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Abstract—Internet of things has an essential role in various 

application domains. The number of Internet of Things 

applications makes researchers try to formulate how to design 

the architecture of the Internet of Things platform so that it can 

be used generically in various domains. Commonly used 

architectural designs consist of data collecting, data 

preprocessing, data analysis, and data visualization. However, 

sensor data that enters the platform often experiences anomalies 

such as constant values or being stuck-at zero, which are 

processed manually at the data preprocessing stage. In this 

research, we try to design an anomaly detection system on the 

Internet of Things platform that can automatically improve the 

platform's performance in detecting anomalies. In this study, we 

compared the False Positive Rate of several anomaly detection 

algorithms tested to real datasets in the environmental sensor 

data application domain. The results showed that the anomaly 

detector system on the Internet of Things platform had an 

optimal False Positive Rate of 0.9%. 

Keywords—Anomaly detection; sensor data; multivariate; 

Internet of Things; smart system 

I. INTRODUCTION 

Recently some urban environments have extensively used 
internet of things (IoT) technology to perform environmental 
monitoring and control. The acquisition and control settings 
and the network protocols vary according to the urban 
environment’s intended applications. These elements are 
critical to the ability of IoT networks to communicate 
successfully and transfer valuable data. Valuable data such as 
air temperature and relative humidity from inside and outdoor 
locations are essential for understanding the urban 
microclimate affecting the environmental condition. The 
monitoring process needs help from technology tools to 
automate the collection and understanding of data, for 
example, the internet of things platform. 

The platform collects microclimate parameters from all 
sensor data. The platform also serves as a data management 
platform. The data platform architecture has a subsystem called 
the data analytics module. The data analytics module is 
responsible for analyzing the collected data. The data analytics 
module can be implemented through video, text, or other 
analytics techniques such as statistical analysis or machine 
learning [1]. Anomaly detection is one of the analyses 
performed on the data collected in an agricultural environment 
[2]. 

The common goal of anomaly detection is to find patterns 
in data that do not conform to “expected” or normal behavior 
[3]. Anomaly detection is used to monitor the environmental 
situation of the greenhouse [19]. When anomalous behavior is 
detected, an alarm can be send to the administrator to do 
something. Several techniques are used to detect anomalies, 
which can be classified into two categories: conventional and 
data-driven. A conventional technique like the statistical 
method has a long history of detecting an outlier in the data 
[20]. Parametric or non-parametric techniques are included in 
this category. The underlying distribution of the data is known 
for the parametric category, and the parameters are estimated 
using the data. Parametric methods include those based on the 
Gaussian distribution, the regression model, or a combination 
of Parametric Distributions [4]. Data-driven techniques are 
frequently used to refer to learning-based methods in which the 
lack of a robust underlying mathematical model is 
compensated for by the availability of large amounts of data 
from which useful information can be “learned.” Machine 
learning is a large area of research with numerous application 
areas. Generally, it is divided into three distinct categories: 
supervised, unsupervised, and reinforcement learning. 
Additionally, due to technological advancements, deep 
learning is gaining popularity. Numerous machine learning 
techniques are frequently given a deep learning orientation or 
are combined with deep learning [18]. 

Several algorithms for detecting sensor abnormalities are 
used in agricultural environments. Several neural network 
algorithms were used, including artificial neural networks, 
autoencoders, recurrent neural networks, and long short-term 
memory. However, in complex environments where a clear 
variation pattern for some greenhouse parameters is 
complicated, environmental anomalies are rarely captured or 
recognized by univariate sensor data analysis or single machine 
learning models [5]. A multivariate anomaly detection 
approach is needed to be explored in Internet of Things area 
[16]. The anomaly detector system proposed in this study uses 
a GRU-based Variational Autoencoder. Guo proposed this 
method to handle IoT sensor data in Smart City [7]. The 
advantage of the GRU-based anomaly detection system is its 
reliability in discovering the data correlation and dependencies 
[14]. There are still weaknesses in actual labelling, which will 
be improved in this study by involving human knowledge as 
part of a multivariate anomaly detection system. The main 
contribution in this paper are summarized as follows: 
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 Anomaly detector framework for the Internet of Things 
platform handling type of sensors error combining data-
driven and knowledge-driven. 

 Algorithm comparison results that fit the Internet of 
things platform performing real-world datasets in the 
greenhouse system in the tropical country. 

The rest of this article is organized as follows. The Gated 
Recurrent Unit (GRU) and Variational Autoencoder (VAE)-
based anomaly detector are described in Section II, along with 
the proposed architecture combining GRU-VAE and Human-
in-the-loop method. By incorporating knowledge into data-
driven techniques, we can increase the detection rate of 
interesting anomalies [11]. Section III contains the results and 
discussion for three datasets. Finally, Section IV contains some 
concluding remarks. 

II. SYSTEM MODEL 

In this section, the Gated Recurrent Unit and Variational 
Autoencoder-based anomaly detection are given along with the 
proposed model. 

A. Gated Recurrent Unit 

The GRU, or gated recurrent unit, is an improvement over 
the RNN, or recurrent neural network. It was first introduced 
by Cho et al. in 2014[6]. GRUs are strikingly similar to Long-
Short-Term Memory (LSTM). Similar to LSTM, GRU utilizes 
gates to control the information flow. In comparison to LSTM, 
they are a more recent development. Consequently, they 
outperform LSTM and have a more straightforward 
architecture, as referenced in Fig. 1. 

 

Fig. 1. Illustration Long Short-Term Memory (LSTM) and Gated Recurrent 

Unit (GRU) Cell. 

At each timestamp t, it accepts the input Xt and the hidden 
state Ht-1 from the previous timestamp t-1. The new hidden 
state Ht is then output and passed to the subsequent timestamp. 
As shown in Figures 1 and 2, a GRU cell consists primarily of 
two gates instead of three in an LSTM cell. The reset gate 
comes first, followed by the update gate. The reset gate is 
responsible for the network's short-term memory, known as its 
hidden state (Ht). The equation for the reset gate is as follows. 

                        )            (1) 

The update gate for long-term memory is illustrated below, 
along with the gate’s equation. 

                        )            (2) 

The only distinction is between the weight metrics Uu and 
Wu. To locate the hidden state Ht in GRU, a two-step procedure 
is used. The first step is to create a candidate's hidden state. 
The hidden gate formula is described. 

                                  )            (3) 

It multiplies the input and hidden state from the previous 
timestamp t-1 by the output of the reset gate rt. This 
information is then passed to the tanh function, which returns 
the hidden state of the candidate. Important in this equation is 
how we use the reset gate's value to limit the previous hidden 
state's influence on the candidate state. If rt equals 1, the 
previous hidden state Ht-1 is evaluated in its entirety. Similarly, 
if rt is 0, the information from the previous hidden state is 
completely disregarded. After determining the candidate state, 
it is used to generate the current hidden state Ht. The Update 
gate enters the fray at this point. This equation is highly 
intriguing because, unlike LSTM, we control the historical 
information in Ht-1 and the new information in the candidate 
state with a single update gate. 

                            )            (4) 

Now, if Ut is close to 0, the first term in the equation will 
vanish, implying that the new hidden state will contain little 
information about the previous hidden state. On the other hand, 
the second part becomes nearly identical to the first, which 
implies that the hidden state at the current timestamp will 
contain only information from the candidate state. Guo uses 
GRU cells in both the encoder and the decoder to discover the 
data correlation and dependency [7]. 

B. Variational Autoencoder based Anomaly Detection 

Anomaly detection is one of those domains where machine 
learning has had such a profound impact that it is almost 
axiomatic that anomaly detection systems must be based on 
some type of automatic pattern learning algorithm as opposed 
to a set of rules or descriptive statistics (though many reliable 
anomaly detection systems operate using such methods very 
successfully and efficiently). Combining Bayesian inference 
with an AE framework, VAE is a probabilistic model. As 
opposed to a reconstruction error, a VAE-based anomaly 
detection model generates a probabilistic measure for the 
anomaly score [14]. Reconstruction probabilities are more 
objective and principled than reconstruction errors because 
they do not require modeling specific thresholds for judging 
anomalies. In particular, VAE assumes that a large number of 
complex data distributions can be described by a smaller set of 
latent variables with more straightforward probability density 
distributions. Thus, the objective of VAE is to find a low-
dimensional representation of the latent variables in the input 
data. 

The VAE is distinct from conventional autoencoders 
because it is probabilistic and generative. The VAE generates 
partially random outputs (even after training) and can also 
generate new data similar to the data on which it was trained. 
The VAE is structurally similar to a conventional autoencoder 
at a high level. However, the encoder acquires additional 
coding; specifically, the VAE acquires mean and standard 
deviation coding. The VAE then generates the latent variables, 
z, by randomly sampling from a Gaussian distribution with the 
same mean and standard deviation as the encoder. To 
reconstruct the input, these latent variables are “decoded.” The 
architecture is visualized by Fig. 2. 
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Fig. 2. A Variational Autoencoder Architecture (Top), and an Example of a 

Data Sample Going through the VAE (Bottom). 

C. Human Knowledge-Driven 

Human-driven machine intelligence is also known as 
"human in the loop." Human-in-the-loop (HITL) is a subfield 
of artificial intelligence that combines human and machine 
intelligence to create machine learning models [12]. In a 
conventional human-in-the-loop approach mentioned in Fig. 3, 
people are involved in a virtuous circle in which they train, 
tune, and test a specific algorithm. Humans initially assign 
labels to data, which provides a model with high-quality (and 
massive) training data. A machine learning algorithm learns to 
make decisions based on this data. Afterward, humans fine-
tune the model. Humans typically score data to account for 
overfitting, to teach a classifier about edge cases, or to add new 
categories to the model's scope. Individuals can evaluate and 
validate a model's outputs, especially when an algorithm is 
uncertain about a judgment or overconfident about an incorrect 
decision [10]. 

D. Proposed Architecture 

The proposed architecture for anomaly detection combines 
data-driven methods, specifically a GRU-based Variational 
Autoencoder, with expert-provided knowledge, as referenced 
in Fig. 4. The GRU-based variational autoencoder performs the 
anomaly detection process on the provided dataset and then 
compares it to the expert’s knowledge [13]. On the greenhouse 
dataset, this knowledge-driven approach is used. The following 
diagram illustrates a multivariate anomaly detector’s general 
architecture. The GRU-based VAE algorithm detects 
anomalies from multivariate sensors. Similarly, experts 
interpret anomalies in multivariate data. 

 

Fig. 3. The Development Cycle of Model [10]. 

 

Fig. 4. Fusion Architecture Combining Data-driven and Knowledge- Driven. 

This multivariate dataset is derived from three datasets: 
Intel Berkeley Dataset, indoor greenhouse sensors, and outdoor 
greenhouse sensors. Greenhouse sensors are being installed in 
Bandung, Indonesia, in the tropics. The data is cleaned of 
empty values in the preprocessing subsystem, and each dataset 
is resampled every 20 minutes. Following that, the feature 
scaling process is carried out, which is rescaling features to 
make them more suitable for training [15]. 

Data Preprocessing blocks are used to carry out several data 
management processes such as joining data, removing missing 
values, separating data according to sensor categories, 
resampling time and then entering into two different system 
blocks, namely data-driven block and human knowledge-
driven block[17]. 

A data-driven anomaly detection architecture will be 
proposed in this study, which will make use of a GRU-based 
variational autoencoder with multivariate time-series data as 
input. First, greenhouse data is loaded from the database and 
split into two dataset categories, indoor module, and outdoor 
module. Each sensor contains four sensor variables, a battery 
sensor, a humidity sensor, and two temperature sensors. 

The GRU input accepts four sensor inputs, each of which is 
connected to 150 cells in the first layer. Then, the output of the 
second layer is connected to the second layer’s 100 inputs. 

The human-in-the-loop method is used for knowledge-
driven anomaly detection. Experts make label 
recommendations based on data using threshold-based and 
point-based methods. This threshold-based approach will be 
used to improve the anomaly detection threshold generated by 
the GRU-based VAE in the future. At the same time, the point-
based is used by iteratively providing data to the expert and 
then labeling the points. The point-based anomaly detection 
process is measured by the amount of time it takes the expert to 
label it versus the amount of anomaly it takes to help the expert 
label it. 

III. EXPERIMENT RESULT AND DISCUSSION 

In this section, the proposed GRU-based VAE model is 
evaluated using the Intel Berkeley, greenhouse indoor sensor, 
and greenhouse outdoor sensor datasets. Shamshiri proposed 
microclimate parameters to be evaluated [8]. Four criteria, 
namely accuracy, the area under curve (AUC), true positive 
rate, and false positive rate, are used to evaluate the 
performance. All experiments were run on the Google Colab 
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with Intel Xeon @ 2.2GHz, 12 GB Ram, and 12GB NVIDIA 
Tesla K80 GPU. The algorithm was implemented using Python 
in Keras and Scikit-learn. The expert knowledge-driven 
method is evaluated using greenhouse indoor sensor and 
greenhouse outdoor sensor dataset. The expert will be given a 
set of preprocessed data and labeled them. The time execution 
and the number of anomaly data will be compared as the 
evaluation metric. The expert knowledge-driven method 
performs better when the time required to determine the 
number of known anomalies is reduced. 

A. Intel Berkeley Dataset 

This dataset was compiled using data from 54 sensors 
installed in the Intel Berkeley Research lab between February 
28th and April 5th, 2004 [9]. Every 31 seconds, it contains 
time stamped topology information, humidity, temperature, 
light, and voltage values. For various sensors, there are some 
missing values at certain timestamps. To begin, we use the 
linear interpretation method to fill in the gaps. Then, every 20 
minutes, we sample it and use the average as input. To balance 
the type of sensor that fits the greenhouse sensor, we only take 
temperature, humidity, light, and voltage sensors. In the 
meantime, we normalize the data. 

With GRU-based VAE, the average testing MAE is 0.04 
and MSE is 0.01 with training time 194s. Table I shows GRU-
Based VAE performance. The testing accuracy, Area Under 
Curve (AUC), Optimal True Positive Rate (Opt. TPR) and 
False Positive Rate (Opt. FPR) of 81%, 69%, 4%, and 1.8% for 
light sensor, 39%, 89%, 14.9% and 0% for voltage sensor, 34%, 
84%, 5% and 1.6% for humidity sensor and 25%, 82%, 8.4% 
and 1.4% for temperature sensor, respectively. 

TABLE I. GRU-BASED VAE PERFORMANCE 

GRU-Based VAE 

Sensor Type Accuracy AUC Opt. TPR Opt. FPR 

Light Sensor 81% 69% 4% 1.8% 

Voltage Sensor 39% 89% 14.9% 0% 

Humidity Sensor 34% 84% 5% 1.6% 

Temperature Sensor 25% 82% 8.4% 1.4% 

With Gaussian Mixture Model, the testing accuracy, Area 
Under Curve, Optimal True Positive Rate (Opt. TPR) and False 
Positive Rate (Opt. FPR) of 61%, 65%, 3.7%, and 1.2% for 
light sensor, 27%, 94%, 12.8% and 0% for voltage sensor, 32%, 
84%, 4.9%, and 1.7% for humidity sensor and 23%, 49%, 0% 
and 23.7% for temperature sensor, respectively. Table II 
summarizes the evaluation result. 

TABLE II. GAUSSIAN MIXTURE MODEL PERFORMANCE 

Gaussian Mixture Model 

Sensor Type Accuracy AUC Opt. TPR Opt. FPR 

Light Sensor 70% 65% 3% 1.8% 

Voltage Sensor 73% 7% 0% 1% 

Humidity Sensor 68% 16% 2% 4.9% 

Temperature Sensor 25% 51% 2.4% 0% 

With K-Means, the testing accuracy, Area Under Curve, 
Optimal True Positive Rate (Opt. TPR) and False Positive Rate 
(Opt. FPR) of 70%, 65%, 3.3%, and 1.8% for light sensor, 73%, 
7%, 0% and 1.29% for voltage sensor, 68%, 16%, 1.7%, and 
4.9% for humidity sensor and 78%, 51%, 2.4% and 0% for 
temperature sensor, respectively. Table III summarizes the 
evaluation result. 

TABLE III. K-MEANS PERFORMANCE 

K-Means 

Sensor Type Accuracy AUC Opt. TPR Opt. FPR 

Light Sensor 70% 65% 3% 1.8% 

Voltage Sensor 73% 7% 0% 1.3% 

Humidity Sensor 68% 16% 1.7% 4.9% 

Temperature Sensor 78% 51% 2.4% 0% 

Based on the multivariate correlation between all sensors, 
there are no concurrent anomalies on the four sensors. There 
are 0.625% concurrent anomalies on the three sensors. There 
are 8.125% concurrent anomalies on the two sensors. 

B. Greenhouse Indoor Dataset 

This dataset was compiled using data from four sensors 
installed outside the Greenhouse Smart City Living Lab 
between October 16th, 2020, and July 19th, 2021. It contains 
timestamped information about the topology every 60 seconds, 
as well as humidity, two temperatures with distinct locations, 
and voltage values. There are some values missing at certain 
timestamps for various sensors. To begin, we will fill in the 
gaps using the linear interpretation technique. After that, it is 
sampled every 20 minutes, and the average is used as an input. 
We take two temperatures with a different locations, humidity, 
and voltage sensors to balance the sensor type that fits the 
greenhouse sensor. Meanwhile, we standardize the data. 

With GRU-based VAE, the average testing MAE is 0.015 
and MSE is 0.16 with training time 196s. Table IV shows 
GRU-Based VAE performance. The testing accuracy, Area 
Under Curve (AUC), Optimal True Positive Rate (Opt. TPR) 
and False Positive Rate (Opt. FPR) of 82%, 58%, 7%, and 3.2% 
for battery sensor, 93%, 74%, 8% and 1.4% for humidity 
sensor, 70%, 68%, 2.1% and 0.9% for temperature sensor DS-
type and 71%, 70%, 6.4% and 2.8% for temperature sensor 
SHT-type, respectively. 

TABLE IV. GRU-BASED VAE PERFORMANCE 

GRU-Based VAE 

Sensor Type Accuracy AUC Opt.TPR Opt. FPR 

Battery Sensor 82% 58% 7% 3.2% 

Humidity Sensor 93% 74% 8% 1% 

Temperature Sensor DS 70% 68% 2.1% 0.9% 

Temperature Sensor SHT 71% 70% 6.4% 2.8% 

With Gaussian Mixture Model, the testing accuracy, Area 
Under Curve, Optimal True Positive Rate (Opt. TPR) and False 
Positive Rate (Opt. FPR) of 64%, 55%, 5.5%, and 2.9% for 
battery sensor, 98%, NaN, 0% and 1.8% for humidity sensor, 
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66%, 69%, 0.2%, and 3.4% for temperature sensor DS-type 
and 69%, 72%, 1.4% and 8.8% for temperature sensor SHT-
type, respectively. Table V summarizes the evaluation result. 

TABLE V. GAUSSIAN MIXTURE MODEL PERFORMANCE 

Gaussian Mixture Model 

Sensor Type Accuracy AUC 
Opt. 

TPR 
Opt. FPR 

Battery Sensor 64% 55% 5.5% 2.9% 

Humidity Sensor 98% NaN 0% 2% 

Temperature Sensor DS 66% 69% 0.2% 3.4% 

Temperature Sensor SHT 69% 72% 1.4% 8.8% 

With K-Means, the testing accuracy, Area Under Curve, 
Optimal True Positive Rate (Opt. TPR) and False Positive Rate 
(Opt. FPR) of 51%, 54%, 4.9%, and 2.7% for battery sensor, 
98%, 100%, 100% and 1.8% for humidity sensor, 68%, 69%, 
3.3%, and 2% for temperature sensor DS-type and 70%, 71%, 
8.7% and 1.6% for temperature sensor SHT-type, respectively. 
Table VI summarizes the evaluation result. 

TABLE VI. K-MEANS PERFORMANCE 

K-Means 

Sensor Type Accuracy AUC Opt. TPR Opt. FPR 

Battery Sensor 51% 54% 4.9% 2.7% 

Humidity Sensor 98% 100% 100% 1.8% 

Temperature Sensor DS 68% 69% 3.3% 2% 

Temperature Sensor SHT 70% 71% 8.7% 1.6% 

Based on the multivariate correlation between all sensors, 
there are 0.024% concurrent anomalies on the four sensors. 
There are 0.16% concurrent anomalies on the three sensors. 
There are 1.85% concurrent anomalies on the two sensors. 

C. Greenhouse Outdoor Dataset 

This dataset was compiled using data from 4 sensors 
installed in the Greenhouse Smart City Living Lab between 
October 16th, 2020, and July 19th, 2021. It also contains 
timestamped information about the topology every 60 seconds, 
as well as humidity, two temperatures with distinct locations, 
and voltage values. There are some values missing at certain 
timestamps for various sensors. To begin, we will fill in the 
gaps using the linear interpretation technique. After that, it is 
sampled every 20 minutes, and the average is used as an input. 
We take two temperatures with a different locations, humidity, 
and voltage sensors to balance the sensor type that fits the 
greenhouse sensor. Meanwhile, we standardize the data. 

With GRU-based VAE, the average testing MAE is 0.05 
and MSE is 0.007 with training time 72s. Table I shows GRU-
Based VAE performance. The testing accuracy, Area Under 
Curve (AUC), Optimal True Positive Rate (Opt. TPR) and 
False Positive Rate (Opt. FPR) of 86%, 59%, 5.3%, and 1.1% 
for battery sensor, 78%, 60%, 1.5% and 1.5% for humidity 
sensor, 68%, 69%, 4.7% and 1% for temperature sensor DS-
type and 69%, 63%, 1.2% and 0.6% for temperature sensor 
SHT-type, respectively. 

TABLE VII. GRU-BASED VAE PERFORMANCE 

GRU-Based VAE 

Sensor Type Accuracy AUC Opt. TPR Opt. FPR 

Battery Sensor 86% 59% 5.3% 1.1% 

Humidity Sensor 78% 60% 1.5% 1.5% 

Temperature Sensor DS 68% 69% 4.7% 1% 

Temperature Sensor SHT 69% 63% 1.2% 0.6% 

With Gaussian Mixture Model, the testing accuracy, Area 
Under Curve, Optimal True Positive Rate (Opt. TPR) and False 
Positive Rate (Opt. FPR) of 61%, 57%, 3.3%, and 0.7% for 
battery sensor, 29%, 65%, 1.7% and 0.9% for humidity sensor, 
68%, 67%, 5.4%, and 0.6% for temperature sensor DS-type 
and 73%, 62%, 1% and 0.7% for temperature sensor SHT-type, 
respectively. Table VIII summarizes the evaluation result. 

TABLE VIII. GAUSSIAN MIXTURE MODEL PERFORMANCE 

Gaussian Mixture Model 

Sensor Type Accuracy AUC Opt. TPR Opt. FPR 

Battery Sensor 61% 57% 3.3% 0.7% 

Humidity Sensor 29% 65% 1.7% 0.9% 

Temperature Sensor DS 68% 67% 5.4% 0.6% 

Temperature Sensor SHT 73% 62% 1% 0.7% 

With K-Means, the testing accuracy, Area Under Curve, 
Optimal True Positive Rate (Opt. TPR) and False Positive Rate 
(Opt. FPR) of 48%, 57%, 0.7%, and 2.6% for battery sensor, 
73%, 62%, 1.9% and 1.3% for humidity sensor, 68%, 67%, 
5.5%, and 0.6% for temperature sensor DS-type and 72%, 63%, 
0.7% and 0.9% for temperature sensor SHT-type, respectively. 
Table IX summarizes the evaluation result. 

TABLE IX. K-MEANS PERFORMANCE 

K-Means 

Sensor Type Accuracy AUC Opt. TPR Opt. FPR 

Battery Sensor 48% 57% 0.7% 2.6% 

Humidity Sensor 73% 62% 1.9% 1.3% 

Temperature Sensor DS 68% 67% 5.5% 0.6% 

Temperature Sensor SHT 72% 63% 0.7% 0.9% 

Based on the multivariate correlation between all sensors, 
there are 0.13% concurrent anomalies on the four sensors. 
There are 0.19% concurrent anomalies on the three sensors. 
There are 0.58% concurrent anomalies on the two sensors. 

D. Threshold-based & Point-based Human Knowledge 

Driven 

This paper introduces point-based anomaly detection as 
part of a proposed method for determining how human-in-the-
loop evaluation can be performed. This proposed method 
describes how an expert can provide anomaly 
recommendations through the threshold and point annotations. 
An agricultural expert was involved in determining the point 
anomaly in the Greenhouse Smart City Living Lab context in 
this greenhouse case study. 
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Experts are given raw data in stages, and the amount of raw 
data given is used to determine how much raw data is required 
to make it easier for experts to annotate anomalies. The time 
the data is displayed before the expert can provide annotations 
is then calculated. Based on the results of tests with data 
ranging from n = 1 to n = 100, it was discovered that the 
optimal expert produced the fastest results with n = 5 and an 
annotation time of 7.12 seconds. That is, the expert requires a 
minimum of five data samples in order to draw an annotation 
conclusion. Human knowledge is used as an adaptive threshold 
in the threshold-based approach, which can replace sigma, 
which is currently used as a threshold limit. With human 
knowledge stored in the database, the anomaly detection 
process will become more adaptive by adjusting the context or 
rules provided by humans based on point annotations or 
specific conditions such as a crop disease [20]. 

E. Discussion 

GRU-based VAE has performed well in detecting 
anomalies, particularly the relationship between the detected 
variables. However, GRU-based VAE does not produce the 
best results in some datasets because it necessitates layer 
adjustments based on the data conditions. However, the 
deficiency in the anomaly detection process is compensated for 
by the assistance of human knowledge. Unlike the other 
algorithms, it has not been able to demonstrate the correlation 
between anomalies from multiple sensors simultaneously. 
However, a more detailed assessment of this correlation is 
required. Correlation is only indicated in this study by the 
classifications of no correlation or correlates. 

This study also proposes a new metric for measuring 
human-in-the-loop by comparing the amount of data required 
for annotation and the time it takes the expert to annotate. The 
comparison curve of the anomaly n and the required time t is 
generally close to a quadratic function, making it difficult for 
the expert to annotate due to a lack of data. However, having 
too much data will also make it difficult for the expert. 

IV. CONCLUSION 

The greenhouse, outfitted with sensors, generates a large 
amount of data that must be processed. Of course, the data 
cannot be separated from anomalies, which may be an anomaly 
that must be removed because it corrupts the data, or the 
anomaly may represent hidden information that can be used to 
make future decisions. The Gated Recurrent Unit-based 
Variational Autoencoder is proposed in this study as an 
anomaly detection algorithm capable of detecting anomalies in 
the multivariate term. This algorithm is also a component of 
the anomaly detection architecture, which is enhanced by 
threshold-based and point-based anomaly detection based on 
human knowledge, which can improve anomaly detection 
performance. 

This anomaly detection model and architecture were 
evaluated using the Intel Berkeley Lab Dataset, Greenhouse 
Smart City Living Lab Dataset, and indoor and outdoor 
sensors. The evaluation results demonstrate that the proposed 
model is superior at detecting multivariate anomalies and 
identifying variable correlation. Our proposed architecture 
using GRU-based VAE and expert feedback can examine 

correlations between multivariable time series data. The human 
knowledge module enhances the performance of the GRU-
based VAE by correcting false alarms and detecting errors. 

Future works are necessary to validate the kinds of 
conclusions that can be drawn from this research. For example, 
it is necessary to measure point-based and threshold data for 
future case studies that may generate different curves. In 
addition, it is anticipated that this human knowledge will be 
utilized automatically to enhance the GRU-based VAE 
anomaly detection model in the future research. 
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