bold style.
The font sizes that are considered in this paper are 18, 20, 22,
24, 26, 28, 36, 48 and 72. This document is either scanned or
converted to image by software. The approach described in
this paper first creates a dictionary of images written in
‘AkrutiOriAshok-99’ font family, with font sizes 18, 20, 22,
24, 26, 28, 36, 48 and 72 and in bold style. The features of
these images are extracted using Preprocessing, FindPath,
GettingFeaturesLeft or GettingFeaturesRight, VisitSubQuad,
RemainingSubQuad modules and the extracted features are
written to the excel file using WriteToExcel module. A
common feature is extracted from the extracted features from
the images in dictionary using CommonFeature module. For
finding a correct match for the input image in the dictionary of
features, FindingMatch has been used. For finding a correct
match, CheckCommonFeature module of Recognition has
been used. If a correct match has not been found by the
CheckCommonFeature module, then MatchCommonFeature
module has been used to find a correct match. If in some
cases, these two modules of Recognition are unable to find a
correct match, the TraceAnotherDirection module of
Recognition has been used.

116 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

Fig. 1. Odia Alphabets.

The Preprocessing module in ‘DictionaryBuilding’ and
‘FindingMatch’ converts the image into gray image and then
the white spaces surrounding the Odia alphabet in the gray
image are removed using the Phase – 1 of RemoveNoise
module of [3] (RemoveBoundarySpaces). For converting
image to gray, OpenCv package of python has been used.
After the elimination of white spaces from gray image, it is
resized into 64 x 64 and the resultant resized image is
converted to binary by using OSTU’s method of thresholding
[4, 5, 6]. Gray image is a type of image where intensity is
stored as an 8-bit integer, hence each pixel can have intensity
value ranging from 0 – 255 [7]. Binary Image is a type of
image where image data is represented in terms of 0 and 1[7,
8, 9]. The basic idea for extracting features followed in this
paper for DictionaryBuilding and FindingMatch is dividing
the image into four quadrants and then tracing continuous path
of black pixel in a particular direction in each quadrant.
Experimentally, a specific direction of tracing has been agreed
upon for each quadrant. The inputs to DictionaryBuilding and
FindingMatch are a directory named as ‘Dictionary’ (consists
of all alphabets of Swara Barna, Byanjana Barna and Atirikta
Barna of Odia language) and a directory named as ‘Input’
(consisting of an image of Odia alphabet) respectively. The
files present in ‘Dictionary’ are accessed using os package of
python [10]. The extracted features for DictionaryBuilding
and FindingMatch are written in excel files,
DictionaryFeatures.xlsx’ and ‘InputFile.xlsx’ respectively by
using openpyxl package of python [11]. The common feature
is extracted from the extracted features present in
DictionaryFeatures.xlsx’ by using Longest Common
Subsequence (LCS) [12, 13, 14, 15, 16] and the common
feature is written to the excel file, ‘CommonFeature.xlsx’ by
using openpyxl package of python. Both in
DictionaryBuilding and FindingPath, Numpy package of
python [17, 18] has been used for rounding off values and
Matplotlib package of python [19] for sub-plotting four
quadrants of the given image in one single figure (Fig. 3).
Data structures like List and Dictionaries of python are used
for holding multiple values. List is a data structure which
behaves as a dynamic array in python and multiple values can

be appended to it [20, 21]. Dictionaries consist of key values
and for each key value there will be a specific value [20, 21].
The key values and values for each key value in dictionaries
can be a number and can also be a string.

In other words, the proposed system concentrates on
dictionary building by extracting features from the images
present in ‘Dictionary’ directory and storing the extracted
features in an excel file ‘DictionaryFeatures.xlsx’. As per the
research, the same character in different font sizes results in a
number of features. Therefore, it is needed to find out a
common feature among all the font sizes. To achieve this
Longest Common Subsequence (LCS) has been used so that
there will be one common feature for a particular character.
This common feature for the particular character has been
stored in an excel file, ‘CommonFeature.xlsx’. The above
process is done by using phases of ‘DictionaryBuilding’.
Then feature is extracted from an input image and this feature
is searched in ‘CommonFeature.xlsx’ by following the phases
of ‘FindingMatch’ to get a correct match. The proposed
approach will help to recognise Odia characters from a
scanned image or a document converted to image and these
recognised characters can be written into a document and
further editing can be done.

II. RELATED WORK
The system introduced in [22], segments handwritten text

into lines, from lines, words were segmented and from words
characters were segmented. This system had used the water
reservoir principle introduced in [23]. The input to the system
was a document which was handwritten in Odia. To segment
lines, the document was divided to find vertical stripes. Based
on vertical projection profile and structural features of Odia
characters, text lines were segmented into words. For
character segmentation, at first, characters that were connected
were detected. Using water-reservoir-concept touching
characters of the word were then segmented. The word
segmentation module was tested on 3700 words and it was
noticed that the word segmentation module had an accuracy of
98.2%. The proposed technique for the isolated and connected
character identification had an average accuracy of 96.7%.
From the experiment it had been noticed that, in 98.6% cases,
isolated characters fall into isolated group. From the
experiment it had been noticed that 96.7% accuracy was
obtained from two-character touching components. The
accuracy of the proposed scheme on three character touching
components was 95.1%.

The system introduced in [23] uses a technique for
automatic segmentation of handwritten connected numerals.
This system had worked on the images of French bank checks
from French Company (Itesoft). Initially, the images were in
gray scale (256 levels) and they had used histogram based
thresholding approach to convert the gray image into binary
image. Features were extracted by using the technique called
water reservoir. Reservoir was obtained by the accumulation
of water poured from the top or from the bottom of the
numerals. Top reservoirs were formed when water was poured
from the top and bottom reservoirs were formed when water
was poured from the top after rotating the component by 180o.
Water reservoirs were the white regions of the component.

117 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

The features that were considered in the scheme were: number
of reservoirs, position of reservoirs with respect to bounding
box of the touching pattern, shape and size of the reservoirs,
centre of gravity of the reservoirs and relative positions of the
reservoirs. The segmentation result was verified manually and
observed that 94.8% of the connected numerals were
accurately segmented.

The system described in [24] recognises odia compound
character by analysing strokes. The approach had identified 12
strokes that are enough to describe any Odia character. The
input character was resized into a 60 x 60 image and then
divided into nine equal halves called zones. Each zone
consists of some strokes. There are nine zones and 12 strokes
so; each feature vector of the character was represented in a 1
x 108. The value of similarity between strokes and zone were
arranged in a vector format. Structural Similarity Index had
been used as it is based on the concept that the structure of the
image is independent of the illumination. The training set had
been prepared from the 211 classes of Kalinga font. The
system was implemented in windows machine and on
MATLAB platform. The independent character recognition
accuracy was achieved as 92%. The system also covers many
test samples of degraded Kalinga characters. A complete OCR
was also designed to work on scanned text document.

The approach described in [25] deals with handwritten
Odia character recognition. This system has two level of
classification. The input to the first level of classification was
a cropped image. Then the input image was binarized
followed by thinning. The mid value of the image was found.
Then the image was divided into three equal halves row wise
and two halves column wise, making it six zones. The distance
between the pixel value and the centroid was calculated and
this was done for all pixels for a zone and then average
distance was calculated for that zone. The angle between
image centroid and the pixel was calculated and this was done
for each pixel in a zone. Then the average of the angles was
calculated. In second-level classification, the cropped image
was taken as input and it was divided into nine zones. Then
the same procedure that was carried out in first-level
classification was also followed in second-level classification.
The first-level classification output six average distances and
six average angles. The second-level classification also output
nine standard deviations, nine average distances and nine
average angles. Then Artificial Neural network was used for
classification.

The system introduced in [26] considered each character as
composition of sequence of high-level strokes and low-level
strokes. They had identified low-level strokes in the system
explained in [27]. In [26], they had identified forty eight
visually non-redundant high-level strokes which form the
maximum of a Gujarati character. Each high-level stroke is a
combination of point, curves and lines. The proposed method
start scanning from the center region of the character in left to
right order and extract all junction points. The 3 x 3
neighbourhood of each junction point was then scanned in
clockwise order to obtain the starting point of each high-level
stroke. The high-level stroke ends at endpoint or until next
junction point is not reached using contour tracing method.
The system had used finite state machine to identify high-level

stroke. For classification, the system had used Naive Bayes
Classifier and Hidden Markov Model. The overall accuracy
achieved using Naive Bayes Classifier and Hidden Markov
Model was 93.26% and 96.87% respectively.

III. SYSTEM ARCHITECTURE
This approach consists of ‘DictionaryBuilding’ and

‘FindingMatch’ parts. The output of the above two parts are
given as input to the Recognition module to find a correct
match. The overall system architecture has been shown in Fig.
2

A. DictionaryBuilding
This part deals with building dictionary of features

extracted from the dictionary of images of Odia alphabets
which are created by scanning a document or a document
converted to image by using software, both written in a font
family, ‘AkrutiOriAshok-99’ in a particular font size. The
different font sizes used are 18, 20, 22, 24, 26, 28, 32, 48 and
72. For a particular font size, images of Odia alphabets of that
font size are stored in a directory. Hence, nine directories are
created as nine different font sizes have been used. These nine
directories are stored in a directory named as ‘Dictionary’.

The input to the ‘DictionaryBuilding’ is the ‘Dictionary’
directory. The directories in ‘Dictionary’ and the image files
in each directory are accessed using os package of Python.
Each image file goes through ‘Feature Extraction in
DictionaryBuilding’.

Fig. 2. System Architecture.

1) Feature Extraction in DictionaryBuilding
The ‘Dictionary’ directory consists of nine directories,

each directory dedicated to a particular font size. For example,
the directory dedicated to font size 18 consists of images of
each Odia alphabet written in font size 18, directory dedicated
to font size 20 consist of images of each Odia alphabet written
in font size 20 and so on. All the images in all these directories
of ‘Dictionary’ undergoes Preprocessing, FindPath,

118 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

GettingFeaturesRight or GettingFeaturesLeft,
RemaingSubQuad, VisitSubQuad modules to extract the
features of the images and these extracted features are written
into an excel file using WriteToExcel Module. For each
directory in the ‘Dictionary’, a sheet is created in the excel file
named as ‘DictionaryFeatures.xlsx’ and the features are
written in that sheet. The overall process of feature extraction
of ‘Dictionary’ images has been shown in Fig. 5.

a) Preprocessing Module
The input to the Preprocessing module is the directory

‘Dictionary’.

Algorithm:
Input: Directory ‘Dictionary’
For each image in the directories of the ‘Dictionary’, the
following steps have been followed:
1. The image is converted to gray image.
2. The white spaces that surround the text in the gray image

are removed using Phase – I of RemoveNoise module of
[3], that is, RemoveBoundarySpaces. This gives an
image that consists of Odia alphabet only.

3. After white spaces have been removed, the image is
resized into 64 x 64 by using inter-cubic interpolation.

4. The resized image consisting of Odia alphabet only is
then converted into a binary image named as
‘BinaryImage’ using OSTU’s method. In
‘BinaryImage’, the pixels that form the Odia alphabet
are called black pixels and they are represented as 0
whereas the pixels that form the other areas of the
‘BinaryImage’ are called white pixels and they are
represented as 1.

5. The ‘BinaryImage’ is divided into two equal parts, both
horizontally and vertically. In this way, this image is
divided into four equal quadrants. The dimension of this
image is m x n (m = 64 and n = 64), where ‘m’ is the
number of rows and ‘n’ is the number of columns. The
row that equally divides the ‘BinaryImage’ horizontally
is named as ‘MidRow’ and it is found out by using the
following formula:

The column that equally divides the ‘BinaryImage’
vertically is named as ‘MidCol’ and it is found out by
using the following formula:

6. The four quadrants are found out from the

‘BinaryImage’ by using ‘MidRow’ and ‘MidCol’. The
four quadrants 1st, 2nd, 3rd and 4th are named as B, C, D
and E respectively. The four quadrants are shown in Fig.
3.

B = BinaryImage[0 : MidRow-1, 0 : MidCol-1]
C = BinaryImage[0 : MidRow-1, MidCol : n]
D = BinaryImage[MidRow : m, 0 : MidCol-1]
E = BinaryImage[MidRow : m, MidCol : n]

7. Call FindPath(quadNo, quadrant, DicItem,
DicInnerItem, DataPath, shortName) for the quadrants
B, C, D and E where,

quadNo is the number of quadrant among the four
quadrants. Here, quadNo = 1, 2, 3, 4
quadrant can be B, C, D and E
DicItem is the dth directory in the directory ‘Dictionary’.
DicItem = 1, 2, 3, 4, 5, 6, 7, 8 and 9. For each value of
DicItem, a sheet in the excel file named as
‘DictionaryFeatures.xlsx’ is created named with the
value of DicItem. For example, if DicItem = 1 then a
sheet named ‘1’ is created in the excel file.
DicInnerItem is the ith item of the DicItemth directory of
‘Dictionary’. Each ‘DicInnerItem’ is an image file.
DicInnerItem = 1, 2, 3,........., num where ‘num’ is the
total number of image files in the DicItemth directory.
DataPath is the absolute path of the excel file,
‘DictionaryFeatures.xlsx’, where the features are being
written.
shortName is the name of the image file present in any
DicItemth directory of ‘Dictionary’.

Suppose quadNo = 1, quadrant = B, DicItem = 2,
DicInnerItem = 12 then a sheet named ‘2’ will be created in
the excel file, ‘DictionaryFeatures.xlsx’ whose path has been
provided in the ’DataPath’ parameter, and then the extracted
feature is being written in the ‘12th’ row (as DicInnerItem =
12) and ‘1st’ column (as quadNo = 1) of the sheet. The value
in the parameter ‘shortName’ is written in the fifth column.

Fig. 3. An Odia Alphabet Divided into Four Quadrants.

b) FindPath Module
The steps of FindPath Module are performed for each of

the quadrants B, C, D and E. The idea of this module is that
the scanning of each quadrant is started from a particular
corner and also scanned in a particular direction to extract the
features. The scanning of Quadrant B (quadNo = 1) is started
from the leftmost and bottom-most corner and when the first
black pixel is found, the ‘I’ and ‘J’ (co-ordinates of the first
black pixel) values are passed to GettingFeaturesRight module
for scanning towards right. The scanning of Quadrant C
(quadNo = 2) is started from the topmost and leftmost corner

119 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

and it is scanned towards right using GettingFeaturesRight
module. The scanning of Quadrant D (quadNo = 3) is started
from the bottom-most and right-most corner and it is scanned
towards left using GettingFeaturesLeft module. The scanning
of Quadrant E (quadNo = 4) is started from the bottom-most
and left-most corner and it is scanned towards right using
GettingFeaturesRight module.

row = Number of rows of quadrant

col = Number of columns of quadrant

Algorithm:
FindPath(quadNo, quadrant, DicItem, DicInnerItem,
DataPath, shortName)
1. SET I = row – 1
2. SET J = 0
3. IF quadNo = 1 THEN GO TO STEP 4
4. REPEAT STEP 5 WHILE J < col
5. REPEAT STEP 6 WHILE I > 0
6. IF quadrant[I][J] = 0 THEN GO TO STEP 7
7. CALL GettingFeaturesRight(I, J, quadrant,

quadNo, DicItem, DicInnerItem, DataPath,
shortName)

8. SET I = 0
9. SET J = 0
10. IF quadNo = 2 THEN GO TO STEP 11
11. REPEAT STEP 12 WHILE I < row
12. REPEAT STEP 13 WHILE J < col
13. IF quadrant[I][J] = 0 THEN GO TO STEP 14
14. CALL GettingFeaturesRight(I, J, quadrant,

quadNo, DicItem, DicInnerItem, DataPath,
shortName)

15. SET I = row – 1
16. SET J = col – 1
17. IF quadNo = 3 THEN GO TO STEP 18
18. REPEAT STEP 19 WHILE I > 0
19. REPEAT STEP 20 WHILE J > 0
20. IF quadrant[I][J] = 0 THEN GO TO STEP 21
21. CALL GettingFeaturesLeft(I, J, quadrant,

quadNo, DicItem, DicInnerItem, DataPath,
shortName)

22. SET I = row – 1
23. SET J = 0
24. IF quadNo = 4 THEN GO TO STEP 25
25. REPEAT STEP 26 WHILE I > 0
26. REPEAT STEP 27 WHILE J < col
27. IF quadrant[I][J] = 0 THEN GO TO STEP 28
28. CALL GettingFeaturesRight(I, J, quadrant,

quadNo, DicItem, DicInnerItem, DataPath,
shortName)

29. EXIT
c) GettingFeaturesLeft Module

When the first black pixel is found in FindPath Module
while scanning the quadrant from the specified corner, the
coordinates of the pixel (I value and J value) are passed to this
module to get a continuous trace of black pixels in the
specified quadrant. This module scans the quadrant towards

the left starting from the first black pixel. This module is used
in quadrant D.

‘quadrant’, ‘quadNo’, ‘DicItem’, ‘DicInnerItem’,
‘DataPath’ and ‘shortName’ are explained in the step 7 of
preprocessing module.

‘LSubQuad’ will contain the final feature extracted from a
particular quadrant.

‘I’ and ‘J’ consists of the row and column number of the
first black pixel obtained in a particular quadrant using
FindPath module.

row1 = Number of rows of quadrant

col1 = Number of columns of quadrant

Algorithm:
GettingFeaturesLeft(I, J, quadrant, quadNo, DicItem,
DicInnerItem, DataPath, shortName)
1. IF J = 0 THEN DO STEPS FROM 2 TO 5
2. LSubQuad = CALL VisitSubQuad(I, J, 0, row1, 0,

col1)
3. CALL RemainingSubQuad(quadrant)
4. CALL WriteToExcel(DicItem, DicInnerItem, quadNo,

LSubQuad, DataPath, shortName)
5. RETURN
6. ELSE DO STEPS 7 OR 12 OR 17 OR 22,

WHICHEVER SATISFIES CONDITION FIRST
7. IF quadrant[I – 1, J - 1] = 0 THEN DO STEPS

FROM 8 TO 11
8. I = I – 1
9. J = J – 1
10. LSubQuad = CALL VisitSubQuad(I, J, 0,

row1, 0, col1)
11. CALL GettingFeaturesLeft(I, J, quadrant,

quadNo, DicItem, DicInnerItem, DataPath,
shortName)

12. ELSE IF quadrant[I, J - 1] = 0 THEN DO STEPS
FROM 13 TO 16

13. I = I
14. J = J – 1
15. LSubQuad = CALL VisitSubQuad(I, J, 0,

row1, 0, col1)
16. CALL GettingFeaturesLeft (I, J, quadrant,

quadNo, DicItem, DicInnerItem, DataPath,
shortName)

17. ELSE IF quadrant[I + 1, J - 1] = 0 THEN DO
STEPS FROM 18 TO 21

18. I = I + 1
19. J = J – 1
20. LSubQuad = CALL VisitSubQuad(I, J, 0,

row1, 0, col1)
21. CALL GettingFeaturesLeft (I, J, quadrant,

quadNo, DicItem, DicInnerItem, DataPath,
shortName)

22. ELSE IF (quadrant[I – 1, J - 1] = 1 AND
quadrant[I, J - 1] = 1 AND quadrant[I + 1, J - 1] =
1) OR (J = 0) OR (I = 0) OR (I = row1 – 1) OR (J =
col1 – 1) THEN DO STEPS FROM 23 TO 25

120 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

23. CALL RemainingSubQuad(quadrant)
24. CALL WriteToExcel(DicItem, DicInnerItem,

quadNo, LSubQuad, DataPath, shortName)
25. RETURN
26. EXIT

d) GettingFeaturesRight Module
The aim of this module is to get a continuous trace of

black pixels scanning from left to right. When the first black
pixel is found in FindPath Module while scanning the
quadrant from the specific corner, the coordinates of the pixel
(I value and J value) are passed to this module to get a
continuous trace of black pixels in the specified quadrant. This
module is used in quadrants B, C and E.

‘quadrant’, ‘quadNo’, ‘DicItem’, ‘DicInnerItem’,
‘DataPath’ and ‘shortName’ are explained in the step 7 of
Preprocessing module.

‘LSubQuad’ will contain the final feature extracted from a
particular quadrant.

‘I’ and ‘J’ consists of the row and column number of the
first black pixel obtained in a particular quadrant using
FindPath module.

row1 = Number of rows of quadrant

col1 = Number of columns of quadrant

Algorithm:
GettingFeaturesRight(I, J, quadrant, quadNo, DicItem,
DicInnerItem, DataPath, shortName)
1. IF J = col1 - 1 THEN DO STEPS FROM 2 TO 5
2. LSubQuad = CALL VisitSubQuad(I, J, 0, row1, 0,

col1)
3. CALL RemainingSubQuad(quadrant)
4. CALL WriteToExcel(DicItem, DicInnerItem,

quadNo, LSubQuad, DataPath, shortName)
5. RETURN
6. ELSE DO STEPS 7 OR 12 OR 17 OR 22 WHICHEVER

CONDITION SATISFIES FIRST
7. IF quadrant[I – 1, J + 1] = 0 THEN DO STEPS

FROM 8 TO 11
8. I = I – 1
9. J = J + 1
10. LSubQuad = CALL VisitSubQuad(I, J, 0,

row1, 0, col1)
11. CALL GettingFeaturesRight(I, J, quadrant,

quadNo, DicItem, DicInnerItem, DataPath,
shortName)

12. ELSE IF quadrant[I, J + 1] = 0 THEN DO STEPS
FROM 13 TO 16

13. I = I
14. J = J + 1
15. LSubQuad = CALL VisitSubQuad(I, J, 0,

row1, 0, col1)
16. CALL GettingFeaturesRight(I, J, quadrant,

quadNo, DicItem, DicInnerItem, DataPath,
shortName)

17. ELSE IF quadrant[I + 1, J + 1] = 0 THEN DO
STEPS FROM 18 TO 21

18. I = I + 1
19. J = J + 1
20. LSubQuad = CALL VisitSubQuad(I, J, 0,

row1, 0, col1)
21. CALL GettingFeaturesRight(I, J, quadrant,

quadNo, DicItem, DicInnerItem, DataPath,
shortName)

22. ELSE IF (quadrant[I – 1, J + 1] = 1 AND
quadrant[I, J + 1] = 1 AND quadrant[I + 1, J + 1]
= 1) OR (J = 0) OR (I = 0) OR (I = row1 – 1) OR
(J = col1 – 1) THEN DO STEPS FROM 23 TO
25

23. CALL RemainingSubQuad(quadrant)
24. CALL WriteToExcel(DicItem,

DicInnerItem, quadNo, LSubQuad,
DataPath, shortName)

25. RETURN
26. EXIT

e) VisitSubQuad Module
Each of the four quadrants B, C, D and E is again divided

into four sub-quadrants named as a, b, c and d. This module
uses a list data structure named as ‘subQuad’ and appends
name of the sub-quadrant (‘a’ or ‘b’ or ‘c’ or ‘d’) for each
black pixel found while scanning by GettingFeaturesLeft or
GettingFeaturesRight module including the first black pixel
found in the FindPath Module in ‘SubQuad’. The sub-
quadrants of each quadrant have been shown in Fig. 4. The
value returned by this module is stored in ‘LSubQuad’ of
either GettingFeaturesLeft or GettingFeaturesRight module.
The final value in ‘LsubQuad’ is the feature extracted for a
particular quadrant (‘B’ or ‘C’ or ‘D’ or ‘E’).

‘srow’ is the row number where the quadrant starts.

‘erow’ is the row number where the quadrant ends.

‘scol’ is the column number where the quadrant starts.

‘ecol’ is the column number where the quadrant ends.

𝑓𝑟𝑜𝑤 = ��(𝑒𝑟𝑜𝑤 − 𝑠𝑟𝑜𝑤)�/2�

𝑓𝑐𝑜𝑙 = ��(𝑒𝑐𝑜𝑙 − 𝑠𝑐𝑜𝑙)�/2�

Algorithm:
VisitSubQuad(I, J, srow, erow, scol, ecol)
1. IF (I >= srow AND I <= frow – 1) AND (J >= scol AND

J <= fcol – 1) GO TO STEP 2
2. APPEND ‘a’ in ‘subQuad’
3. ELSE IF (I >= srow AND I <= frow – 1) AND (J >= fcol

AND J <= ecol) GO TO STEP 4
4. APPEND ‘b’ in ‘subQuad’
5. ELSE IF (I >= frow AND I <= erow) AND (J >= fcol

AND J <= ecol) GO TO STEP 6
6. APPEND ‘c’ in ‘subQuad’
7. ELSE IF (I >= frow AND I <= erow) AND (J >= scol

AND J <= fcol - 1) GO TO STEP 8
8. APPEND ‘d’ in ‘subQuad’
9. RETURN ‘subQuad’
10. EXIT

121 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

Fig. 4. Sub-Quadrants of Four Quadrants.

f) RemainingSubQuad Module
A continuous trace of black pixels is found by either

GettingFeaturesLeft or GettingFeaturesRight starting from the
first black pixel found in FindPath module and the name of the
sub-quadrant is appended in ‘LSubQuad’. But the continuous
trace of black pixels may not have accessed some part of the
quadrant (‘B’ or ‘C’ or ‘D’ or ‘E’). To ensure, all parts of the
quadrant have been accessed, the remaining parts are accessed
using RemainingSubQuad Module. First, this module checks
if all the sub-quadrants have been accessed for the black
pixels. This is done by checking the contents of the
‘LSubQuad’ list. In other words, if a sub-quadrant does not
have any black pixel then that sub-quadrant is not allowed to
be present in the ‘LSubQuad’ list. If the name of the all sub-
quadrants that have black pixels have appeared at least once in
‘LSubQuad’ then, RemainingSubQuad exits, otherwise,
RemainingSubQuad is called recursively to scan the sub-
quadrants until all sub-quadrants that have black pixels have
been scanned and stored in the ‘LSubQuad’.

‘quadrant’ consists of ‘B’, ‘C’, ‘D’ and ‘E’.

Algorithm:
RemainingSubQuad(quadrant)
1. IF ‘a’, ‘b’, ‘c’ and ‘d’ all are in ‘LSubQuad’ THEN
2. GO TO STEP 20
3. ELSE
4. IF ‘a’ IS NOT IN ‘LSubQuad’ THEN DO STEP 5

TO 7
5. SCAN black pixels of quadrant from top-most

and left-most corner to find the first black pixel
and from there scan towards right following the
similar procedure as in GettingFeaturesRight to
find the continuous trace of black pixel.

6. For each black pixel in the continuous trace
APPEND ‘a’ in ‘LSubQuad’.

7. CALL RemainingSubQuad(quadrant)
8. ELSE IF ‘b’ IS NOT IN ‘LSubQuad’ THEN DO

STEP 9 TO 11

9. SCAN black pixels of quadrant from top-most
and right-most corner to find the first black
pixel and from there scan towards left following
the similar procedure as in GettingFeaturesLeft
to find the continuous trace of black pixel.

10. For each black pixel in the continuous trace
APPEND ‘b’ in ‘LSubQuad’.

11. CALL RemainingSubQuad(quadrant)
12. ELSE IF ‘c’ IS NOT IN ‘LSubQuad’ THEN DO

STEP 13 TO 15
13. SCAN black pixels of quadrant from bottom-

most and right-most corner to find the first black
pixel and from there scan towards left following
the similar procedure as in GettingFeaturesLeft
to find the continuous trace of black pixel.

14. For each black pixel in the continuous trace
APPEND ‘c’ in ‘LSubQuad’.

15. CALL RemainingSubQuad(quadrant)
16. ELSE IF ‘d’ IS NOT IN ‘LSubQuad’ THEN DO

STEP 17 TO 19
17. SCAN black pixels of quadrant from bottom-

most and left-most corner to find the first black
pixel and from there scan towards right
following the similar procedure as in
GettingFeaturesRight to find the continuous
trace of black pixel.

18. For each black pixel in the continuous trace
APPEND ‘d’ in ‘LSubQuad’.

19. CALL RemainingSubQuad(quadrant)
20. EXIT

g) WriteToExcel Module
When a quadrant (‘B’ or ‘C’ or ‘D’ or ‘E’) is scanned

completely for tracing black pixels, all the features of the
quadrant are extracted in the form of a, b, c and d and stored in
‘LSubQuad’. The contents of the ‘LSubQuad’ are
concatenated to present the features in a string format. This
string value is written in the ‘DicItemth’ sheet,
‘DicInnerItemth’ row and ‘quadNoth’ column of the excel file,
‘DictionaryFeatures.xlsx’. The path of the excel file is stored
in ‘DataPath’ parameter. The ‘shortName’ is the file name
and it is written in the fifth column and ‘DicInnerItemth’ row
of the ‘DicItemth’ sheet of the excel file. All the extracted
features are written in the excel file by using the openpyxl
package of Python. This excel file contains the features of
each alphabet in all font sizes (18, 20, 22, 24, 26, 28, 32, 48
and 72). For example, the alphabet in font size 18, 20, 22,
24, 26, 28, 32, 48 and 72 is written in the first row of sheet
named 1, 2, 3, 4, 5, 6, 7, 8 and 9 respectively.

Algorithm:
WriteToExcel(DicItem, DicInnerItem, quadNo, LSubQuad,
DataPath, shortName)
1. INITIALIZE ‘S’ to an empty string
2. A = 0
3. REPEAT STEP 4 WHILE A < LENGTH(LSubQuad)
4. S = S + LSubQuad[A]
5. For each value of DicItem, CREATE a new sheet named

with the value of the DicItem.

122 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

6. IF the current value of DicItem is same as the value in
the previous iteration THEN a new sheet is not created
and the feature in string format is written in the current
sheet of the excel file, ‘DictionaryFeatures.xlsx’.

7. ELSE CREATE a new sheet for writing extracted
features of the alphabets of next font size in the excel
file, ‘DictionaryFeatures.xlsx’.

8. EXIT
h) CommonFeature Module

When all the features have been extracted and written in
the excel file, ‘DictionaryFeatures.xlsx’ for all alphabets in
all font sizes using WriteToExcel module then, a common
feature is found from all the extracted features of an alphabet
in different font sizes. For this, CommonFeature module is
used. This module finds the LCS (Longest Common
Subsequence) of all the features of a particular alphabet in
different font sizes to find the common feature. LCS is a way
of finding longest common sub-sequences from a set of
sequences.The common feature found using LCS is written in
another excel file named as ‘CommonFeature.xlsx’ which
consists of only one sheet.

‘fiQuList’, ‘SeQuList’, ‘ThQuList’ and ‘FoQuList’ are
the lists that contains features of first quadrant (B), second
quadrant (C), third quadrant (D) and fourth quadrant (E) of a
particular alphabet in different font sizes respectively.

‘row’ is the total number of rows present in the excel file,
‘DictionaryFeatures.xlsx’ which contains features of all
alphabets in a sheet. The value of ‘row’ is same in all sheets of
the excel file, ‘DictionaryFeatures.xlsx’.

‘sheet’ is the total number of sheets present in the excel
file, ‘DictionaryFeatures.xlsx’ which contains features of all
alphabets in different font sizes (In this research, sheet = 9 as
nine different font sizes are considered).

‘Text1’, ‘Text2’, ‘Text3’ and ‘Text4’ are strings.

‘sr’ is initialized to 0.

‘sh’ is initialized to 0.

Algorithm:
CommonFeature()
1. REPEAT STEP 2 WHILE sr < row
2. REPEAT STEPS FROM 3 TO 6 WHILE sh < sheet
3. APPEND the feature in first column of ‘srth’ row

of ‘shth’ sheet of ‘DictionaryFeatures.xlsx’ in
‘fiQuList’.

4. APPEND the feature in second column of ‘srth’
row of ‘shth’ sheet of ‘DictionaryFeatures.xlsx’
in ‘SeQuList’.

5. APPEND the feature in third column of ‘srth’ row
of ‘shth’ sheet of ‘DictionaryFeatures.xlsx’ in
‘ThQuList’.

6. APPEND the feature in fourth column of ‘srth’
row of ‘shth’ sheet of ‘DictionaryFeatures.xlsx’
in ‘FoQuList’.

7. Text1 = fiQuList[0]
8. f = 0

9. REPEAT STEP 10 WHILE f < (LENGTH (fiQuList)
– 1)

10. Text1 = FindLCS(Text1, fiQuList[f + 1]
11. Text2 = SeQuList[0]
12. f = 0
13. REPEAT STEP 14 WHILE f < (LENGTH

(SeQuList) – 1)
14. Text2 = FindLCS(Text2, SeQuList[f + 1]
15. Text3 = ThQuList[0]
16. f = 0
17. REPEAT STEP 18 WHILE f < (LENGTH

(ThQuList) – 1)
18. Text3 = FindLCS (Text3, ThQuList[f + 1])
19. Text4 = FoQuList[0]
20. f = 0
21. REPEAT STEP 22 WHILE f < (LENGTH

(FoQuList) – 1)
22. Text4 = FindLCS (Text4, FoQuList[f + 1])
23. WRITE the value of ‘Text1’ in the first column of

‘srth’ row of the excel file, ‘CommonFeature.xlsx’.
24. WRITE the value of ‘Text2’ in the second column of

‘srth’ row of the excel file, ‘CommonFeature.xlsx’.
25. WRITE the value of ‘Text3’ in the third column of

‘srth’ row of the excel file, ‘CommonFeature.xlsx’.
26. WRITE the value of ‘Text4’ in the fourth column of

‘srth’ row of the excel file, ‘CommonFeature.xlsx’.
27. Clear all the lists ‘FiQuList’, ‘SeQuList’, ‘ThQuList’

and ‘FoQuList’.
28. INITIALIZE ‘Text1’, ‘Text2’, ‘Text3’ and ‘Text4’ to

empty string.
29. EXIT

i) Longest Common Subsequence
This module finds and returns the LCS (Longest Common

Subsequence) of ‘String1’ and ‘String2’. The LCS algorithm
has been implemented using Dynamic Programming in this
paper. If ‘String1’ and ‘String2’ are equal then ‘String1’ is
stored in ‘ls’ and it is returned, otherwise the LCS of ‘String1’
and ‘String2’ is found out and it is stored in ‘revLs’ and
returned. The two arrays ‘LcsForm’ and ‘b’ are used to store
the length of the LCS and the traversing direction of the LCS
respectively in each column of each row. The ‘s’, ‘u’ and ‘l’
denote ‘towards diagonal’, ‘towards upper’ and ‘towards left’
directions respectively. After all the values of ‘LcsForm’ and
‘b’ are found out, both arrays are scanned from the bottom-
most corner and right-most side to get the value of I and J
where LcsForm[I][J] = MaxValue and b[I][J] = ‘s’ and for
each ‘s’ in ‘b’ array, the common item in both the strings
(String1 and String2) is appended in ‘ls’. The ‘MaxValue’ is
the maximum length of LCS in ‘LcsForm’. At last ‘ls’ is
reversed and the result is stored in ‘revLs’.

Algorithm:
FindLCS(String1, String2)
1. IF String1 = String2 THEN DO STEP 2 TO 3
2. APPEND ‘String1’ in the list named as ‘ls’.
3. RETURN ‘ls’.
4. ELSE DO FROM STEP 5 TO 37
5. m = LENGTH(String1)

123 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

6. n = LENGTH(String2)
7. INITIALIZE the array ‘LcsForm’ with dimensions

(m + 1, n + 1) to zero.
8. INITIALIZE the array ‘b’ with dimensions (m + 1, n

+ 1) to zero.
9. I = 0
10. J = 0
11. REPEAT STEP 12 WHILE I < (m + 1)
12. REPEAT STEP 13 or 16 or 19 WHICEVER

SATISFIES THE CONDITION FIRST WHILE J <
(n + 1)

13. IF String1[I – 1] = String2[J – 1] THEN DO
STEP 14 TO 15

14. LcsForm[I][J] = LcsForm[I][J] + 1
15. b[I][J] = ‘s’
16. ELSE IF LcsForm[I – 1][J] >= LcsForm[I][J – 1]

THEN DO STEP 17 TO 18
17. LcsForm[I][J] = LcsForm[I – 1][J]
18. b[I][J] = ‘u’
19. ELSE DO STEP 20 TO 21
20. LcsForm[I][J] = LcsForm[I][J – 1]
21. b[I][J] = ‘l’
22. Find the maximum value in the array ‘LcsForm’ and

it is stored in ‘MaxValue’.
23. Search the array ‘LcsForm’ from right-most side and

bottom-most corner of the array and find the value of
I and J in the array where LcsForm[I][J] = MaxValue
and b[I][J] = ‘s’.

24. After values of I and J are found for LcsForm[I][J] =
MaxValue and b[I][J] = ‘s’, DO STEP 25

25. REPEAT STEP 26 or 30 or 33 WHICHEVER
SATISFIES THE CONDITION FIRST WHILE I >
0 AND J > 0

26. IF b[I][J] = ‘s’ THEN DO STEP 27 TO 29
27. APPEND the value in String1[I][J] in the list

‘ls’.
28. I = I – 1
29. J = J – 1
30. ELSE IF b[I][J] = ‘u’ DO STEP 31 TO 32
31. I = I – 1
32. J = J
33. ELSE IF b[I][J] = ‘l’ DO STEP 34 TO 35
34. I = I
35. J = J – 1
36. REVERSE the items of the list ‘ls’ and store it in

‘revLs’.
37. RETURN ‘revLs’.
38. EXIT

Hence, the final output of the ‘DictionaryBuilding’ is the
‘CommonFeature.xlsx’ excel file which consists of the
common feature for each alphabet extracted from features
present in ‘DictionaryFeatures.xlsx’. For example, the final
common features for the alphabet are:

1st quadrant – aaaaaaaaaaaaabbbbbbcccccccccccccc
2nd quadrant – aaaaaaaabbbbbccccccdddddddddddd

3rd quadrant –
cccccccccccccccdddddaaaabbbbbbbbbbbbaaaaaaaaa

4th quadrant - dddddddddddddddcccccbbbbbbbbbb

B. FindingMatch
This part deals with finding a correct match from the

dictionary of common features stored in the excel file,
‘CommonFeature.xlsx’ when an image of Odia alphabet is
provided as input. This input image is stored in a directory
named as ‘Input’. The ‘FindingMatch’ part undergoes
through two phases: ‘Feature Extraction’ and ‘Recognition’.

1) Feature Extraction
This phase undergoes through seven modules for

extracting features from the input image present in the
directory ‘Input’ and the features are written to an excel file
named as ‘InputFile.xlsx’. The different modules are:
Preprocessing, FindPath, GettingFeaturesRight or
GettingFeaturesLeft, VisitSubQuad and RemainingSubQuad
for extracting features from the input image and the features
are written in the excel file using WriteToExcel Module. The
overall process of feature extraction of Input image has been
shown in Fig. 5.

a) Preprocessing Module
The steps in this module are same as described in

Preprocessing module of ‘DictionaryBuilding’ except the
values passed to the parameters in FindPath module. The input
to this module is the directory ‘Input’ consisting of an image
of Odia alphabet. The input image is converted to gray image.
The white spaces surrounding the Odia alphabet in the gray
image are removed using the Phase – 1 of RemoveNoise
module of [3] (RemoveBoundarySpaces). Then the resultant
image is resized into the dimension p x q (p = 64 and q = 64)
where, ‘p’ is the number of rows and ‘q’ is the number of
columns. Then the resized image is converted to binary image
named as ‘BinayImageIn’. The row that equally divides the
‘BinayImageIn’ horizontally is named as ‘MidRow’ and it is
found out by using the following formula:

𝑀𝑖𝑑𝑅𝑜𝑤 = �𝑝 2� �

The column that equally divides the ‘BinayImageIn’
vertically is named as ‘MidCol’ and it is found out by using
the following formula:

𝑀𝑖𝑑𝐶𝑜𝑙 = �𝑞 2� �

The four quadrants are found out from ‘BinayImageIn’ in
the following way:

U = BinaryImageIn[0 : MidRow-1, 0 : MidCol-1]

V = BinaryImageIn[0 : MidRow-1, MidCol : n]

W = BinaryImageIn[MidRow : m, 0 : MidCol-1]

X = BinaryImageIn[MidRow : m, MidCol : n]

‘U’, ‘V’, ‘W’ and ‘X’ are the first, second, third and fourth
quadrant respectively.

124 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

Then CALL FindPath(quadNo, quadrant, DicItem,
DicInnerItem, DataPath, shortName) for the quadrants U, V,
W and X.

b) FindPath Module
The steps in this module are same as described in FindPath

module of ‘DictionaryBuilding’ except that the steps of
FindPath Module are performed for each of the quadrants U,
V, W and X. Here ‘DicItem’ and ‘DicInnerItem’ are
constants and are set to 1 as the ‘Input’ folder has no sub-
directories and it has only one image at any given time. The
‘DataPath’ parameter holds the absolute path of the excel file
named as ‘InputFile.xlsx’ and in this file features of all the
four quadrants of the input image are being written. The
features of ‘U’, ‘V’, ‘W’ and ‘X’ are written in first, second,
third and fourth column of ‘InputFile.xlsx’ respectively.

Fig. 5. Feature Extraction for Dictionary of Images and Input Image.

c) GettingFeaturesLeft Module
The steps in this module are same as described in

GettingFeaturesLeft module of ‘DictionaryBuilding’ except
that the steps here are applied to W quadrant.

d) GettingFeaturesRight Module
The steps in this module are same as described in

GettingFeaturesRight module of ‘DictionaryBuilding’ except
that the steps here are applied to U, V and X quadrants.

e) VisitSubQuad Module

The steps in this module are same as described in
VisitSubQuad module of ‘DictionaryBuilding’ except that the

steps are applied to U, V, W and X quadrants. Similar to as
explained in the VisitSubQuad module of
‘DictionaryBuilding’, the quadrants are divided into four sub-
quadrants, a, b, c and d. For each black pixel in the continuous
trace, the sub-quadrant (either ‘a’ or ‘b’ or ‘c’ or ‘d’) is found
out and appended in ‘subQuad’. The value of ‘subQuad’ is
returned and set to ‘LSubQuad’ in ‘GettingFeaturesLeft’ or
‘GettingFeaturesRight’, whichever has been called.

f) RemainingSubQuad Module
The steps in this module are same as described in

RemainingSubQuad module of ‘DictionaryBuilding’ except
that the steps are applied to U, V, W and X quadrants. If any
portions of the quadrants U, V, W and X are not covered by
the continuous trace of black pixels, those remaining portions
are covered by this module and the name of sub-quadrants
(either ‘a’ or ‘b’ or ‘c’ or ‘d’) are appended in ‘LSubQuad’.

g) WriteToExcel Module
The steps in this module are same as described in

WriteToExcel module of ‘DictionaryBuilding’ except that the
features extracted from the quadrants U, V, W and X are
written in an excel file named as ‘InputFile.xlsx’. The
absolute path of ‘InputFile.xlsx’ is stored in the ‘DataPath’
parameter and the file name of input image is stored in
‘shortName’. The value in ‘shortName’ parameter is written
in the fifth column of ‘InputFile.xlsx’. Hence, the feature
extracted from the quadrants U, V, W, X and the value in
‘shortName’ parameter are written in the first, second, third,
fourth and fifth column of the first row of the excel file,
‘InputFile.xlsx’ respectively and there is only one sheet
present in the excel file as there is no sub-directories of the
‘Input’ directory. For example, the final feature for the input
image are:

1st quadrant –
aaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbccccccccccccccddd

2nd quadrant – aaaaaaaaaaaaabbbbbbbbccccccccdddddddddddddd
3rd quadrant –

cccccccccccccccddddddaaaaaaabbbbbbbbbbbbaaaaaaaaaa
4th quadrant - dddddddddddddddcccccbbbbbbbbbbbb

2) Recognition
This phase undergoes through three modules:

CheckCommonFeature module, MatchCommonFeature
module and TraceAnotherDirection Module. The overall
process of recognition has been shown in Fig. 6.

InCol: number of columns in the ‘Input.xlsx’

ComRow: number of rows in the ‘CommonFeature.xlsx’

‘InpPat’ is a list consisting of the final features of 1st, 2nd,
3rd and 4th quadrants for the ‘eth’ row of ‘Input.xlsx’.

‘QuList’ is a list consisting of the final features of 1st, 2nd,
3rd and 4th quadrants for the ‘fth’ row of
‘CommonFeature.xlsx’.

‘MatchFirst’ is a list consisting of the file names of the
matched features obtained as the output of
CheckCommonFeature module.

125 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

‘MatchedRow’ is a list consisting of the row numbers of
the matched features in ‘CommonFeature.xlsx’.

‘MatchSecond’ is a list consisting of the output of
MatchCommonFeature module.

Algorithm:
Recognition()
1. SET e = 1
2. REPEAT STEP 3 WHILE e <= InCol
3. APPEND the feature present in ‘1st’ row and ‘eth’

column of ‘Input.xlsx’ in the list ‘InpPat’.
4. SET f = 1
5. REPEAT STEPS FROM 6 TO 17 WHILE f < ComRow
6. APPEND the feature present in the ‘fth’ row and ‘1st’

column of ‘CommonFeature.xlsx’ in the list ‘QuList’.
7. APPEND the feature present in the ‘fth’ row and ‘2nd’

column of ‘CommonFeature.xlsx’ in the list ‘QuList’.
8. APPEND the feature present in the ‘fth’ row and ‘3rd’

column of ‘CommonFeature.xlsx’ in the list ‘QuList’.
9. APPEND the feature present in the ‘fth’ row and ‘4th’

column of ‘CommonFeature.xlsx’ in the list ‘QuList’.
10. ite = 1
11. REPEAT STEPS FROM 12 TO 14 WHILE ite <=

LENGTH (InpPat)
12. Param1 = CALL CheckCommonFeature(InpPat[ite],

QuList[ite])
13. IF Param1 = 1 THEN GO TO STEP 14
14. Param3 = Param3 + 1
15. IF Param3 = 4 THEN GO TO STEP 16
16. RETRIEVE the file name of the matched image

feature present in the ‘fth’ row and ‘5th’ column of
the ‘CommonFeature.xlsx’ and APPEND the file
name in a list named as ‘MatchFirst’ and ‘fth’ row
number of the matched image feature in a list
‘MatchedRow’.

17. CLEAR the list ‘QuList’.
18. IF LENGTH(MatchFirst) > 1 THEN DO STEPS 19 TO 33
19. SET f = 1
20. REPEAT STEPS FROM 21 TO 33 WHILE f <=

LENGTH (MatchFirst)
21. APPEND the feature present in the

‘(MatchedRow[f])th’ row and ‘1st’ column of
‘CommonFeature.xlsx’ in the list ‘QuList’.

22. APPEND the feature present in the
‘(MatchedRow[f])th’ row and ‘2nd’ column
‘CommonFeature.xlsx’ in the list ‘QuList’.

23. APPEND the feature present in the
‘(MatchedRow[f])th’ row and ‘3rd’ column
‘CommonFeature.xlsx’ in the list ‘QuList’.

24. APPEND the feature present in the
‘(MatchedRow[f])th’ row and ‘4th’ column
‘CommonFeature.xlsx’ in the list ‘QuList’.

25. SET ite = 1
26. REPEAT STEPS FROM 27 TO 29 WHILE ite <=

LENGTH(InpPat)
27. Param2 = CALL MatchCommonFeature

(InpPat[ite], QuList[ite])
28. IF Param2 = 1 THEN GO TO STEP 29
29. Param4 = Param4 + 1
30. IF Param4 = 4 THEN DO STEPS 31 TO 32

31. RETRIEVE the file name of the matched image
feature present in the ‘(MatchedRow[f])th’ row
and ‘5th’ column of the ‘CommonFeature.xlsx’
and APPEND the file name in a list named as
‘MatchSecond’.

32. PRINT ‘MatchSecond’
33. CLEAR the list ‘QuList’
34. ELSE GO TO STEP 35
35. PRINT the list ‘MatchFirst’
36. EXIT

a) CheckCommonFeature Module
When feature extraction of the input image has been

completed, features of all the four quadrants U, V, W and X
are written in the excel file named as ‘InputFile.xlsx’. The
common feature of a particular alphabet that is extracted from
all the features present in ‘DictionaryFeatures.xlsx’ file has
been written in ‘CommonFeature.xlsx’. The common feature
of first quadrant present in the first column of each row of
‘CommonFeature.xlsx’ is searched to find whether the
sequence of common feature is present in the first column of
‘InputFile.xlsx’. The same search procedure is repeated for
second, third and fourth columns of both the files,
‘CommonFeature.xlsx’ and ‘InputFile.xlsx’. In other words,
the second, third and fourth columns of each row of
‘CommonFeature.xlsx’ are searched in second, third and
fourth columns of ‘InputFile.xlsx’ respectively. For this, the
CheckCommonFeature(String1, String2) has been used. The
presence of common features of ‘CommonFeature.xlsx’ in
the features of ‘InputFile.xlsx’ in a continuous form or non-
continuous form helps to find a correct match. If the features
in the first, second, third and fourth columns of
‘InputFile.xlsx’ are present in the first, second, third and
fourth columns of ‘CommonFeature.xlsx’ respectively in a
particular row then Param1 is set to 1 otherwise it is set to 0. If
Param1 = 1 then Param3 is incremented by 1. For example, if
the value of Param3 is 4 after all the columns of
‘InputFile.xlsx’ have been checked with the respective
columns of ‘CommonFeature.xlsx’ for all rows, then the file
name is retrieved from the fifth column of the row that
consists of matched image feature in ‘CommonFeature.xlsx’.
The file name from fifth column of matched image feature is
appended in the list ‘MatchFirst’ and the row number of
matched image feature is appended in the list ‘MatchedRow’.
In some cases, the list ‘MatchFirst’ have more than one
correct match and in these cases ‘MatchCommonFeature’
module is called.

b) MatchCommonFeature Module
This module is used when the list ‘MatchFirst’ (output of

‘CheckCommonFeature’) consists of more than one match. In
this module, the common features from the first, second, third
and fourth columns of the each row number that is present in
the list ‘MatchedRow’ are retrieved from
‘CommonFeature.xlsx’ and appended in the list ‘QuList’.
The features present in the first, second, third and fourth
columns present in ‘InputFile.xlsx’ are retrieved and
appended in the list ‘Inpat’. Then the LCS (Longest Common
Sequence) of the two strings, ‘Str1’ and ‘Str2’ is found where
Str1 = QuList[ite] and Str2 = Inpat[ite], ite = 1, 2, 3, 4 and the
resultant LCS is matched with ‘Str2’. If the resultant LCS gets

126 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

a match with ‘Str2’ then this module returns 1, otherwise 0.
The return value of this module is stored in Param2. If Param2
= 1 then, Param4 is incremented by 1. This process is done for
each item present in the list ‘MatchFirst’. If Param4 = 4 for
an item in ‘MatchFirst’ then that file name is copied to the list
‘MatchSecond’. According to the research, the
‘MatchCommonFeature’ selects the correct match from the
multiple matches in the list ‘MatchFirst’. But if for some
images, both the modules of ‘Recognition’ result in multiple
matches or no matches, then ‘TraceAnotherDirection’
module is called.

c) TraceAnotherDirection Module
This module consists of two parts

‘DictionaryAnotherWay’ and ‘FindingMatchAnother’. For
extraction of features from the dictionary of images stored in
the directory ‘Dictionary’, the ‘DictionaryAnotherWay’
undergoes same modules as in ‘DictionaryBuilding’, the only
difference being the direction of tracing of the continuous
black pixels in the ‘FindPath’ module in
‘DictionaryBuilding’ for the four quadrants. The modified
direction of the tracing of the continuous black pixels is shown
in a module named ‘FindPathAnother’.

row = Number of rows of quadrant

col = Number of columns of quadrant

Fig. 6. Recognition of Input Image.

Algorithm:
FindPathAnother(quadNo, quadrant, DicItem, DicInnerItem,
DataPath, shortName)
1. SET I = 0
2. SET J = col – 1
3. IF quadNo = 1 THEN GO TO STEP 4
4. REPEAT STEP 5 WHILE J > 0
5. REPEAT STEP 6 WHILE I < row
6. IF quadrant[I][J] = 0 THEN GO TO STEP 7
7. CALL GettingFeaturesLeft(I, J,

quadrant, quadNo, DicItem,
DicInnerItem, DataPath, shortName)

8. SET I = row – 1
9. SET J = col – 1
10. IF quadNo = 2 THEN GO TO STEP 11
11. REPEAT STEP 12 WHILE I > 0
12. REPEAT STEP 13 WHILE J > 0
13. IF quadrant[I][J] = 0 THEN GO TO STEP 14
14. CALL GettingFeaturesLeft(I, J,

quadrant, quadNo, DicItem,
DicInnerItem, DataPath, shortName)

15. SET I = 0
16. SET J = 0
17. IF quadNo = 3 THEN GO TO STEP 18
18. REPEAT STEP 19 WHILE I < row
19. REPEAT STEP 20 WHILE J < col
20. IF quadrant[I][J] = 0 THEN GO TO STEP 21
21. CALL GettingFeaturesRight(I, J,

quadrant, quadNo, DicItem,
DicInnerItem, DataPath, shortName)

22. SET I = 0
23. SET J = col – 1
24. IF quadNo = 4 THEN GO TO STEP 25
25. REPEAT STEP 26 WHILE I < row
26. REPEAT STEP 27 WHILE J > 0
27. IF quadrant[I][J] = 0 THEN GO TO STEP 28
28. CALL GettingFeaturesLeft(I, J,

quadrant, quadNo, DicItem,
DicInnerItem, DataPath, shortName)

29. EXIT

‘FindingMatchAnother’ finds a correct match from the
‘CommonFeature2.xlsx’(output of
‘DictionaryAnotherWay’). For Feature extraction, the input
image present in the directory ‘Input’ undergoes same
modules as in ‘FindingMatch’, except the direction of tracing
of the continuous black pixels in the ‘FindPath’ module in
‘FindingMatch’ for the four quadrants. The modified
direction of the tracing of the continuous black pixels is shown
in a module named ‘FindPathAnother’. The same modules of
‘Recognition’ are used for finding a correct match. As per the
research, the ‘TraceAnotherDirection’ gives a correct match
for the input image.

IV. RESULTS
This paper deals with recognising a printed Odia alphabet

in an image which is created by scanning a document or
document converted to image by using a software, both

127 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

written in a font family ‘AkritiOriAshok-99’ in a particular
font size. The font sizes that have been considered are 18, 20,
22, 24, 26, 28, 32, 48, and 72.

To achieve recognition of an Odia alphabet, the system
explained in this paper is divided into two parts; one is
‘DictionaryBuilding’ and other is ‘FindingMatch’. The
‘DictionaryBuilding’ takes a directory ‘Dictionary’
(consisting of images of Odia alphabet), undergoes through
several modules to extract features from images present in
‘Dictionary’ and the extracted features are written in an excel
file, ‘DictionaryFeatures.xlsx’. The common feature found
out from the extracted features in all font sizes for each Odia
alphabet (‘DictionaryFeatures.xlsx’) is written in an excel
file, ‘CommonFeature.xlsx’. The ‘FindingMatch’ takes an
image of Odia alphabet as input and the alphabet can be in any
font size of font family ‘AkrutiOriAshok-99’; features are
extracted from the input image and the extracted feature is
given as input to ‘Recognition’. The Recognition finds a
correct match for the input image.

The Lenovo ideapad 310 Laptop with 64-bit Windows 10
Operating system, 4GB RAM and Intel(R) Core(TM) i5-
7200U CPU @ 2.50GHz 2.70 GHz have been used for the
system. The JetBrains PyCharm Community Edition 2019.1 as
Integrated Development Environment (IDE) and opencv-
python 4.1.1.26 libraries has been used to implement the
system.

For testing, an image of Odia alphabet is given as input to
the ‘FindingMatch’ to find a correct match. Nine font sizes
have been considered for this research and 200 images of Odia
alphabet of each font size making a total of 1800 images are
provided as input to ‘FindingMatch’ one at a time. The
percentage of correctness has been shown in Fig. 7.

Fig. 7. Correctness Accuracy of Odia Alphabets in Different Font Sizes.

For feature extraction, [22] and [23] had used Water-
Reservoir Principle to get the shapes of the characters and
numerals respectively; [24] had divided the characters into
nine zones and traced the shapes in each zone; [25] had found
out the centroid of the character and then the angle between
the centroid and the pixel to trace the shapes of the characters;
and [26] had first found out some low-level strokes to detect
the high-level strokes and using these strokes, the shapes of
the character had been traced. The proposed approach has also
traced the shapes of the characters by first dividing the
character into four quadrants and then scanning each quadrant
in different directions to get the features in string format. The

proposed system has also been compared with the systems in
[22], [23], [24], [25] and [26], and the results have been
tabulated in the Table I.

TABLE I. ACCURACY COMPARISON OF PROPOSED APPROACH WITH
OTHER APPROACHES

Accuracy Achieved by the Approaches in Related Work

Accuracy
Achieved by
the Approach
in this Paper

Approaches Language Accuracy

98.1%

 [22] Handwritten
Odia

Isolated
Characters 98.6%

Two-
Character
Touching
Components

96.7%

Three-
Character
Touching
Components

95.1%

[23] Handwritten English
Numerals 94.8%

[24] Printed Odia 92%

[25] Printed Odia 91.3%

[26] Printed Gujarati 96.87%

It has also been found that alphabet Chota U () is
recognised as Bada U () in some font sizes because they
have very little difference in their structure. The system faces
the same challenge for the alphabets Ra () and Ru ().

V. CONCLUSION
The approach described in this paper goes through two

parts. First part deals with building a dictionary and the
second part deals with finding a match for the image given as
input. In the first part (‘DictionaryBuilding’), a dictionary of
images consisting of alphabets in the font family
‘AkrutiOriAshok-99’ and in different font sizes are prepared.
Then features are extracted from the images and written in an
excel file, ‘DictionaryFeatures.xlsx’. LCS has been used to
find the common feature from the extracted features and the
common feature has been written in an excel file,
‘CommonFeature.xlsx’. The second part deals with finding a
match for the image that is given as input. In second part,
features are extracted from the input image and matched with
the feature present in ‘CommonFeature.xlsx’. In some cases,
if more than one match or no match is found then the four
quadrants of the input image have been scanned in another
direction. The overall correctness accuracy of the system has
been achieved as 98.1%.

As the proposed approach recognises Chota U () as
Bada U () and Ra () as Ru () in some font sizes,
hence, further research can be done in future to eliminate this
disadvantage. Elimination of this problem may increase the
accuracy percentage. Moreover, research can be done to
reduce the number of phases of the proposed system which
may increase the efficiency of the system.

128 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications
Vol. 13, No. 8, 2022

REFERENCES
[1] Devabrata Kar, Chabila Madhu Barnabodha, Published by Odisha Book

Emporium.
[2] Pandit Narayan Mohapatra, Sridhar Das, Sarbasara Byakarana, ISBN:

8186085009, Published by New Students’ Store.
[3] Aradhana Kar, Sateesh Kumar Pradhan, “A Three-Phase Noise Removal

Approach to Achieve Accuracy in Line Segmentation of Odia text”, 19th
OITS International Conference on Information Technology (OCIT), pp.
54-59, 2021.

[4] “Image Thresholding, Image Processing in OpenCV” (Web Search)
[5] Ravishankar Chityala, Sridevi PudiPeddi, Image processing and

Aquisition using Python”, CRC Press Taylor & Francis Group,
Chapman & Hall, pp 141 – 143.

[6] Nobuyuki Ostu, “A Threshold Selection Method from Gray-Level
Histograms”, IEEE Transactions on Systems, Man, and Cybernetics,
Volume 9, Issue 1, pp 62 – 66, January 1979.

[7] S. Sridhar, “Digital Image Processing”, Oxford University Press, pp 10 –
11, 2013.

[8] Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing,
Pearson, pp 55 – 65, Third Edition.

[9] Mark S. Nixon, Alberto S. Aguado, Feature Extraction & Image
Processing for Computer Vision, Elsevier, Academic Press, pp 37 – 41,
Third Edition.

[10] “os.path”, https://docs.python.org/3/library/os.path.html
[11] Eric Gazoni, Charlie Clark, “openpyxl - A Python library to read/write

Excel 2010 xlsx/xlsm files”, Version 3.0.10.
[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford

Stein, “Introduction to Algorithms”, The MIT Press, Tata McGraw Hill
Book Company, pp 350 – 355, Second Edition.

[13] Udit Agarwal, “Algorithms Design and Analysis”, Dhanpat Rai & Co
(P) Ltd, pp 262 – 270, Second Edition.

[14] Narasimha Karumanchi, “Data Structures and Algorithms Made Easy”,
CareerMonk Publications, pp 373 – 375.

[15] Steven S. Skiena, “The Algorithm Design Manual”, Springer, Second
Edition, pp 650 – 653.

[16] Lekh Raj Vermani, Shalini Vermani, “An Elementary Approach to
Design and Analysis of Algorithms”, Primers in Electronics and
Computer Science, Vol. 4, World Scientific, pp 174 – 185, 2019.

[17] Jan Erik Solem, “Programming Computer Vision with Python: Tools
and Algorithms for Analyzing Images”, O’Reilly, pp 7 – 8.

[18] “NumPy” (Web Search)
[19] “Matplotlib.pyplot” (Web Search)
[20] Zed A. Shaw, “Learn Python 3 the Hard Way A Very Simple

Introduction to the Terrifying Beautiful World of Computers and Code”,
Addison-Wesley, Exercise 34 (Lists), pp 120 – 121 and Exercise 39
(Dictionaries), pp 140 – 144.

[21] Kent D. Lee, “Python Programming Fundamentals”, Springer, 2014.
[22] N. Tripathy, U. Pal, “HandWriting Segmentation of Unconstrained

Oriya Text”, Proceedings of the 9th International Workshop on Frontiers
in Handwriting Recognition, IEEE Computer Society, 2004.

[23] U. Pal, A. Belaid, Ch. Choisy, “Touching numeral segmentation using
water reservoir concept”, Pattern Recognition Letters 24, pp 261-272,
2003.

[24] Dibyasundar Das, Ratnakar Dash and Banshidhar Majhi, “Odia
Compound Character Recognition Using Stroke Analysis”,
Computational Intelligence in Data Mining, Advances in Intelligent
Systems and Computing, volume 556, pp 325 – 332, 2017.

[25] Debananda Padhi, Debabrata Senapati, “Zone Centroid Distance and
Standard Deviation Based Feature Matrix for Odia Handwritten
Character Recognition”, Proceedings of the International Conference on
Frontiers of Intelligent Computing: Theory and Applications (FICTA),
Springer-Verlag Berlin Heidelberg, pp 649 – 658, 2013.

[26] Mukesh M. Goswami, Suman K. Mitra, “Printed Gujarati Character
Classification Using High-Level Strokes”, Proceedings of 2nd
International Conference on Computer Vision & Image Processing
(Volume 2), Advances in Intelligent Systems and Computing (Volume
704), Springer, pp 197 – 209, 2017.

[27] Mukesh M.Goswami, Suman K. Mitra, “Classification of Printed
Gujarati Characters using Low-Level Stroke Features”, ACM
Transactions on Asian and Low-Resource Language Information
Processing, Volume 15, Issue 4, Article 25, pp 1 – 26, June 2016.

129 | P a g e
www.ijacsa.thesai.org

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4310064

	I. Introduction
	II. Related Work
	III. System Architecture
	A. DictionaryBuilding
	1) Feature Extraction in DictionaryBuilding
	a) Preprocessing Module
	b) FindPath Module
	c) GettingFeaturesLeft Module
	d) GettingFeaturesRight Module
	e) VisitSubQuad Module
	f) RemainingSubQuad Module
	g) WriteToExcel Module
	h) CommonFeature Module
	i) Longest Common Subsequence

	B. FindingMatch
	1) Feature Extraction
	a) Preprocessing Module
	b) FindPath Module
	c) GettingFeaturesLeft Module
	d) GettingFeaturesRight Module
	e) VisitSubQuad Module
	f) RemainingSubQuad Module
	g) WriteToExcel Module

	2) Recognition
	a) CheckCommonFeature Module
	b) MatchCommonFeature Module
	c) TraceAnotherDirection Module

	IV. Results
	V. Conclusion
	References

