
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

384 | P a g e

www.ijacsa.thesai.org

The Hybrid Combinatorial Design-based Session Key

Distribution Method for IoT Networks

Gundala Venkata Hindumathi
1
, D. Lalitha Bhaskari

2

Department of Computer Science & Engineering, JNTUK, Kakinada, India
1

Department of Computer Science and Systems Engineering
2

Andhra University College of Engineering (A),Andhra University, Visakhapatnam, India
2

Abstract—Internet of Things (IoT) is currently being used in

a range of applications as cutting-edge technology. IoT is a

technological platform that connects the physical and digital

worlds, allowing us to use things remotely. Various sensor-

connected nodes serve as objects that communicate with one

another over the internet. Hence security-related problems are

more likely to arise in IoT networks. However, due to resource

constraints such as power and memory capacity, complex

security algorithms cannot be implemented in IoT networks. One

of the security measures for IoT networks is to implement the

lightweight key distribution algorithm. The lightweight key

management process is essential for IoT networks to share the

key securely. We presented the new key-distribution approach

based on the hybrid combinatorial design that implements

lightweight algorithms and describes the analysis functions. The

comparison to existing hybrid combinatorial works shows better

connectivity, resilience, and scalability.

Keywords—Key distribution; hybrid combinatorial design; IoT

networks; resource constraint nodes; symmetric key generation

I. INTRODUCTION

The Internet of Things (IoT) is a system that allows
multiple sensor nodes and wireless nodes to communicate
without the need for human involvement. The term "things" in
the Internet of Things refers to physical objects such as sensor
nodes that monitor or access data from other networked
devices. In the research aspect, IoT has been becoming a
much-desired area. The security of each node‟s data is the
primary issue in today's rapidly growing IoT networks.The
security services are like confidentiality, authentication, and
integrity of the data. Cryptographic algorithms and keys are
required for encryption, and effective key management is
essential for this process to work appropriately. Ineffective
key management can make even the strong algorithms useless
for any type of network. IoT networks also need to have
strong key management procedures.

Even though key management is essential for IoT
networks, using conventional key management methods
demands more memory. Due to resource-constrained nodes'
memory and battery limits, the IoT network requires a
lightweight solution.Thus, we discussed about lightweight
approaches that are already in use for key management.Basic
methods to generate and distribute the keys to nodes in the
network are symmetric keys and public keys. Even though the
public key approach is widely used for key distribution, it
could not be used often in IoT networks since it requires more
memory and processing resources to run the code, and in

many applications, these approaches are also costly. Hence,
the Majority of IoT networks are using symmetric key
distribution methods, which require only one key to share as
mentioned by Alagheband et al. [1].

There are two methods for sharing keys amongst
connected nodes: decentralized and centralized approaches. In
the decentralized process, Nodes in the network can share
their secret keys directly with one another to provide secure
communication. Every node should hold private keys that are
unique for communicating with each node in the network.
Those private keys are exclusive to committed pairs only.
However, as IoT networks grow, devices will be unable to
keep as many secret keys in memory due to the restricted
memory space of IoT nodes.

Another option for resolving this problem is to use a
trustworthy centralized device to distribute private keys to all
nodes in the network. Key Distribution Center (KDC) is an
example of providing centralized service. Kouicem et al. [2]
presented that the KDC is a mechanism that distributes keys to
all the users in a network sharing sensitive or confidential
information. When two nodes in a network need a connection,
they request the KDC to generate a unique session key that
end users can use as a secret key for communication. So, the
nodes can share the data with other nodes connected to the
network using Key Predistributions or KDC.

As a result, using a KDC with symmetric key distribution
is the best way to distribute the key to all nodes. One of the
best symmetric key generation approaches is combinatorial
block designs.It uses a simple calculation to compute the
blocks for different nodes. Many Authors have been working
on this for determining the keys for multiple nodes.In the
introduction, we covered the fundamental ideas of
combinatorial block design, how the authors expanded these
ideas to implement keys for every node, and a brief discussion
on our approach.

Stinson et al.[3] used Balanced Incomplete Block Design
(BIBD) which is one of the combinatorial designs to generate
the blocks for sharing the keys securely with other nodes.
When it is impossible to incorporate all treatments or factor
combinations for every block, then BIBD is utilized here.

Assume there are b blocks, each with k keys, and v total
number keys can be used, each key replicated r times. Thus,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

385 | P a g e

www.ijacsa.thesai.org

And also assume that the blocks (b) are just partially
complete by confining with the following conditions.

1)

2) In any block, the same key doesn‟t appear more than

once.

ij: i and j are two different keys from the „v‟, it gives the
occurrences among the blocks.

Example 1:

v={1,2,3,4,5,6}, b=no.of blocks, k=keys in each block,r=
each key repitations in blocks.

So the Blocks are

b1:{1,2,3} ,b2:{1,4,5}, b3:{2,4,6}, b4:{3,5,6}

14=1, 46=0 (It gives the pair occurrences in blocks.

In a Balanced Incomplete Block Design:
 .

Symmetric BIBD:

A BIBD is said to be Symmetric BIBD when

Example 2:

Consider (v,b,k,r,)=(7,7,3,3,1) because v=b;k=r

V(keys)={1,2,3,4,5,6,7}

b1:{1,2,3}

b2:{1,4,5}

b3:{1,6,7}

b4:{2,4,6}

b5:{2,5,7}

b6:{3,4,7}

b7:{3,5,6}

Another combinatorial method is the finite projection
plane. A Finite Projection plane consists of P points and set of
subsets of P called lines. A prime integer q (>=2) and that has
four properties.

1) Every line should be having exactly q+1 points

2) Every point occurs on exactly q+1 lines

3) Exactly points used

4) Exactly lines used; then that can be called

Symmetric Design with (, ,1) given by

Stinson et al. [4].

Already existing key predistribution methods are mainly
followed by three procedures.

1) Probabilistic: Keys are chosen randomly from the pool

and assigned to the nodes.

2) Deterministic: Based on pre-defined procedures select

the keys and assign them to the nodes.

3) Hybrid Approach: The combination of both approaches

is mentioned above.

The KDC implements key predistribution methods to get
the keys for all nodes. The pre-key distribution can be
acquired based on the key-Matrix approach by Chien et al. [5],
So it helped share the key easily. Other pre-key distribution
approaches are Blundo et al. [6] and Liu et al. [7], In these,
Polynomial-based key pre-distribution was proposed for group
key establishment. In Chan et al. [8], Two nodes having q
keys should be linked, and the hash value of the q keys would
be used for key verification that improved resilience from the
attackers. Qian and Sun [9] presented the drawback of the
above approach is that resilience increased but wouldn‟t
guarantee to get the common key between two devices. Li et
al. [10] was provided threshold value for random key pre-
distribution in which each should communicate with its
neighbor node with the same key. Catakoglu et al. [11]
increased the resiliency of the previous system by adding
numerous key rings.

Camtepe andYener [12], first time they presented the
symmetric balanced incomplete design(SBIBD) for generating
the keys for nodes in the network, however, the disadvantage
is the scalability of the network with nodes. In comparison to
prior techniques, Lee et al. [13] exhibited improved
resilience.Ruj et al. [14] generated the pre-key distribution
method using the partial BIBD technique, however, it did not
share the keys with every node in the network. Ruj et al. [15],
the same authors proposed a combinatorial strategy for
improving BIBD and PBIBD resilience. Bechkit et al. [16]
employed a new pre-key distribution design, a combinatorial-
based way to determine the keys, which improved the
scalability and connectivity.Bahrami et al. [17] presented great
scalability of the network nodes by using residual key pre-
distribution design for key pool generation.

Camtepe et al. [18] presented a combinatorial method for
generating keys for network nodes that are connected. And
they used SBIBD and GeneralizedQuadrangle (QD), which
are the basictwo deterministic key pre-distribution designs.
Complete connectivity between network nodes was the
improvement of this algorithm. Also provided is the hybrid
pre-key distribution method.Chakrabarti et al. [19] and
Kavitha et al. [20] enhanced the scalability and connectivity of
the previous approach.Dargahi et al. [21] enhanced the hybrid
method to get the keys for almost all network nodes, but didn‟t
get the exact number of keys to all network nodes. When
compared to prior hybrid techniques, Akhbarifar et al. [22]
used a hybrid strategy and provided improved connectivity
and resilience. However, the unique keys were not generated
for nodes in the network.

Despite the fact that combinatorial designs have been
addressed extensively, not all linked network nodes are given
the session keys. Every IoT network needs to be able to enable
the construction of many nodes and should distribute a session
and a unique key for every node.By supplying unique and
dynamic keys for each node, we suggested a hybrid
combinatorial method that resolves the problems discussed
earlier. As a result, our system now supports network
scalability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

386 | P a g e

www.ijacsa.thesai.org

Our entire method is detailed in a total of six sections:

 Secton 1 gives the introduction part of basic methods
for Combinatorial block designs.

 Section 2 explains the existing hybrid approaches and
their drawbacks in detail.

 Section 3 is our actual work to be implemented to
generate the unique and session keys for every node.

 Section 4 gives the analysis of scalability,
connectivity,resilience, and Memory utilization. And
also provides the results analysis with graphs.

 Section 5 is a complete discussion.

 Section 6 is a conclusion.

II. RELATED WORKS ON HYBRID COMBINATORIAL

DESIGNS

Camtepe and Yener [12] proposed a first-time pre-key
distribution strategy based on the SBIBD technique. It was the
basic combinatorial design to get the keys for network nodes.

Assume there are b blocks, each with k keys, and v total
number keys can be used, each key replicated r times.The
following criteria were used to allocate keys to the nodes in
the proposed algorithm.

The fundamental advantage of this approach is that it
identifies the unique keys among the b nodes. This technique
had good connectivity and resilience, but it lacks scalability.
However, this strategy has the disadvantage of limiting the
total number of blocks that meet the before-mentioned criteria.
As a result, it was completely reliant on the q value. This
approach could not identify the keys for all n nodes in the
network; where N is the total number of network nodes, and
that was not meet the above condition.Although this method
cannot be applied to all of the network's nodes, it accurately
delivers the keys for the limited number of nodes.

In Camtepe et al. [18] (HSYM), the previous approach was
upgraded by including scalability and resilience properties. It
was implemented using a hybrid technique that enhanced the
number of nodes in the IoT networks. It could find the b
blocks by using SBIBD and this method found the
complimentary design for all symmetric blocks then chose
q+1 keys and assigns them to the remaining nodes.The
author's implementation is described in Algorithm1.The fact
that more nodes have a chance of acquiring the same key
reduces the probability of obtaining a key share, which is a
drawback of this technique.

Algorithm 1: Hybrid Design of HSYM

Input(s): N (Total Number of nodes)

Output(s): K (Block size)

Begin

1. Find largest prime power q such that ;

2. Generate base Symmetric

 v objects
 b blocks B of size k;

3. Generate Complementary Design of the base design:

Blocks ̅ ̅ ̅ ̅ ̅ where ̅ and

| ̅ | ;

4. Generate N – b hybrid blocks

 ̅ ̅ ̅ ̅ of size k. For ith block

 where

 Randomly select a block in ̅, say ̅

 Randomly select a k-subset of the block

where ,

 Let and ,

 Use the variable to hold index of the block

 ̅from which the block is obtained;

5. Blocks of the Hybrid Design are

End

Dargahi et al. [21] (MHS) proposed an enhancement
version of the above hybrid approach. For b blocks, they also
used the same BIBD method. For the remaining nodes in IoT
networks, they used a different key pool. N-b times, they have
chosen q+1 keys from the new key pool that were assigned to
additional N-b nodes.The generation of the blocks is described
in Algorithm 2.The authors have used more space in the node
memory to store the extra keys and new key pool in the nodes,
but we all know, that IoT devices have limited capacity.

Algorithm 2: Hybrid Design of MHS

Input(s): N (Total Number of nodes)

Output(s): M Blocks

Begin

1. Find the largest prime number q Where

2. Generate the first symmetric -

BIBD with the following key pool:

 Containing

v objects,

3. Generate b blocks from KP1;

4. Choose a number d where ;

5. Generate the second symmetric -

BIBD with the following key pool:

 Containing v

objects

 is generated in a way that d keys differ

from KP1 and other keys are the same,

6. Generate b blocks from KP2;

7. Assign b blocks from B to b nodes ;

8. Choose blocks from M in a random manner and

assign them to remaining nodes

End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

387 | P a g e

www.ijacsa.thesai.org

Akhbarifar et al. [22] (MHSYM) proposed a new
enhancement of the previous proposes. They identified two
random blocks in b, combined their blocks data, then extracted
the q+1 keys from it. Then allocated each of the remaining
nodes with a random selection of q+1 keys.Algorithm 3's
detailed explanation of the entire process. The key share
probability was increased as compared to Camptepe [18]
method, but there is no guarantee that at least one common
key would be allocated among the blocks. The complete
procedure explained in Algorithm 3.

Algorithm 3: Hybrid Design of MHSYM

Input(s): N (Total Number of nodes)

Output(s): M Blocks

Begin

1. Find the largest prime number q

2. Where

3. Generate the first symmetric -

BIBD with the following key pool:

 containing v objects,

4. Generate b blocks from KP1and

assign them to b nodes;

5. Choose two blocks among b blocks randomly;

6. Merging two blocks to construct new key-pool M;

7. Select (blocks among subsets of M and

assign them to remaining nodes.

End

As mentioned above, the Procedures to apply the hybrid
combinatorial design won't generate keys for all blocks of
nodes.Our method uses a limited memory source to provide
session keys for all blocks of nodes.The proposed work covers
related algorithms and also provides examples for key
generation.

III. OUR PROPOSED WORK

The Symmetric BIBD (SBIBD) allows multiple users in
the same network to share the same keys without causing any
problems. The IoT Architecture has not been supporting for
huge capacity of memory inbuilt and high processing devices.
Because of the above-mentioned reasons, the IoT node
connected to the network is unable to remember all of the keys
required for communication with other nodes in the network.

The SBIBD allows for the storage of the smallest amount
of keys on the devices themselves, however, scalability is an
issue here. If the network grows larger, nodes will be unable
to store numerous keys in the tiny size memory. So, we are
providing a new solution to this problem, a centralized system
called Dynamic Key Generation and Distribution Center
(DGDC). And the whole design that we suggest is depicted in
Fig. 1.

In the context of IoT, we describe the symmetric key
authentication and key management system based on BIBD.
In this paper, we present a technique for exchanging the secret
key that uses for providing the different security levels to
assure scalability and confidentiality. We propose a technique
for key agreement between two IoT devices that have never

been in contact before, based on trusting the centralized server
or using a proxy-based approach.

Fig. 1, describes the overall architecture that we have
implemented to generate the session key and distribute it to
the host which is requestedto the centralized server. The
diagram itself is made up of three different blocks: DGDC,
Initiate System (A) which starts to set up the communication
connection, and Destination System (B) which accepts data
from User (A) after receiving the Session key from DGDC.

The connected systems first exchanged their symmetric
key to communicate with the centralized block, which is
DGDC. Before implementing this architecture, the symmetric
keys (secret keys for authentication) should be shared with
DGDC so that other systems already connected to the network
can communicate with it. Hence, this step is really important
for our design because it is also providing authentication.Key
generation and Key Distribution are the two main components
of DGDC's actual work.

For Generating the keys, DGDC always works on the
below-mentioned algorithms to implement the symmetric keys
for all connected nodes. The previous algorithms mentioned in
the related works are not implementing unique keys for all
connected nodes.It is a pioneering building component for
dynamic key implementation and distribution, increasing data
security by often changing node keys.

In the DGDC, Data generation block contains all of the
modules that have been proposed to create dynamic and
unique keys for data transactions carried out by connected
nodes. The modules are:

1) SBIBD,

2) Building the remaining nodes,

3) Computing the unique keys for each node in the

network using a hybrid combinatorial design approach,

4) Reconstructing the outgoing blocks of nodes to protect

the keys that have been compromised.

To create a complete table with unique keys for every
node, DGDC executes each module in the order that they are
presented.Once the table has been built, DGDC verifies
requests using secret keys before sending the session key to
the requested nodes.

Here, the architecture also proposed by us gives more
security levels to the data because the session keys are not
known by each individual connected system in the network. If
an attacker compromises one of the systems, the attackers are
unable to identify the session keys from the compromised
system as it never stores any keys in their systems.

In particular, eight steps must be completed to observe the
workings of our model. They are mentioned below in the
Fig. 1. The model can generate and distribute the session key
for communication between the request systems based on the
mentioned processes. One of the most essential features of the
proposed approach is the ability to dynamically alter the
session keys of each system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

388 | P a g e

www.ijacsa.thesai.org

Fig. 1. Proposed Architecture.

1) Both users A and B identified their symmetric keys and

exchanged them with DGDC for authentication purposes.

2) User A requests a session key from DGDC to

communicate with User B.

3) By using a symmetric key, DGDC completes the

authentication process and obtains the common key of both

parties. And sends it to User A.

4) Using the Session key provided by the DGDC, User A

transfers the data to User B.

5) Using its symmetric key, User B requests the session

key from DGDC.

6) Like Step3, DGDC finishes its authentication process

and provides the session key (which is already shared with A)

to B.

7) User B uses the session key to decrypt the data

provided by User A and provides the acknowledgment in an

encrypted format.

8) The communication between User A and User B begins

with the use of the same session key.

In the Proposed Work, The main required module is
DGDC, it is generating the session keys dynamically and
distributes them to the systems. First, we have to complete the
code for generating the SBIBD with restricted blocks provided
in Algorithm 4. The session keys for all nodes in the network
could not be generated through the SBIBD procedure.

Where N is the number of network nodes used in
communication. Calculate N>=q2+q+1, where q is the largest
prime integer that may be used to solve the preceding
equation; the result is v and b. Here, The „N‟ and the „v „ may
not be the same. That is, the SBIBD algorithm was unable to
determinethe keys for each node in the N network. SBIBD can
be generated with v blocks and q+1 keys, which are
represented by the k in each block.

The input for Algorithm 4 is N which is the number of
nodes that need to be connected to the network, where v, k,
and r are generated by the above Algorithm 4. The maximum
number of nodes (blocks) in a network for generating session
keys in SBIBD is represented by b. However, Algorithm 4
provides limited session keys for a few numbers of network
nodes, therefore we are improvising by using other
Algorithms 5, 6, and 7.

Algorithm 4: Design of SBIBD

Input(s): N (Total Number of nodes)

Output(s): B

Begin

1. Choose the maximum prime number q to compute the below

equation

2. Using the previous equation, generate inputs for producing

the blocks.

 ; where v is the size of the key pool

 ; b is the number of blocks

 ; k is the number of keys allotted to each block

 ; denotes, In SBIBD, each node has only one

shared key to communicate to other nodes in the B.

3. Construct blocks B using Symmetric BIBD design

 .

Then assign the blocks in

End

Algorithm 5 completes the generation of remaining blocks
of the network nodes. Algorithm4 computes the „ B ' number
of blocks, while Algorithm5 will handle the rest.c=N-b; c is
the number of blocks to be calculated, where N network nodes
and b have already been given in Algorithm 4. Algorithm 5
determines which of the c number blocks should be assigned
to the network's other nodes. In Algorithm 5, the R represents
the remaining nodes of the IoT network.Select the keys from
the key pool, and then place them as keys to generate the
blocks by the requirements of Algorithm 5.

Algorithm 5: Design for remaining nodes(R)

Input(s): c,v,k

Output(s): R

Begin

1. Construct the (v,N-b,k,r,); here v is the key pool, N-b

blocks need to construct, k keys for each node, r

repetitions among the blocks, = 2 or more; means each

block in N-b should share two or more keys among the

q+1 keys.

2. As a result, each key from the key pool can only be used

at most 3q times in the construction of N-b blocks.

3. Then return R blocks from this Algorithm

 { }
End

The final blocks are represented by which is
input for Algorithm 6 and also computed the key pair values
for all resource-constrained nodes.

Algorithm 6 is used to generate the v number of keys,
however, the remaining keys were not able to be generated
directly. The remaining c keys are found and perform an XOR
operation on the common keys that existed between the two
nodes. At the end of Algorithm6, be able to find the unique
session keys between each node in the network. Here,
Algorithm6 uses 32 bit (8 bytes) key for computation as the
IoT devices could be handled easily with this length.

1 1

2

3

4

5

6

7
8

A

B

DGDC

INTERNET

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

389 | P a g e

www.ijacsa.thesai.org

Algorithm 6: Hybrid Combinatorial Design with Unique keys

Input(s): N,v,b,K,B

Output(s): H(Total no.of blocks), x (The Session Key)

Begin

1. Execute Algorithm1 to get the q
2
+q+1 Symmetric block

within N blocks.

 (Number of keys used)

 (Number of nodes generated with the

length of k by Algorithm1)

2. Generate N-b blocks using Algorithm2.

 { }

3. Hybrid Design's Blocks are

4. Choose any two blocks from N (BB, BR, and RR) blocks

randomly and determine the common key(s) of these blocks

that should store in l.

Example: Here we have taken two blocks B1, BN-b.

Get the common keys that are presented in both blocks.

5. (i) If the length of the l is one then directly take the key as

the secret key for both blocks.

(ii) If the length of the l is above one, take the last two keys

from blocks and do the XOR operation among those keys.

 [] []

 (iii) If the length of the l is null, select the first key-value

from each block and calculate XOR between those keys. For

example

6. x is the final secret key that is given by the DGDC.

End

The blocks for nodes are generated by DGDC up through
Algorithm 6, and those key values in blocks aresent to nodes
during transaction time. Once generated, they can be used
every time, so there are chances of keys being compromised.
Thus, We have also implemented an Algorithm 7 to get a
solution for compromised keys by an attacker. Algorithm 7
illustrates how we can avoid attacks by utilizing a technique
that shuffles the keys in the blocks in a certain amount of time.

Algorithm 7: Reconstruction of H

Input(s): H (Total blocks with keys)

Output(s): H blocks

Begin

1. For every, Threshold time(T) changes the key values of

nodes

2. Shuffle all blocks of the H and assign the values of the

block to nodes

 for ΔT

3. And shuffle each block key value of the H to get the session

key from Algorithm3.

 for ΔT

End

The complete workflow illustrates the DGDCs in Fig. 2.

Fig. 2. The Workflow of Dynamic Key Generation and Distribution Center

(DGDC).

Example 3: In the Example, We are taking network size as
7 (Select maximum prime number that satisfies q=2,
22+2+1=7). So.

v= 2
2
+2+1= 7, k=q+1=4

Such that the total number of blocks (B) designed by the
SBIBD=7. Each DGDC module identifies the session key for
every block by using Algorithm 4. And below Table I shows
the key numbers for each block.

These are the seven keys stored in DGDC before starting
the communication.

{1: 31037803, 2: 34051950, 3: 75095512, 4: 67731601, 5:
90790958, 6: 42721930, 7: 56819008}

By using the above network configuration the users can
communicate with each other. For example, if User 1(B1)
wants to transmit the data to User 6 (B6), DGDC identifies the

No

Do the Authentication

process through secret key

Yes No

Discards the
request

Get the destination

Block Number

Get the common
key(s) from the table

Apply the XOR

to two keys based

on condition

Ye
s

Directly
get the Key
from the table

Transmits the key
to requested node

Key(s)!=1

success
sSucces
s

Requests

from Nodes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

390 | P a g e

www.ijacsa.thesai.org

common key between B1 and B6 i.e., 3. Then select the „3‟
Key value from Algorithm 3 that is already given above. Here
the value is 75095512. DGDC transmits this Key to User 1 as
well as User 6 when it sends a request for communication.

TABLE I. CONSTRUTION OF 7 NODES USING ALGORITHM1

User(s)
Block

Number
Key number1

Key

number2

Key

number3

1 B1 1 2 3

2 B2 1 4 5

3 B3 1 6 7

4 B4 2 4 6

5 B5 2 5 7

6 B6 3 4 7

7 B7 3 5 6

Example 4: Here, We are taking 20 as the input, N (q=3,
32+3+1=13). We could not use the value for q is 2.

These blocks are getting from the DGDC from
Algorithm4. But the given N value is 20. So, we have to find
out the other blocks by using Algorithm 5. Table II shows the
key numbers up to block 13.

The below-mentioned keys are the basic keys that are
stored in the DGDC and these keys are also used for
calculating the other node keys by using Algorithm 6.

{1: 56940651, 2: 83179189, 3: 88850165, 4: 50901991, 5:
95809326, 6: 88046686, 7: 45506527 , 8: 42631960, 9:
36152950, 10: 31237906, 11: 91772959, 12: 87834612, 13:
13247806}

The Remaining nodes are: 20-13=7. Table III shows the
key numbers of the remaining nodes.

TABLE II. CONSTRUCTION OF 13 NODES USING ALGORITHM1

User

(s)

Block

Number

Key

Number1

Key

Number2

Key

Number3

Key

number4

1 B1 1 2 3 4

2 B2 1 5 6 7

3 B3 1 8 9 10

4 B4 1 11 12 13

5 B5 2 5 8 11

6 B6 2 6 9 12

7 B7 2 7 10 13

8 B8 3 5 10 12

9 B9 3 6 8 13

10 B10 3 7 9 11

11 B11 4 5 9 13

12 B12 4 6 10 11

13 B13 4 7 8 12

TABLE III. CONSTRUCTION OF REMAINING 7 NODES USING ALGORITHM 2

User

(s)

Block

Number

Key

number1

Key

number2

Key

number3

Key

number4

14 B14 1 2 4 7

15 B15 1 2 4 10

16 B16 2 4 10 13

17 B17 2 4 9 10

18 B18 1 4 7 9

19 B19 4 7 10 13

20 B20 4 7 10 11

Algorithm 5 can generate multiple possibilities to build the
tables to address the aforementioned problem.One of the
solutions has mentioned in Table III. The DGDC can select
any

But, here we can get the duplicate key numbers for
identified blocks. We have implemented Algorithm 6 to
calculate the accurate key for both parties. For Example, User
1 (B1) wants to send the data to User 17 (B17). So, DGDC
needs to identify the key for them by using Algorithm6 itself.

The block key numbers are again mentioned here for
reference.

B1-(1, 2, 3,4)

B17-(2,4,9,10)

Two common keys from the above blocks are 2 and 4. The
keys values are taken from above dictionary for 2: 83179189
and 4: 50901991. After applying Algorithm 6,the output key-
value is D3878818. So, DGDC transmits this common key to
both users for further communication.

We shall receive new blocks for nodes after the same table
with keys has been used for a time determined by the DGDC.

IV. ANALYSIS

The connectivity, scalability, resilience, and memory
utilization of our model are all evaluated.

A. Scalability

The model can be scalable with the maximum number of
nodes that were constructed for the IoT network. The model
works with all keys in the keyring that correspond to the
maximum number of IoT nodes that can be supported. The
number of blocks generated with their keyrings determines the
network's scalability. The scalability of a proposed approach is

 (

)

here n is an integer value to get the next prime number
and is identified by Algorithm1.

The following equation is for the calculation of the
remaining nodes:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

391 | P a g e

www.ijacsa.thesai.org

B. Connectivity

The probability of any two IoT nodes sharing only one
communication key.

The main advantage of this model is to get the probability
of key share at most 1 for maximum all cases.

(

)

()
 =

(

) (

)

(

)

 ()

(

)

(

)

According to the proposed model ,
because the connectivity should be 1 in all maximum cases in
the proposed approach.

C. Resilience

Resilience means reliability among the network nodes
from the attacker. The capture attack is called by capturing
and revealing the key values from the nodes. So, the links
which are used by the attacked key that might be
compromised then those links are at risk. The proposed
approach employs a unique key to communicate across nodes.
And at random times, it shuffles all key values of blocks and
blocks values as well As a result, if an attacker captures a key,
it will not be worked after the shuffle.

 | ∑ | |

Where L denotes the link, Cxis x nodes are captured, li is
the secure link between devices that already shared the i

th
 key

in the pool. Dihas identified the key pool that includes key iis
compromised. In our proposed system, from Algorithm 3,
each key appears in the B blocks.

 . For R blocks, each key repetitions are,

 |
(

)

(
 (

)

)

The probability of keyi, appearing in one or more of the x
compromised keyrings is:

 |
(() ()

)

(
 (

)

)

When x keyrings are captured, the probability of a link
being compromised can be calculated as.

 | ∑ | |

(()

)

(
 (

)

)

 | |

Our proposed system increases resilience when compared
to previous models. The other systems probabilities of
resilience are:

In the [18] model: |
(

)

(

)

In the [21] model:

 |
(

) (

)

(

)

In the [22] model:

 |
(
() (

)

)

(
 (

)

)

Resilience values are provided for 500, 800, and 1700
nodes in Tables IV, V, and VI, respectively. Fig. 3, 4, and 5
show the graphs for the corresponding tables with various
nodes. Different methods for hybrid combinatorial design are
provided in tables and figures, and it is demonstrated that our
approach produces the best results when compared to other
ways.

TABLE IV. RESILIENCE VALUES FOR 500 NODES

N

Compro

mized

nodes x

q value HSYM MHS
MHSY

M

Our

Approac

h

500

20

19

0.669 0.664 0.644 0.639

40 0.897 0.89 0.87 0.852

60 0.97 0.965 0.942 0.939

80 0.992 0.98 0.975 0.971

100 0.998 0.996 0.986 0.984

120 0.999 0.999 0.992 0.99

140 0.999 0.999 0.999 0.998

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

392 | P a g e

www.ijacsa.thesai.org

Fig. 3. Resilience Simulation Results of Our Approach Versus HSYM[18],

MHS[21], and MHSYM[22] for the 500 Nodes.

TABLE V. RESILIENCE VALUES FOR 800 NODES

N

Compro

mized

nodes x

q value HSYM MHS
MHSY

M

Our

Approac

h

800

40

23

0.84 0.83 0.81 0.8

60 0.94 0.93 0.93 0.91

80 0.97 0.97 0.96 0.95

100 0.994 0.99 0.99 0.98

120 0.997 0.996 0.99 0.99

140 0.999 0.998 0.99 0.99

160 0.999 0.999 0.99 0.99

Fig. 4. Simulation Resilience Results of Our Approach Versus HSYM[18],

MHS[21], and MHSYM[22] for the 800 Nodes.

TABLE VI. RESILIENCE VALUES FOR 1700 NODES

N

Compro

mized

nodes x

q

valu

e

HSYM MHS
MHSY

M

Our

Approac

h

1700

80

37

0.89 0.94 0.87 0.86

100 0.94 0.9904 0.91 0.9

120 0.967 0.996 0.95 0.93

140 0.982 0.998 0.97 0.96

160 0.9904 0.999 0.99 0.98

180 0.994 0.999 0.99 0.98

200 0.997 0.999 0.99 0.98

Fig. 5. Resilience Simulationresults of Our Approach Versus HSYM[18],

MHS[21], and MHSYM[22] for the 1700 Nodes.

The above graphs and tables prove that our system greatly
reduces the probability of compromized network links.Each
node receives a different key for its links, and they all also get
dynamic keys.

D. Memory Utilization

Here, DGDC is proposed as a centralized key distributor in
the proposed system. So, there is no pressure on any network
node to maintain all keys in the memory. The IoT node should
store only one key that is applied to get the session key from
DGDC.

As a result, We can declare that our proposed strategy
improves node capture resilience with a combinatorial
design.The notations and descriptions of the different
parameters used in the article are given in Table VII.

TABLE VII. NOTATIONS OF PARAMETERS

Data related to implementing the Combinatorial

designs

Parameter

Notation

Blocks (nodes) connected to the IoT network N

Blocks are generated by SBIBD B

Remaining Blocks R

Blocks are generated by HBIBD H

Number of keys used in each block k

Key Pool v

Keys each replicated in the blocks r

Number of keys intersecting any two blocks

V. DISCUSSION

There is a demand for network security research that is
essential due to the upsurge of online transactions. Every user
in the transactions believes that the data will be secure and
unaltered during transmission. To make secure data and
provide reliable keys, a lot of algorithms can be used to
provide confidentiality for the data and key-management
techniques. In the present work, we are discussing a simple
key management algorithm with less time and space
complexity compared to the relevant studies on key
management algorithms using combinatorial design. We
observed that if the network has more than 800 nodes, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

393 | P a g e

www.ijacsa.thesai.org

comprised links are reduced when compared to existing
techniques. We also mentioned the relevant graphs of
resilence in Fig. 3, Fig. 4, and Fig. 5 for various nodes.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a new hybrid combinatorial key
distribution scheme for IoT networks that improves the key
share probability, scalability, and resilience against capture
attacks. In comparison to the other three hybrid methods, our
experimental outcomes were better. For all connected nodes,
our suggested approach provides the key sharing probability
with 1. Every link in the established IoT network can use the
same unique key. This paper also provides low resilience
values against capture attacks when compared to other
schemes. We will also extend this work to reduce the
resilience of specific attacks like a man in the middle, Denial
of service. We would like to implement it in real networks for
better analysis.

REFERENCES

[1] Alagheband, Mahdi R., and Mohammad Reza Aref. "Dynamic and
secure key management model for hierarchical heterogeneous sensor
networks." IET Information Security 6.4 (2012): 271-280.

[2] Kouicem, Djamel Eddine, AbdelmadjidBouabdallah, and Hicham
Lakhlef. "Internet of things security: A top-down survey." Computer
Networks 141 (2018): 199-221.

[3] Stinson, Douglas R., and Scott A. Vanstone. "A combinatorial approach
to threshold schemes." SIAM Journal on Discrete Mathematics 1.2
(1988): 230-236.

[4] Stinson, Douglas R. "Combinatorial designs: constructions and
analysis." ACM SIGACT News 39.4 (2008): 17-21.

[5] Chien, Hung Yu, Rung-Ching Chen, and Annie Shen. "Efficient key
pre-distribution for sensor nodes with strong connectivity and low
storage space" 22nd International Conference on Advanced Information
Networking and Applications (aina 2008). IEEE, 2008.

[6] Blundo, Carlo, et al. "Perfectly secure key distribution for dynamic
conferences" Information and Computation 146.1 (1998): 1-23.

[7] Liu, Donggang, Peng Ning, and Kun Sun. "Efficient self-healing group
key distribution with revocation capabilit." Proceedings of the 10th
ACM conference on Computer and communications security. 2003.

[8] Chan, Haowen, Adrian Perrig, and Dawn Song. "Random key
predistribution schemes for sensor network" 2003 Symposium on
Security and Privacy, 2003. IEEE, 2003.

[9] Qian, Sun. "A novel key pre-distribution for wireless sensor networks"
Physics Procedia 25 (2012): 2183-2189.

[10] Li, Wei-Shuo, et al. "Threshold behavior of multi-path random key pre-
distribution for sparse wireless sensor networks." Mathematical and
Computer Modelling 57.11-12 (2013): 2776-2787.

[11] Catakoglu, Onur, and Albert Levi. "Uneven key pre-distribution scheme
for multi-phase wireless sensor networks." Information Sciences and
Systems 2013. Springer, Cham, 2013. 359-368.

[12] Camtepe S, Yener B “Key distribution mechanisms for wirelesssensor
networks: a survey” Rensselaer Polytechnic Institute,Troy,New York,
Technical Report,2005, 05-07.

[13] Lee, Jooyoung, and Douglas R. Stinson. "A combinatorial approach to
key predistribution for distributed sensor networks" IEEE Wireless
Communications and Networking Conference, 2005. Vol. 2.

[14] Ruj, Sushmita, and Bimal Roy. "Key pre-distribution using partially
balanced designs in wireless sensor networks" International Journal of
High Performance Computing and Networking 7.1 (2011): 19-28.

[15] Ruj, Sushmita, Amiya Nayak, and Ivan Stojmenovic. "Pairwise and
triple key distribution in wireless sensor networks with applications"
IEEE Transactions on Computers 62.11 (2012): 2224-2237.

[16] Bechkit, Walid, et al. "A highly scalable key pre-distribution scheme for
wireless sensor networks" IEEE transactions on wireless
communications 12.2 (2013): 948-959.

[17] Bahrami, PoonehNikkhah, et al. "A hierarchical key pre‐distribution
scheme for fog network." Concurrency and Computation: Practice and
Experience 31.22 (2019): e4776.

[18] Camtepe, Seyit A., and BlentYener. "Combinatorial design of key
distribution mechanisms for wireless sensor networks" IEEE/ACM
Transactions on networking 15.2 (2007): 346-358.

[19] Chakrabarti, Dibyendu, Subhamoy Maitra, and Bimal Roy. "A key pre-
distribution scheme for wireless sensor networks: merging blocks in
combinatorial design" International Journal of Information Security 5.2
(2006): 105-114.

[20] Kavitha, T., and D. Sridharan. "Hybrid design of scalable key
distribution for wireless sensor networks" International Journal of
Engineering and Technology 2.2 (2010): 136.

[21] Dargahi, Tooska, Hamid HS Javadi, and Mehdi Hosseinzadeh.
"Application‐specific hybrid symmetric design of key pre‐distribution
for wireless sensor networks" Security and Communication Networks
8.8 (2015): 1561-1574.

[22] Akhbarifar, Samira, et al. "Hybrid key pre-distribution scheme based on
symmetric design" Iranian Journal of Science and Technology,
Transactions A: Science 43.5 (2019): 2399-2406.

AUTHORS‟ PROFILE

G.V.Hindumathi is currently pursuingPh.D. in
Jawaharlal Nehru TechnologicalUniversity, Kakinada,
India. She is specialized in Internet of Things andNetwork
Security. Her research topic is onSecurity issues on
Internet of Things.

Dr D.Lalitha Bhaskari works asProfessor in Andhra
University,Visakhapatnam, and Andhra Pradesh. Her
areas of expertise include: Deep Learning,Network
Security, and Image Processing.And she got Young
scientist award from byIEI.

