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Abstract—Underwater images are important in marine science
and ocean engineering fields owing to giving color information,
low cost, and compact. Yet obtained underwater images are
often degraded and restoring and enhancing wavelength selective
signal attenuation of underwater images depending on complex
underwater physical process is essential in practical application.
While recently developed deep learning is a promising choice,
constructing sufficiently large dataset covering whole real images
is challenging, peculiar to underwater image processing. In
order to supplement relatively small dataset, previous studies
alternatively construct an artificial underwater image dataset
based on a physical model or Generative Adversarial Network.
Also, incorporating traditional signal processing methods into
the network architecture has shown promising success, though
enhancement of severely degraded underwater images remains
to be a big issue. In this paper, we tackle underwater image
enhancement based on an encoder-decoder based deep learning
model incorporating discrete wavelet transform and whitening
and coloring transform. We also construct a severely degraded
real underwater image dataset. The presented model shows
excellent results both qualitatively and quantitatively in the
artificial and real image dataset. Constructed dataset is available
at https://github.com/tkswalk/2022-IJACSA.
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I. INTRODUCTION

Underwater optical images are essential in sensing vast
ocean environment. Optical cameras beneficially capture high
resolution color information, as well as relatively low cost and
compact compared to other acoustic devices. While underwater
optical images are essential especially in tasks requiring color
information, such as ocean monitoring, maintenance of port
facilities, and resource development, serious image degradation
is obstacle in efficient utilization. Specifically, wavelength
selective color distortion which displays blueish, greenish,
and yellowish appearances, or decreased contrast caused by
complex underwater physical process worsens the visibility of
an underwater image [1], [2], as shown in the upper part of
Fig. 1.

To overcome the low visibility of underwater images and
expand the scope of application, underwater image enhance-
ment methods based on deep learning have rapidly improved
by refining model architecture and training dataset. In under-
water image enhancement, deep learning models are mainly
trained by mapping degraded images to the corresponding
clear images. However, collecting clear and degraded real
underwater image pairs is high cost or inherently difficult

Fig. 1. An Example of a Severely Degraded Underwater Image (Above) and
an Enhanced Result by our Model (Below).

especially in turbid water in a coastal region. Alternatively,
artificial underwater image datasets constructed with a simpli-
fied physical model or Generative Adversarial Network (GAN)
are employed for training, yet their effectiveness are limited
because real underwater images depend on complex physical
process and many physical parameters like water body or
ambient light and may be apart from artificial images [3], [4].
Subsequently, an artificial underwater image dataset based on
the revised underwater image formation model [4] is recently
proposed which more reflects real underwater environment [5].

Under the constraint of limited amount of data, incorpo-
rating traditional signal processing methods into the network
architecture is also effective in underwater image enhancement.
While the shallow CNN based model incorporating white
balance, histogram equalization, and gamma correction has
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shown measurable success, enhancement of severely degraded
underwater images remains to be a challenging issue [6].

In this paper, we tackle severely degraded underwater
image enhancement with an encoder-decoder based network
combining discrete wavelet transform and whitening and col-
oring transform (WCT). The high frequency components of
an input image is structurally extracted with discrete wavelet
transform in the encoder part, and is preserved by passing
them to the decoder part, thereby obtaining a sharp output.
Also, as underwater images are quite diverse and display
various tones of color and degrees of blurriness, input image
features are whitened and mapped to style image features with
WCT to stabilize training. The presented model is trained with
the recently proposed physically revised artificial underwater
image dataset [5] and an elaborated loss function. Also, we
present a seriously degraded real underwater image dataset
taken in Okinawa, Japan. The constructed dataset includes
blueish and greenish images of divers, an underwater con-
struction machine, and rubble mounds of port structures. Our
underwater image enhancement model is evaluated with the
artificial image dataset and the constructed real image dataset,
showing fine results both qualitatively and quantitatively. Our
main contributions are summarized as follows:

• We present an underwater image enhancement model
combining discrete wavelet transform and whitening
and coloring transform.

• We construct a real underwater image dataset includ-
ing severely degraded blueish or greenish underwater
images.

• The presented model successfully removes overall
blueish tones of seriously degraded underwater im-
ages, mainly outperforming state-of-the-art underwa-
ter image enhancement methods both in real and
artificial datasets.

II. RELATED WORK

A. Previous Underwater Image Enhancement Methods

Supervised underwater image enhancement models based
on Convolutional Neural Network (CNN), Generative Adver-
sarial Network (GAN), and recently appeared Vision Trans-
former (ViT), have rapidly improved. As models mainly learn
pixel transformation tasks, skip connection is often employed
not to apart from the original input image. Also, encoder-
decoder process is adopted to mitigate the input noise. To
be specific, UWCNN is a densely connected CNN model
where an input is injected to the different layers with no
pooling layers or batch normalization steps [7]. FUnIE-GAN
is a fully convolutional conditional GAN model. The generator
has five encoder-decoder pairs with several skip connections
to enable real time inference [8]. The above two models
are either trained with an artificial underwater image dataset.
Recently proposed ViT based model is also equipped with
several skip connections to stabilize training. To cope with
wavelength selective and spatially variant signal attenuation
of underwater images, channel-wise attention and spatial-wise
attention are incorporated into the architecture [9]. As the diffi-
culty of covering whole real underwater images, incorporating
traditional signal processing methods to the network process

is effective in underwater image processing. For example,
Water-Net is a simple CNN based network which fuses the
results of white balance, gamma correction, and histogram
equalization [6]. First, three results of each signal processing
methods and the original input are fed to the network to
predict the three fusion coefficient maps. The predicted three
coefficient maps are multiplied by the enhanced results which
are obtained by passing through the three independent feature
transformation units to reduce the artifacts introduced from
the signal processing methods. The refined output is finally
obtained by fusing the above three results. Also, discrete
wavelet transform is employed to preserve fine image struc-
ture [10], [11]. Other than learning based methods, many
unsupervised underwater image enhancement methods assume
physical model and correct color distortion by imposing white
balance, which often requires the estimation of ambient light
or average color [12], [13].

B. Previous Underwater Image Datasets

As obtaining sufficient real underwater image pairs is
challenging, construction of the dataset itself is important in
underwater image processing. Based on a simplified underwa-
ter image formation model, [7] constructed an artificially de-
teriorated underwater image dataset to which visually matches
real underwater images by setting the attenuation coefficient
to a constant and neglecting other related physical parame-
ters. More recently, based on the revised underwater image
formation model [4], an artificial underwater image dataset
is proposed which clearly takes into account the dependency
of water types, lightning conditions, and camera sensors. The
constructed dataset is implied to be more real compared to the
previous one [5]. GAN-based approaches generate artificial
underwater images by converting initially clear underwater
images to degraded ones to cheat the classifier. The model
is trained with an unpaired dataset by minimizing Cycle-
Consistency loss [8], [14]. Other than artificial underwater
images, clearly enhanced real underwater images are collected
among results of many conventional enhancement methods by
scoring human ranking by hand. This approach is expected to
reflect human perceptions, yet is laborious and the sample size
is limited to at most a few thousand [6], [9].

III. METHODOLOGY

Presented underwater image enhancement model is based
on a simple encoder-decoder network architecture with several
skip connections, similar to well known U-Net in image
segmentation task [15], as shown in Fig. 2. Pooling and up-
sampling layers are respectively replaced with discrete wavelet
transform and inverse discrete wavelet transform to maintain
structural information. Whitening and Coloring Transform
(WCT) mainly employed in style transfer task is also incorpo-
rated into the model to mitigate covariate shift between training
data distribution and test data distribution. Brief introduction
of discrete wavelet transform and WCT is described followed
by the details of model architecture.

A. Signal Reconstruction with Wavelet Transform

The power of discrete wavelet transform (DWT) especially
using Haar wavelet is shown in style transfer and inverse
problems by generalizing conventional pooling operations
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Fig. 2. An Overview of the Model Architecture. An Input Image goes
through Several Convolution, Padding, and ReLU Layers Followed by WCT

Layers in the Color Correction Module. High Frequency Components,
HH,HL,LH, Extracted with Discrete Wavelet Transform in the Encoder are

Passed to the Decoder to Preserve Detailed Signal. Compared to Color
Correction Module, the Refinement Module is Simply Implemented by

Removing the WCT Layers and Adding Several Convolutional Layers to
Mitigate Noise.

like average pooling or max pooling, which simply subsam-
ples and summarizes the neighboring pixel information [16],
[11], [17]. Haar wavelet operation consists of four kernels,
{LLT ,LHT ,HLT ,HHT}, where L and H are respectively de-
fined as LT := 1√

2
[1 1] ,HT := 1√

2
[−1 1]. Frequency infor-

mation is efficiently retained and extracted with L and H, and
low frequency signal is captured by L while high frequency
signal is captured by H. Inverse discrete wavelet transform
(IDWT) is the mirror operation of discrete wavelet transform
and is employed for structural reconstruction in the decoder
part with minimal noise amplification.

B. Whitening and Coloring Transform (WCT)

The aim of WCT in style transfer is to obtain a styl-
ized image preserving content features [18]. After feature
extraction with a pre-trained network, covariance matrix of
high dimensional feature maps fc of content image is first
made to be an identity matrix (whitening), followd by singular
value decomposition. The whitened content feature f̂c is then
projected onto the eigenspace of the style feature fs (coloring),
described as following procedure:

1) Whitening: Obtain whitened feature f̂c =EcD
− 1

2
c ET

c fc

2) Coloring: Obtain colored feature f̂cs = EsD
1
2
s ET

s f̂c

where Ec and Dc are respectively an orthogonal matrix of
eigenvectors and a diagonal matrix of the covariance matrix
of fc, and Es and Ds are that of fs. Here, fc f T

c = EcDcET
c is

satisfied. Colored feature f̂cs satisfies f̂cs f̂ T
cs = fs f T

s , preserving
higher order feature correlation which reflects style informa-
tion. As underwater image distribution is complex and various,

Fig. 3. Our Model Recovers the Severely Degraded Artificial Underwater
Image Better (Right) Compared with the Baseline (Left).

TABLE I. PSNR AND SSIM OF OUR MODEL AND BASELINE PER 10
WATER TYPES.

Water-type I IA IB II III 1C 3C 5C 7C 9C

PSNR Propose 16.61 16.316 16.568 15.124 15.8 16.987 15.94 16.214 15.485 15.559
baseline 16.031 15.514 15.369 13.896 14.351 15.838 14.53 15.124 13.999 14.175

SSIM Propose 0.702 0.686 0.684 0.608 0.649 0.7 0.652 0.662 0.626 0.629
baseline 0.684 0.66 0.65 0.566 0.606 0.672 0.609 0.625 0.578 0.582

WCT is incorporated in our model to mitigate the covariate
shift between training data and testing data.

C. Network Architecture

The network architecture shown in Fig. 2 is a simple
encoder-decoder based model with several skip connections
and no pooling layers. In order to preserve detailed image
signal, high frequency components extracted with discrete
wavelet transform in the encoder part, {LHT ,HLT ,HHT}, are
passed to the inverse discrete wavelet transform in the decoder
part. WCT is incorporated in the color correction module to
normalize feature maps.

Input images are first passed through a convolutional
layer followed by several convolution, padding, and ReLU
activation layers in the color correction module. Then, en-
coded features go through the discrete wavelet transform layer
and low frequency component, LLT , is processed with WCT
and subsequent deeper layers. The remaining high frequency
components, LHT ,HLT ,HHT , are skipped to the decoder
part to preserve detailed signal. The encoded features and
the passed high frequency components are up-sampled with
inverse discrete wavelet transform followed by several convo-
lution, padding, and ReLU activation layers. The subsequent
refinement module is similar to the color correction module,
but WCT is removed and several convolution, padding, and
ReLU activation layers and the last layers of padding, con-
volution, and hyperbolic tangent activation layer are added
to mitigate input noise. Such repeated structure is designed
to extract local image structure. Kernel size and stride of
all convolutional layers are set to 3 and 1, respectively. We
use pre-trained model on photo-realistic style transfer method
[11], denoted as baseline, to normalize the complex input
distribution caused by the complicated real underwater envi-
ronment. Our model is similar to [11], but one DWT and IDWT
layers, a few convolution, padding, and ReLU activation layers,
and the last layers of padding, convolution, and hyperbolic
tangent activation layer are added. Here, Fig. 3 shows that
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Fig. 4. We Collect Real Underwater Images around Rubble Mounds of Port Structures taken in Okinawa, Japan. The Collected Underwater Images are
Significantly Degraded, Showing Blueish or Greenish Appearances.

our model recovers the severely degraded artificial underwater
image better (right) compared with the baseline (left). As for
quantitative metric, Peak Signal to Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM), full reference
metrics of image quality which reflects human perception, are
computed. PSNR and SSIM of our method and the baseline
per 10 water types classified by [19], are shown in Table I.
Scores of PSNR and SSIM are improved approximately 1 and
0.3, respectively, compared to the baseline in all water types.

D. Loss Function

We combine three loss terms, reconstruction loss Lrec,
Laplacian pyramid Lap1 loss Llap, and luminance loss Llum
between a correct image Ic and an estimated image Ie for
training our network, defined as follows:

Loss = αLrec +βLlap +λLlum (1)

where α , β , and λ are hyper parameters.

Reconstruction loss Lrec means the pixel wise l1 distance
between Ic and Ie, denoted as follows:

Lrec (Ic, Ie) = |Ic − Ie|1 (2)

Laplacian pyramid Lap1 loss Llap measures differences
between Ic and Ie in Laplacian pyramid representation to take
into account various frequency components and get a structural
image [20], [21], defined as:

Llap (Ic, Ie) =
22i

∑
i
|Li(Ic)−Li(Ie)|1 (3)

Here, Li(I) means the i-th level of the Laplacian pyramid
representation of an image I [22].

Also, we propose luminance loss Llum. The luminance
loss measures pixel wise difference between Ic and Ie of
their luminance components after transforming to YCbCr color
space, described as follows:

Llum = |Y (Ic)−Y (Ie)|1 (4)

where luminance component Y can be defined as:

Y = 0.299R+0.587G+0.114B

Here, R, G, and B mean the red, green and blue channels
of the original image, respectively. The luminance loss is
proposed to facilitate training, as luminance components are
less susceptible to color tones of an underwater image.

IV. EXPERIMENTS

A. Construction of Real Underwater Image Dataset

We collected real underwater images around rubble mounds
of port structures in Okinawa, Japan. The constructed dataset
contains significantly degraded underwater images of an under-
water construction machine, a diver, and rubble mounds, which
are taken with GoPro HERO4. As shown in Fig. 4, the under-
water images are directly taken by a diver or a camera mounted
with the upper part of the construction machine, showing
blueish or greenish appearances. The constructed dataset is
available at https://github.com/tkswalk/2022-IJACSA.

B. Experimental Setting

We train the model with a recently proposed artificial
underwater image dataset [5] based on the revised underwater
image formation model which more reflects real underwater
environment. The model clearly considers the dependencies
of related physical parameters, such as water types, lightning
conditions, and camera sensors [4]. In the dataset, wavelength
data of 10 water types classified by [19], two camera sensors,
and the three light spectrum data are employed, namely 60
kinds of artificial images are generated per one image. Clear
indoor RGB-D images from NYU Depth Dataset V2 [23]
containing depth information are transformed based on the
underwater physical model, resulting in 86940 image pairs in
total [4], [5]. Among the 1449 original images from NYU
Depth Dataset V2, first 1000 images are used for the training
data, next 300 images are used for the validation data, and the
last 149 images are used for the test data.

A degraded input image is first resized to 256 × 256
resolutions and mapped to an enhanced image. The coefficients
of the loss function, α , β , and λ , are respectively set to 1,
10, 1. Adam optimizer [24] is adopted and the learning rate
is set to 0.0001. The training epoch is 80 and the model is
implemented with PyTorch and GeForce RTX 2080 Ti GPU.

C. Results and Discussions of Artificial Underwater Images

We qualitatively and quantitatively compare the restora-
tion results with available state-of-the-art underwater image
enhancement methods. As shown in Fig. 5, FUnIE-GAN (4th
row) [8], UWCNN [7] (7th row), Water-Net [6] (8th row), and
U-Transformer [9] (9th row) are evaluated for the deep learning
based approaches, while results of retinex-based theory (5th
row, denoted as Retinex) [13] and underwater dark channel
prior (6th row, denoted as UDCP) [12] are also compared for
the unsupervised methods. The first row of Fig. 5 shows the
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TABLE II. RESULTS OF PSNR PER 10 WATER TYPES

PSNR I IA IB II III 1C 3C 5C 7C 9C

UWCNN 14.74 13.95 13.31 11.03 11.17 11.31 11.3 10.37 10.89 11.11
FUnIE-GAN 17.3 15.8 14.99 13.54 13.45 15.95 13.57 13.86 12.44 12.17
Water-Net 17.02 15.45 14.6 13.73 13.14 16.52 13.24 12.65 12.4 12.5
Retinex 15.86 14.87 13.97 12.87 12.93 14.52 13.01 13.48 12.39 12.49
UDCP 13.38 12.55 11.69 11.03 10.78 12.4 10.81 10.59 10.36 10.54
U-Transformer 16.63 15.15 14.46 13.11 13.09 15.5 13.21 13.54 12.4 12.59
Ours 16.61 16.32 16.57 15.12 15.8 16.99 15.94 16.21 15.48 15.56

TABLE III. RESULTS OF SSIM PER 10 WATER TYPES

SSIM I IA IB II III 1C 3C 5C 7C 9C

UWCNN 0.695 0.655 0.622 0.511 0.511 0.541 0.534 0.508 0.462 0.48
FUnIE-GAN 0.684 0.64 0.611 0.55 0.561 0.644 0.564 0.567 0.53 0.528
Water-Net 0.765 0.683 0.655 0.592 0.599 0.706 0.603 0.586 0.57 0.5793
Retinex 0.715 0.677 0.652 0.579 0.603 0.676 0.606 0.624 0.575 0.5791
UDCP 0.658 0.607 0.544 0.479 0.476 0.588 0.479 0.462 0.452 0.469
U-Transformer 0.651 0.617 0.593 0.538 0.549 0.616 0.553 0.565 0.53 0.536
Ours 0.702 0.686 0.684 0.608 0.649 0.7 0.652 0.662 0.626 0.629

employed test data of indoor images from [23], and they are
artificially converted based on a underwater image formation
model, as shown in the second row. PSNR and SSIM, full
reference metrics measuring the image quality, are calculated
for the quantitative evaluation.

The artificial underwater image dataset contains various
colors and degrees of degradation which reflects water types
or lightning conditions [5]. In qualitative evaluation in Fig. 5,
many restoration results are not sufficiently well recovered
because of the severe image degradation of an input. While our
model relatively well restored blueish, greenish, and yellow-
ish artificial underwater images (3rd row), previous methods
hardly improve the visibility (4th [8], 6th [12], and 7th row
[7]) or insufficiently output whitish images (5th [13], 8th
[6], and 9th row [9]). Also, PSNR and SSIM per 10 water
types classified by [19] are respectively shown in Table II and
Table III. Our model achieves better performance compared to
other methods in 9 out of 10 water types. While our model
mainly outperforms other methods in almost all water types,
output images are sometimes decolored as shown in the 4th
column of the 3rd row.

D. Results and Discussions of Real Underwater Images

Next, we proceed to restoration results of real underwater
images, as shown in the 1st row of Fig. 6. Real underwater
images of 1st to 3rd column come from the constructed
dataset collected in Okinawa, Japan, and the remains come
from [6] which contains severely degraded underwater im-
ages. Our model (2nd row) restores significantly degraded
blueish (1st, 2nd, 3rd, 6th column), greenish (4th column),
and yellowish (5th column) underwater images. The output
images contain less overall blueish tones compared to results
of other methods. Among the results of previous methods,
Water-Net [6] (7th row) combining white balance, gamma
correction, and histogram equalization, are better also in the
yellowish and greenish inputs, yet failed to restore the severely
degraded input (1st column). The performance of Water-Net
is mainly dominated by the signal processing results as Water-
Net fuses outputs of them. FUnIE-GAN [8] (3rd row), GAN
based model, hardly improves the visibility and adds grid
artifact in severely degraded inputs. UWCNN [7] (6th row),
CNN based model, introduces color bias as shown in the
4th and 5th column. Vision transformer based U-Transformer

Fig. 5. Restoration Results of Artificial Underwater Images. 1st Row Shows
Original Indoor Images, 2nd Row Shows Transformed Input Images, 3rd

Row Shows Results of Proposed Model, 4th Row Shows FUnIE-GAN [8].
5th Row Shows Retinex [13], 6th Row Shows UDCP [12], 7th Row Shows

UWCNN [7], 8th Row Shows Water-Net [6], and 9th Row Shows
U-Transformer [9].

[9] (8th row) failed to recover greenish and yellowish inputs,
respectively shown in the 4th and 5th column. Among the
non-learning based methods, Retinex [13] (4th row) corrects a
greenish image (4th column), yet also adds reddish color bias
in other images (2nd, 3rd, and 6th column). UDCP [12] (5th
row), statistical method, hardly improves the overall visibility.
As no ground truth is available in real underwater images,
PSNR and SSIM are not computed. As real underwater images
are tremendously diverse, many supervised models fail to
enhance severely degraded underwater images. Among results
of previous methods, better results are obtained with Water-
Net [6]. Compared to Water-Net trained with a dataset less
than 1000 real underwater images, our training dataset is about
100 times larger than that of Water-Net. Also, large amount
of severely degraded underwater images are included [5], thus
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perceptually better results are tend to be obtained with our
model, as shown in the 1st column of Fig. 6.

E. Ablation Study of Loss Function

Ablation study of loss function in Eq. (1) is shown in
this section. PSNR and SSIM scores per 10 water types are
computed in Table IV. Results of employing only reconstruc-
tion loss Lrec are denoted as L1, plus luminance loss Llum are
denoted as L1+ lum, and all loss are denoted as ALL. Each
loss functions contribute the scores in almost all water types.
While proposed luminance loss Llum in Eq. (4) improves less,
we observe that the luminance loss stabilizes the training, as
it doesn’t depend on input color.

TABLE IV. ABLATION STUDY OF PROPOSED LOSS FUNCTION

Water-type I IA IB II III 1C 3C 5C 7C 9C

PSNR L1 16.37 16.081 16.269 14.832 15.485 16.659 15.62 15.873 15.174 15.265
L1+lum 16.392 16.1 16.251 14.877 15.551 16.651 15.665 15.857 15.24 15.318
ALL 16.61 16.316 16.568 15.124 15.8 16.987 15.94 16.214 15.485 15.559

SSIM L1 0.694 0.675 0.672 0.591 0.633 0.689 0.635 0.646 0.607 0.609
L1+lum 0.695 0.677 0.673 0.593 0.635 0.69 0.637 0.647 0.609 0.611
ALL 0.702 0.686 0.684 0.608 0.649 0.7 0.652 0.662 0.626 0.629

V. CONCLUSION

This study tackles significantly degraded underwater image
enhancement with a deep learning model incorporating discrete
wavelet transform and whitening and coloring transform. The
presented model is trained with the elaborated loss function
and recently proposed physically revised artificial underwater
image dataset. We also construct real underwater image dataset
taken near the rubble mounds of port structures. The dataset
characteristically includes severely degraded blueish or green-
ish underwater images. The presented model outperforms pre-
vious state-of-the-art underwater image enhancement models
in 9 out of 10 water types in the evaluation employing an arti-
ficial underwater image dataset. Also, our model successfully
removes blueish tints from real underwater images, showing
splendid results qualitatively and quantitatively.
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Fig. 6. Restoration Results of Real Underwater Images. 1st Row Shows Input Underwater Images, 2nd Row Shows Proposed Model, 3rd Row Shows
FUnIE-GAN [8], 4th Row Shows Retinex [13], 5th Row Shows UDCP [12], 6th Row Shows UWCNN [7], 7th Row Shows Water-Net [6], and 8th Row

Shows U-Transformer [9].
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