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Abstract—The machine vision-based defect detection for 
cylinder liner is a challenging task due to irregular shape, 
various and small defects on the cylinder liner surface. To 
improve the accuracy of defect detection by machine vision a 
deep learning-based defect detection method for cylinder liner 
was explored in this paper. First, a machine vision system was 
designed based on the analysis of the causes and types of defects 
to obtain the field images for establishing an original dataset. 
Then the dataset was augmented by a modified augmentation 
method which combines the region of interest automatic 
extraction method with the traditional augmentation methods. 
Except for introduction of the anchor configuration optimization 
method, an XML file-based method of highlighting defect area 
was proposed to address the problem of tiny defect detection. 
The optimal model was experimentally determined by 
considering the network model, the training strategy and the 
sample size. Finally, the detection system was developed and the 
network model was deployed. Experiments are carried out and 
the results of the proposed method compared with those of the 
traditional methods. The results show that the detection 
accuracies of sand, scratch and wear defects are 77.5%, 70% and 
66.3% which are improved by at least 26.3% compared with the 
traditional methods. The proposal can be used for field defect 
detection of cylinder liner. 

Keywords—Cylinder liner; defect detection; deep learning; 
machine vision 

I. INTRODUCTION 
Cylinder liner is one of the most important parts of engine. 

Its surface quality will directly affect the working performance 
and service life of an engine. The surface quality will 
inevitably deteriorate due to the comprehensive effects of 
friction, high temperature and corrosion. If there are cracks, 
sand holes, air holes and other manufacturing defects in the 
cylinder liner itself, the degradation process will be greatly 

accelerated. Therefore, defect detection is of great significance 
in the production process of cylinder liner. 

Machine vision inspection technology has the advantages 
of non-contact, easy to realize automation, and easy to analyze 
and process the detection results by computer which has been 
widely used in metal surface defect detection. At present, 
machine vision based defect detection methods mainly include 
traditional methods and deep learning methods [1-6]. The 
traditional machine vision defect detection method constructs 
the feature descriptors for different defects through image 
segmentation, feature extraction and other image processing 
algorithms. Through the descriptors, the surface defects are 
located, identified, graded, counted, stored and inquired. 
However, due to the influence of image quality, the 
complexity of industrial scene, the difference of defect shape 
and size, the traditional methods still often fails. 

In recent years, deep learning based methods have been 
applied to defect detection of metal surfaces. However, there is 
no relevant research on how to apply deep learning to detect 
the surface defects of cylinder liners, and systematically 
describe the design and implementation of the detection 
system so far. Therefore, this paper will explore the deep 
learning based method for the cylinder liner surface defect 
detection and give the design process and its implementation 
of the defect detection system. 

The main structure of this paper is as follows: the related 
works in this field are introduced in the second section; the 
defects types are analyzed and the design method of machine 
vision system is discussed in the third section; the optimal 
deep learning model are experimentally determined for 
cylinder liner defect detection in the fourth section; the design 
of detection system and the field experiments are given in the 
fifth section; the last section will summarize this paper. 
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II. RELATED WORK 
A cylinder liner defect detection system based on X-ray and 

linear array camera was built by Han Yueping of North China 
University and its key technologies were studied, such as 
sequence image filtering, threshold segmentation and 
morphological processing and calculation of defect parameter 
chain code tracking method [7, 8]. Considering that the 
probability of defects is low and the defect area is relatively 
small compared with the whole image, so the cylinder liner X-
ray image is highly sparse. The group also proposed the use of 
compressed sensing algorithm for defect detection [9]. 

In other metal surface defect detection, the traditional 
machine vision method is more widely used. A multi-scale 
defect recognition method was proposed by Yu Jiahui et al. 
which has good accuracy and detection speed [10]. Tian 
Hongzhi et al. designed a micro defect detection system for 
grinding surface by combining plane illumination mode with 
multi angle illumination mode [11]. Mentouri zoheir et al. 
employed an improved dual cross algorithm to online 
monitoring of steel surface quality [12]. Aiming at the 
problems of complex defect pattern and low contrast between 
defect and background in steel strip surface defect detection, 
Liu Kun proposed a total variation image decomposition 
algorithm based on self-reference template and improved index 
gradient similarity [13]. Cao Binfang et al. proposed a defect 
detection method based on spatial-frequency multi-scale block 
local binary pattern to solve the problem of complex geometry 
and texture distribution of the nickel foam surface defect 
images [14]. Sun qianlai uses singular value decomposition to 
identify and locate surface defects of strip steel without image 
segmentation [15]. Based on the research on pseudo defect 
elimination, patch texture description and adaptive threshold 
segmentation, Liu Kun et al. proposed a new unsupervised 
steel surface defect detection model based on Haar-Weibull-
variance [16]. Jeon Yong Ju et al. proposed the dual-light 
switching lighting technology to solve the problems of uneven 
brightness and various defects on the steel surface [17]. 

The core of traditional methods is to design and use feature 
descriptors, which include local binary pattern (LBP), 
histogram of oriented gradient (HOG), gray-level co-
occurrence matrix (GLCM) and other statistical features. 
Feature descriptors are sensitive to lighting, background and 
other environmental factors. So it is very important to collect 
high-quality images. Through the optimal design of the 
imaging system, the difficulty of algorithm development can be 
reduced and the robustness of algorithm can be improved, but 
the cost of detection system must increase. Moreover, due to 
the complexity of industrial sites and the difference of defect 
shape and size, the failure of traditional algorithms still often 
occurs. 

In recent years, with the successful application of deep 
learning in many fields of machine vision, more and more 
researchers are committed to using deep learning for defect 
detection in industrial field, aiming at improving the accuracy, 
efficiency, stability and reliability of the detection system. 

RetinaNet with difference channel attention and adaptively 
spatial feature fusion was proposed for steel surface defect 
detection by Cheng and Yu [18]. Zhang Jiaqiao et al. 
employed a CP-YOLOv3-dense neural network in the steel 
strip surface defect detection [19]. Xiao Ling et al. [20] 
proposed a surface defect detection method based on image 
pyramid convolution neural network model. Wei Rubo et al. 
[21] proposed a method for steel defect detection based on the 
fast regional convolution neural network. A steel surface 
defect detection model based on deformable convolution 
enhanced backbone network and pyramid feature fusion was 
proposed by Hao Ruiyang et al. [22]. 

These above deep learning based methods mainly focus on 
deep neural network (DNN) model. However, the dataset with 
support samples is more important than the DNN model. It is 
often difficult to obtain enough support samples for surface 
defect detection in industrial field. Therefore, how to improve 
the accuracy of deep learning-based defect detection method 
has become a research hotspot under the condition of a small 
number of samples. 

A segmentation-based deep-learning architecture for the 
detection and segmentation of surface anomalies was proposed 
and demonstrated by Tabernik Domen et al. which can be 
trained with a small number of samples. In their experiments, 
only approximately 2530 defective training samples instead of 
hundreds or thousands were employed [23]. To address the 
problem that the existing defect datasets are generally 
unavailable for on-site deployment due to the limitation of data 
scale and defect types, Lv Xiaoming et al established a dataset 
named GC10-DET using a linear array image acquisition 
system to collect images [24]. To meet the challenge of 
detection the micro defect from high resolution images, a 
novel machine vision method was proposed for automatically 
identifying micro defects by Lian Jian et al. [25] and the main 
contributions of the proposal can be summarized as follows: 1) 
a defect exaggeration approach based on regularization, 2) a 
defect sample production method based on a generative 
adversarial network (GAN) and a convolutional neural 
network (CNN), and 3) a data augmentation method based on 
GAN. A novel approach for data augmentation was proposed 
by Jain Saksham et al. using GANs to create synthetic images 
to address the problem of time-consuming and high cost of on-
site image acquisition. According to the comparative 
experiment, the performance of CNN architecture is 
significantly improved with GANs-based augmentation data 
and the sensitivity and specificity of the synthetically 
augmented CNN are 5.59% and 1.12% higher than those of the 
classical enhanced CNN, respectively [26]. 

The deep learning method has been employed in metal 
surface defect detection, but it has not been applied in cylinder 
liner surface defect detection. Therefore, this paper will take 
the lead in exploring the deep learning-based defect detection 
method for cylinder liner, designing a cylinder liner surface 
defect detection system, proposing a defect detection process, 
and giving a design case of cylinder liner surface defect 
detection system. 
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III. DEFECT TYPE ANALYSIS AND MACHINE VISION 
SYSTEM 

A. Defects Types of Cylinder Liner Surface 
As shown in Fig. 1, the common surface defects of the 

cylinder liners are the sand defect, the crack defect, the wear 
defect, the oil defect, the scratch defect and the collision defect. 

When casting cylinder liner, gas and non-metallic 
impurities can not be discharged before solidification of liquid 
metal, resulting in the formation of sand defects on the surface 
of cylinder liner after machining. The size of the sand defect is 
small, its contour is usually elliptical and its edge is smooth. 
Sand defect is one of the main defects of cylinder liner which 
may appear in any part of the cylinder liner. The existence of 
sand defects may greatly reduce the impact and fatigue 
resistances of cylinder liner which is easy to cause cylinder 
collapse, water leakage and other faults. 

 
Fig. 1. Common Surface Defects of Cylinder Liner. From the Upper Left to 
the Lower Right, they are the Sand Defect, the Crack Defect, the Wear Defect, 

the oil Defect, the Scratch Defect and the Collision Defect. 

In the process of machining, the cylinder liners were 
deformed under the combined action of various stresses. When 
the deformation exceeds the plastic limit, the slender flocculent 
or snowflake like cracks may appear on the surface of the 
cylinder liner. Most of the cracks occur on the inner and outer 
surface of the cylinder liner which may affect the reliability 
and replacement cycle of the cylinder liner. 

Wear defect usually refers to drag, block or furrow 
deformation on the surface of cylinder liner during production 
and transportation. Compared with the normal area, the wear 
area is generally silvery white. Wear defects usually occur on 
the end face or outer surface of the cylinder liner which may 
reduce the sealing, corrosion resistance or wear resistance of 
the cylinder liner, resulting in the decrease of engine power. 

Oil defect is a kind of pseudo defect which is formed by the 
air evaporation of the cleaning oil or antirust oil left on the 
outer or inner wall of the cylinder liner. Oil defects are charred 
black and long drop-shaped in appearance which are prone to 
false inspection. 

Scratch defect is a kind of non-uniform and strip-shaped 
ravine defect which is caused by the friction between 
impurities and cylinder liner in the process of processing or 
transmission. Scratch defects often appear on the inner or outer 
wall of the cylinder liner which may lead to unreasonable fit 
clearance improper assembly and other problems, thus 

reducing the wear resistance and mechanical properties of the 
cylinder liner. 

Collision defect are the falling off or blocky defects caused 
by the collision between the cylinder liner and the cylinder 
liner or the fence in the process of transportation. Most of them 
appear on the upper end face and skirt. Collision defects may 
reduce the cylinder liner sealing and engine efficiency, shorten 
the replacement cycle of cylinder liner, and lead to engine 
damage accidents. 

In the field of cylinder liner surface quality inspection, 
there is no clear standard to identify the types and severity of 
the above six kinds of defects. However, the sand defect, 
scratch defect and wear defect are common in most 
enterprises. Therefore, the deep learning defect detection 
method with a small number of samples was studied to detect 
the above three types of defects. 

B. Design of Machine Vision System 
As shown in Fig. 2, the machine vision system for the 

cylinder liner defect detection consists of three area array 
cameras and a linear array camera. Camera 1, camera 2 and 
camera 3 are area array cameras. Camera 1 was employed to 
capture the image of top face and its object distance is about 
270 mm. Camera 2 was employed to capture the image of the 
inner wall and its object distance is about 255 mm. The angle 
between its optical axis and the axis of camera 1 is about 62.5° 
± 5°. Camera 3 was employed to capture the image of the skirt 
and its object distance is about 247 mm. The angle between its 
optical axis and the cylinder liner axis ranges from 26.5° to 
36.5°. Camera 4 which is a linear array camera was used to 
capture the image of the outer wall and it object distance is 
between 338 mm to 358 mm. 
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Fig. 2. Schematic Diagram of Machine Vision System for the Cylinder Liner 

Defect Detection. 

The angle between the light 1 and the optical axis of the 
camera 4 is about 45°. The light 2 is a ring light source, the 
light 3 is a circular backlight and the light 4 is a ring light 
source of which the inner diameter is slightly larger than the 
outer diameter of the cylinder liner. Furthermore, the four light 
sources were installed at the determined positions. 

With the above machine vision system, the images of the 
top face, skirt, inner wall and outer wall of the cylinder liner 
were collected, as shown in Fig. 3. 
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Fig. 3. Images of the Top Face, Skirt, Inner Wall and Outer Wall, 

Respectively. 

IV. OPTIMAL DEPTH LEARNING MODEL FOR CYLINDER 
LINER DEFECT DETECTION 

A. Establishment of Image Set 
• Image Acquisition 

There is no image set for cylinder liner surface defect 
detection. Therefore, 7500 images of cylinder liner were 
collected by using the above machine vision system with the 
guidance of field engineers and the image sizes are 2048 pixels 
× 2448 pixels. Among these images, 586 were defective. The 
sand defect images of the top face, the skirt, the inner wall and 
the outer wall of the cylinder liner are shown in Fig. 4, 
respectively. 

 
Fig. 4. Sand Defect Images of the Top Face, the Skirt, the Inner Wall and the 

Outer Wall of the Cylinder liner from Top Left to Bottom Right. 

• Imageset Augmentation 

The imbalanced datasets will make the results of 
convolutional neural network over biased to the classification 
of abnormal targets. In order to alleviate the over fitting 
problem and enhance the robustness of the network, 
considering that the cylinder liner image is gray image and the 
surface defects are small, we use upsampling method to expand 
the defect sample data to meet the requirements of neural 
network training data. 

The common data augmentation methods mainly include 
rotation, offset, clipping and scaling. The rotation 
enhancements are accomplished by rotating the image to the 
right or left by 30°, 45°, 60° and 90°. The offset enhancements 
are to move the image around to change the original defect 

position. When the original image is converted in one 
direction, the remaining space can be filled with 0. The 
clipping enhancements are to cut the original image at 30°, 
45°, 60° and 90° and fill the remaining space of the image with 
0. The scaling enhancement makes the whole image scale in 
different ratios. In the convolution neural network training, 
more image invariant features can be learned to improve the 
detection accuracy. 

The augmented dataset contains 5000 images which is 
basically balanced with the normal sample. The set was 
divided into the training set, the verification set and the test set 
by 8:1:1. 

• Labelling Defects 

Some regions of interest were extracted to reduce the 
search time of target region and the training time of neural 
network by the bi-dimensional maximum conditional entropy 
based threshold segmentation method of which a detailed 
derivation was carried out in our previous work. The 
mathematical model of grey entropy is as follows. 
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where m represents gradient levels of gradient image of 
gray image, n represents gray levels of gray image, ijp  
represents the probability that a pixel with higher gradient but 
lower gray belongs to an edge and ijp  represents the 
probability that a pixel with higher gradient and gray belongs 
to an edge. 

(s*, t*) which makes the objective function H (s, t) take the 
maximum value is the optimal threshold for segmentation of a 
grayscale image and its gradient image. 

t* was used to segment the cylinder liner image and extract 
the regions of interest such as the skirt and the top face. 
Labelimg which is a digital image labeling tool was employed 
to label the cylinder liner image. The label information is 
stored in an XML file which contains the image name, the 
image resolution, the defect size, the defect location and the 
defect names including the wear defect, the scratch defect and 
the sand defect and which is shown in Fig. 5. 

B. Improvement of Anchor 
A differential evolution search algorithm was employed to 

optimize the aspect ratios and scales of anchors to address the 
problem that the default anchor configuration turns out to be 
ineffective for detecting lesions of small size and large ratios 
[27]. 

Based on the default anchor configuration, this algorithm 
finds the optimal anchor setting of three scales and five ratios 
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through the iteration of the objective function. Suppose that the 
three scales are s1, s2, s3 and ε1 > s1, s2, s3 > ε2 > 0; the five 
ratios are β2:1, β1:1, 1:1, 1:β1, 1:β2 and ε > β2 > β1 > 1; where, 
ε1, ε2 and ε are constants. The optimal scales for detection of 
small size and large ratio objects are 0.680, 0.540 and 0.425 
and the optimal scales are 3.27:1, 1.78:1, 1:1, 1:1.78 and 
1:3.27. The anchor sizes remain unchanged which are still 32 
pixels, 64 pixels, 128 pixels, 256 pixels and 512 pixels. 

C. Determination of Optimal Deep Learning Model 
Usually, the deep learning models were evaluated by the 

indicators of recall, precision and accuracy. 

TPRecall
TP FN

=
+

                    (4) 

TPPrecision
TP FP

=
+

                            (5) 

TP TNAccuracy
TP TN FP FN

+
=

+ + +
                 (6) 

<annotation verified="no">
    <folder>Desktop</folder>
    <filename>Image file name with suffix</filename>
    <path>Path name (including image file name)</path>
    <source>
        <database>Unknown</database>
    </source>
    <size>
        <width>An integer represents the defect width</width>
        <height>An integer represents the defect height</height>
        <depth>1</depth>
    </size>
    <segmented>0</segmented>
    <object>
        <name>Defect name</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>x-coordinate of defect box (minimum)</xmin>
            <ymin>y-coordinate of defect box (minimum)</ymin>
            <xmax>x-coordinate of defect box (maximum)</xmax>
            <ymax>y-coordinate of defect box (maximum)</ymax>
        </bndbox>
</annotation>  

Fig. 5. XML File with Defect Information. 

AP value was employed to represent the recognition rate of 
the deep learning model on a certain type of defect, which is 
equal to the area of the trapezoid enclosed by the P-R curve 
formed by recall and precision and the coordinate axes. mAP 
represents the average recognition rate of the model on all 
types of defects and its value ranges from 0 to 1. The larger the 

value of AP or mAP, the higher the defect recognition rate. 
The mAP will be adopted to evaluate and determine the 
optimal target detection model. 

Three groups of experiments were carried out to analyse 
the influence of factors of the detection models, the number of 
datasets and the training strategy on convolutional neural 
network. The random gradient descent method was used to 
optimize the parameters, the loss function was calculated by 
the softmax layer, the initial learning rate is 0.00001 and the 
decay rate of the learning rate is 0.1. These configurations 
remained unchanged in the experiments to ensure 
comparability. 

As shown in Fig. 6, the mAPs of SSD, Faster-RCNN and 
Retinanet with transfer learning strategy are higher than those 
of detection networks without transfer learning strategy. 
Therefore, the transfer learning strategy can shorten the 
training time and contribute to achieving higher detection 
accuracy which is suitable for a small number of samples. 
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Fig. 6. Influence of Learning Strategy. (a), (b) and (c) is SSD, Faster-RCNN 

and Retinanet, Respectively. 

The performance of the three networks with transfer 
learning strategy were compared and the comparison results 
are tabulated in Table I. According to the table, the mAPs of 
SSD, Faster-RCNN and RetinaNet are 0.597, 0.604 and 0.620, 
respectively. RetinaNet has the highest detection accuracy. In 
terms of time, the SSD is the fastest which takes 0.976 s and 
the RetinaNet is 0.212 s slower than the SSD. The RetinaNet 
will be employed as the main network for cylinder liner 
surface defect detection to achieve a good compromise in 
accuracy and speed. 
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TABLE I.  PERFORMANCE COMPARISON OF THREE NETWORKS WITH 
TRANSFER LEARNING STRATEGY. 

Detection Networks Time (/s) mAP 
SSD 0.976 0.597 
Faster-RCNN 1.360 0.604 
RetinaNet 1.168 0.620 

Furthermore, the effect of sample size on the performance 
of Retinanet was compared experimentally. Using 25%, 50%, 
75% and 100% samples to train Retinanet, the mAP is 0.11, 
0.40, 0.53 and 0.62, respectively. It can be seen that the more 
samples, the higher the accuracy of the network. Therefore, the 
data-driven deep learning model needs a lot of data to train its 
deep network, so as to obtain accurate feature extraction. 

According to the above experiments, the Retinanet with the 
transfer learning strategy will be used for the cylinder liner 
defect detection. 

D. Highlight Defect Areas of Support Samples 
RetinaNet with transfer learning strategy achieves the 

highest mAP, but only 62%. By analyzing the dataset, it was 
found that the defect area only accounts for 0.25% of an image. 
However, the Retinanet uses the feature pyramid network 
(FPN) to produce feature maps with rich semantic. Most of the 
candidate image windows are background (negative classes) 
and only a few areas contain defects (positive classes). A large 
number of background cover up the defects which makes it 
impossible to fully extract the feature information of small 
defects in the process of the deep neural network training and 
finally leads to the low accuracy. 

To highlight the defect to improve the detection accuracy, 
according to the location and area of the defect from the XML 
file, 100 pixels were extended to the top, bottom, left and right 
of the defect to form an image window to surround the defect. 
Then the defect area was updated by the formed window. 
Compared with the original image, the proportion of defect 
area was increased significantly and the detection accuracy is 
expected to be improved, as shown in Fig. 7. 

The proportion of the redefined defect area in an image is 
significantly increased. Therefore, the accuracy of defect 
detection is effectively improved. Through the above method, 
the accuracy of Retinanet was improved from 0.62 to 0.71, 
which was increased by 14.52%. For the sand defect, scratch 
defect and wear defect, the AP value is 0.78, 0.69 and 0.66 
respectively. 

 
Fig. 7. Extended Defect Area. The First Line, the Second Line and the Third 
Line Respectively Correspond to Three Kinds of Defects: Sand, Scratch and 

Wear. 

V. DESIGN OF DETECTION SYSTEM AND FIELD 
EXPERIMENT 

A. Configuration of Detection System 
The general layout of the cylinder liner surface defect 

detection system is shown in Fig. 8, the field oriented cylinder 
liner defect detection system is shown in Fig. 9, and the 
feeding system and image acquisition system are shown in Fig. 
10. 

According to Fig. 8 and Fig. 9, the workflow of the field 
oriented cylinder liner defect detection system is as follows: 
the cleaning subsystem cleans the cylinder liner; as shown in 
Fig. 10 (a), the feeding subsystem transports the cylinder liner 
to the end of the belt to trigger the position sensor; the lifting 
subsystem grabs and lifts the cylinder liner to the rotary 
platform accordingly; as shown in Fig. 10 (b), the rotary 
platform and the cylinder liner are sent to the detection room 
to complete the whole process of surface defect detection; they 
are sent out of the detection room and the sorting subsystem 
pushes the genuine and defective products to the 
corresponding conveyor belt according to the detection results. 
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Fig. 8. Framework of the Detection System. 

 
Fig. 9. On Site Cylinder Liner Defect Detection System. (a) is the Feeding 

Subsystem, (b) is the Detection Room and its Core Part is the Imaging 
Subsystem and (c) is the sorting Subsystem. 
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A workstation was used for network model training of 
which the memory is 256 GB, the model of the graphics card is 
NVIDIA Tesla P100, the video memory is 16 GB, and the 
operating system is Ubuntu 16.04. The framework of deep 
learning is tensorflow. The network model was offline trained 
by using the above dataset and it was deployed into an 
industrial-grade server successively. 

B. Modular Design of Inspection System 
After oil washed, the cylinder liner is easy to adhere to 

impurities such as lint and dust on the inner and outer walls 
which may easily lead to misjudgment during automatic optical 
inspection (AOI). Therefore, a cleaning subsystem was 
designed which mainly includes the air cylinder, air knife, oil 
buffer and other parts, as shown in Fig. 11 (a). The air knife 
forms an angle of 30 degrees with the axis of the cylinder liner 
to spray high-pressure gas to the surface of the cylinder liner to 
clean the surface of the cylinder liner and the air knife is 
pushed by the air cylinder to move up and down with the 
guidance of the guide rod to achieve the entire surface. The 
above cleaning process usually needs to be repeated twice. In 
addition, a shock absorber was employed at the joint between 
the cleaning device and the cylinder liner to reduce the impact 
of the start and stop impact of the air pump on the system. 

 
Fig. 10. Two subsystems. (a) is the Feeding Subsystem and (b) is the Imaging 

Subsystem. 

The grasping device is the end executive device of the 
screw module of which the main design requirements include: 
(1) the clamping force should be large enough to ensure 
reliable clamping and avoid displacement or vibration during 
handling. However, it should not be too large to prevent the 
cylinder liner surface from being damaged. (2) The central line 
of the gripper coincides with the central line of the cylinder 
liner to ensure that the cylinder liner will not collapse during 
clamping to avoid secondary damage to the cylinder liner. (3) 
The gripper should be suitable for both D123 and D130 

cylinder liners. Therefore, a gripper driven by air cylinder was 
designed. Oil resistant rubber was pasted on the inside of the 
claw to increase friction to prevent the cylinder from sliding, 
as shown in Fig. 11 (b). 

 
Fig. 11. Two submodular. (a) is the Cleaning Subsystem and (b) is the 

Grasping Device. 

The design of detection room includes the design of 
rotating platform, as shown in Fig. 12 (a), and internal 
structure of the detection room. The cylinder liner is clamped 
on the rotating platform through the central positioning mode 
and the platform and the cylinder liner is driven to rotate to 
collect images of the inner and outer cylindrical surface to 
achieve the defect detection of the inner and outer walls. The 
higher the center positioning accuracy is, the greater the 
clamping force will be. If the clamping force is too large, it is 
easy to scratch texture on the inner surface, causing damage to 
the inner wall. If the positioning accuracy is too low, the 
cylinder liner cannot rotate reliably with the platform which 
affects the image acquisition. Therefore, the diameter of the 
rotating platform is 4mm smaller than the inner diameter of the 
cylinder liner and the motor drives the platform to rotate by the 
PLC. The internal structure design mainly includes the support 
and mechanical interface design for cameras, lights and 
rotating platform, as shown in Fig. 12 (b). 

(a) (b)

 
Fig. 12. Two Designs of Detection Room. (a) Rotating Platform and (b) 

Supports and Mechanical Interfaces. 
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VI. EXPERIMENTS AND RESULTS 
The field experiments were carried out using the network 

model trained in the third section and the dataset containing 
three types of defects: the sand, the scratch and the wear defect 
with 80 images for each type of defect. The experimental 
results were tabulated in Table II. The detection accuracy of 
sand defects is 77.5%, that of scratch defects is 70%, that of 
wear defects is 66.3% and the average accuracy is 71.26%. 

TABLE II.  DETECTION RESULTS OF THREE TYPES OF DEFECTS 

Defects Images Right False 
detection Undetected Accuracy 

(%) 
sand 80 62 13 5 77.5 
scratch 80 56 15 9 70.0 
wear 80 53 17 10 66.3 

The comparison results of some traditional non-dedicated 
defect detection methods and the proposal were tabulated in 
Table III. The average accuracy of feature point registration-
based method is 36.0% and that of morphology-based method 
is only 27.3%, but that of the method based on deep learning 
proposed in this paper is 71.3%. Compared with the feature 
point registration-based method, the proposed method 
improves the detection accuracies of sand, scratch and wear 
defect by 51.5%, 28% and 26.3%, respectively. Compared with 
the morphology-based method, the proposed method improves 
the detection accuracies of sand, scratch and wear defect by 
51.5%, 44% and 36.3%, respectively. The deep learning-based 
method is more effective for cylinder liner defect detection 
compared with some traditional non-dedicated methods. 

TABLE III.  COMPARISON OF THE PROPOSAL AND SOME TRADITIONAL 
NON-DEDICATED METHODS. 

defects Feature point 
based method 

Morphology based 
method Proposal 

sand 26.0% 26.0% 77.5% 
scratch 42.0% 26.0% 70.0% 
wear 40.0% 30.0% 66.3% 
mean 36.0% 27.3% 71.3% 

The effect of proposed deep learning-based method was 
shown in Fig. 13. Our proposal can detect tiny defects such as 
the sand, the scratch and the wear defects, identify the types of 
defects and locate the defects in the very large cylinder liner 
images. The detection method can basically meet the actual 
cylinder liner surface detection requirements of the enterprise 
to continuously improve the product quality. 

 
Fig. 13. Some Results of Proposed Deep Learning-Based Method. 
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However, the detection accuracy still needs to be improved. 
We can continue our research work from several aspects, such 
as the updated data sets [28], the motion platform control 
algorithms [29], the automatic labeling method [30], and the 
deep network model [31], which is expected to reduce the false 
detection rate and missing detection rate and further improve 
the accuracy of our method. 

1) The network model can be further trained to improve its 
fitting accuracy by continuously adding the field data to the 
dataset to increase the amount of sample data. 

2) The accuracy and reliability of the motion platform and 
its controller need to be further improved to ensure the 
acquisition of highly reliable images. 

3) For the online defect detection, an automatic labeling 
method needs to be developed to avoid the missing labeling 
problem of manual labeling and improve the efficiency of 
defect labeling. 

4) The network model can be improved and optimized to 
further improve its learning ability with a few samples and its 
detection ability for small defects. 

VII. CONCLUSION 
To address the actual needs of the cooperative enterprise, 

this paper developed a method and its system for cylinder liner 
surface defect detection based on deep learning. First, a 
machine vision defect detection system based on the causes 
and types of cylinder liner defects was built. Then, a dataset 
augmentation method based on the automatic extraction of 
region of interest was proposed which effectively increases the 
number of samples. Next, an automatic extension method of 
defect region was developed with the XML file which 
improves the detection ability of our proposal for small defects. 
After this, the network model and training strategy were 
experimentally determined and the influence of sample size on 
detection accuracy was discussed. Lastly, the scheme of 
implementing cylinder liner defect detection system in 
industrial field was given and the experiments were carried out. 
The results show that the detection accuracies of sand, scratch 
and wear defects are 77.5%, 70% and 66.3% which are 
improved by at least 26.3% compared with the traditional 
methods and that our method has achieved preliminary results 
and effects. 
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