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Abstract—This paper compares different initialization 

methods and investigates their performance and effects on 

estimating kinetic parameters’ value in models of biological 

systems. Estimating parameters values is difficult and time-

consuming process due to their highly nonlinear and huge 

number of kinetic parameters involved. Global optimization 

method based on an enhanced scatter search (ESS) algorithm is a 

suitable choice to address this issue. However, despite its 

resounding success, the performance of ESS may decrease in 

solving high dimension problem. In this work, several choices of 

initialization methods are compared and experimental results 

indicated that the algorithm is sensitive to the initial value of 

kinetic parameters. Statistical results revealed that uniformly 

distributed random number generator (RNG) and controlled 

randomization (CR) that being used in ESS may lead to poor 

algorithm performance. In addition, the different initialization 

methods also influenced model accuracy. Our proposed 

methodology shows that initialization based on opposition-based 

learning scheme have shown 10% better accuracy in term of cost 

function. 
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I. INTRODUCTION 

Kinetic models of living cells have drawn the attention of 
both practitioners and researchers in recent years [1]. Their 
applications are important in metabolic and bioprocess 
engineering as they facilitate scholars to better understand, 
accurately predict and consistently improve the desired 
products in systems biology [2,3]. The models are formulated 
by means of ordinary differential equations (ODEs) to mimic 
various functional behaviours such as glycolysis reactions via 
metabolic pathway and phosphorylationin signal transduction 
of human cells. Due to the highly nonlinear biological 
systems, building such model is considered both challenges 
and time-consuming [4]. 

One important aspect of model building is parameter 
estimation, which consists of finding the best possible value of 
kinetic parameters that produce best fit model to the 
experimental data. The goodness of fit can be measured by 
minimizing distance value in the simulated model and 

experimental data. Thus, searching best parameter values in 
kinetic model can be depicted as a nonlinear optimization 
problem [5] and this class of problem is difficult to be solved. 
In this view, various optimization algorithms have been 
proposed in parameter estimation and their findings revealed 
that local optimization often fails to obtain snear-optimal 
solution [6]. Although improvements such as iterated local 
search have been proposed, they still consume high 
computational cost. Consequently, global optimization which 
is based on metaheuristic is an ideal option to address this 
issue. Global methods are quite capable in parameter 
estimation problem as they are more likely to reach the global 
minimum compared to local methods. 

Enhanced scatter search (ESS) is one of the metaheuristic 
algorithm which have recently shown to yield promising 
outcomes in biological problems [7,8]. The algorithm benefits 
from global exploration and local exploitation using various 
choices of local search. The balanced tradeoff between global 
and local methods in ESS has shown promising results in 
solving optimization problems. However, when dealing with 
high dimension problem involving hundreds of kinetic 
parameters, performance of most global methods including 
ESS are deteriorate. One of the most neglected mechanisms in 
global methods is the way they generate the initial solution 
which were commonly derived using random number 
generator (RNG). The initialization methods may influence 
the efficiency and performance of the optimization algorithm 
in terms of its probability in finding the global minima, 
convergence’s rate and variance of statistical results [9]. To 
date, only a few works have been done for comparing 
initialization methods in optimization. So far, no comparative 
study with regard to initialization method has been done in 
large-scale parameter estimation problem, particularly in the 
biological domain. The limitation of existing work in the field 
of global optimization is they only rely on RNG for 
initialization and only focus on search operator or the way 
new solution are produced. The high complexity of the 
problem such as in biological domain or healthcare is 
challenging and applying optimization method must properly 
select the best initialization because it will influence the 
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output. Hence, this issue motivates this research to further 
investigate the effect of different initialization method. 

This paper compares and investigates the effects of several 
initialization methods (also known as diversification 
generation method in ESS algorithm) from the context of 
parameter estimation in systems biology models. The 
evolutionary algorithm based on ESS is utilized in this study 
due to its efficiency and reliability in parameter estimation 
problem [7]. The paper is organized as follows: Section II 
explicates the problem statement in parameter estimations; 
Section III delineates ESS algorithm; Section IV introduces 
several initialization methods; Section V compares the 
methods and presents the discussion of their results and 
Section VI presents the conclusion of this study. 

II. PROBLEM BACKGROUND 

In a nonlinear kinetic model of biological systems, the 
parameter estimation problem deals with finding an unknown 
value of kinetic parameters to minimize a distance (objective 
or cost function) between simulated model and real data. The 
value of cost function determines the goodness of fit of the 
model. The observables, which are referred to as the output 
state variable, are experimentally measured. The cost function 
of this problem, which is also known as weighted nonlinear 
least squares   is defined as: 
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where      is the number of experiments,     
    is the 

number of observables per experiment and   
       

 is the 
number of samples per observable in each experiment. Time 

series experimental data is denoted as    
       

 and predicted 

model is denoted as   
       

   . The kinetic parameters 
vector to be estimated is  . The time span for observables is 
denoted as   and finally   represents the weight matrix to 
balance the contributions of the observables. Minimization of 
the above cost function is subject to the following constraints: 
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where derivative of  ̇ is the function  of ODEs model that 
describes the dynamics of biological systems,    is the initial 

condition at time   ,   is the observable functions and    and 

    are the lower bound and upper bound of the kinetic 
parameter vector   respectively. This nonlinear and 
multimodal problem consists of many local minima. Thus, the 
process of finding the global minima is both challenging and 
time-consuming. 

III. ENHANCED SCATTER SEARCH (ESS) ALGORITHM 

An enhanced scatter search (ESS) is a metaheuristic that 
belongs to the family of evolutionary algorithms. This 

algorithm is similar with genetic algorithm (GA) with regards 
to maintaining and updating their population members and 
evaluating their cost function in an iterative cycle. However, 
unlike GA, ESS does not use crossover and mutation as their 
evolutionary operators. Instead, it uses the combination among 
members in a reference set (RefSet). In this study, four phases 
of ESS algorithm are used, namely: 1) initialization method, 
2) RefSet update method, 3) RefSet member generation and 
combination method, and 4) hybrid of the local search 
method. More advance designs and their mechanism can be 
found in [10,11]. 

This algorithm starts with randomly generating   
population of diverse vectors by means of initialization 
(diversification generation) method. The   size is ten times 
the problem size to ensure that the large initial solutions in the 
search space are widely sampled, thus increasing the chances 
of avoiding local minima. Although uniformly distributed 
random number is a popular method usually utilized to 
generate initial solutions in various optimization algorithms, 
there are other strategies that may provide better initial 
solutions. Therefore, we compared and investigate four 
different initialization methods which will be briefly discussed 
in Section IV. 

After the diverse vectors are generated, each vector is 
evaluated and half of the RefSet members   ⁄  (  is the RefSet 
size) is formed. The diversification method produces high 
quality initial RefSet member. The remaining RefSet members 
are choosen from the RefSet by random cycle to complete a 
RefSet. Then, the subset generation produces pairs of members 

in RefSet. Let us consider members of a RefSet,   , to be 

combined with the rest of members in RefSet,         
[       ]    . The pairs of the combination (       and 
      ) are defined as follows: 
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Every pair of combination (       and       ) in the 
RefSet members is used to create new hyper-rectangles which 
are defined by their relative positions and distance and thus, 
resulting in a new solution within them. The hyper-rectangles 
based combination methods are applied and are defined in the 
following equation: 

                                      (11) 

where      is new solution generated and   is the random 
number,     [   ] . This combination strategy is similar to 
the mutation operator in differential evolution (DE) [12,13], 
which is effective in updating population members. In ESS, 
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the vectors of combination (       and       ) are 
systematically generated. They are not randomly generated, as 
practiced in DE. Using this combination strategy, every RefSet 
member generates a hyper-rectangle among the rest of RefSet 
member. The new number of solution produces     solution 
for each RefSet member. After this strategy is implemented, a 
new solution (offspring) is generated with different distance 
and direction around their RefSet members (parents). In this 
case, if the offsprings have better (lesser) fitness value 
compared to their parents, the current solutions will be 
replaced. Otherwise, the same RefSet members will be used 
for the next iteration. In order to accelerate convergence, 
gradient local search is performed using Sequential Quadratic 
Programming (SQP). The algorithm is applied using fmincon 
solver in MATLAB. This solver minimizes the cost function 
using the results obtained in ESS using different vectors. If the 
solution obtained by fmincon outperforms the solution 
generated by ESS, the solution from fmincon will replace the 
current solution and it will in turn be added to RefSet members 
for further update. Otherwise, the solution from fmincon will 
be discarded. This process is repeated until the stopping 
criteria are met. 

IV. INITIALIZATION METHODS 

We implement five initialization methods in the ESS 
algorithm in order to compare and investigate their effects on 
parameter estimation. The methods are random number 
generator (RNG), controlled randomization (CR), opposition-
based learning (OBL), quasi-opposition learning (QOBL) and 
chaotic (Tent) map. 

A. Random Number Generator (RNG) 

The most commonly used initialization method in 
optimization algorithms is random number generator (RNG). 
RNG is defined as below: Let                    ) be the  th 

member of the population, each      is generated between 

lower and upper bound (   ,   ). In summary, it generates 

uniformly distributed random numbers as in the following 
equation: 

           (       )                 (12) 

where   is the random numbers between 0 and 1. The 
vector of      contains a list of random initial population 

generated between lower bound and upper bound [  ,   ] for 
each of the variable. 

B. Controlled Randomization (CR) 

Unlike RNG, controlled randomization (CR) strategy 
generates the first five populations (   ) of equal size for 
each vector as in the following equation [14]: 

     
            

 
           (13) 

where      is the vector of candidate solutions,   is the 

random numbers in the between 0 and1, and      is the 
number of kinetic parameters. After the first five vectors are 
generated, the remaining vectors are generated randomly and 
all initial solutions are put in the boundaries: 

                            (14) 

where    and    are lower and upper bounds, respectively. 
This strategy generates a set of diverse vectors which contain 
equal sizes of range in the first five vectors and other random 
vectors lie in sixth vector to   diverse vectors. It should be 
noted that ESS algorithm used CR strategy as its default 
initialization method [11]. 

C. Opposition-based Learning (OBL) 

Opposition-based learning (OBL) is introduced in the field 
of computational intelligence [15]. This scheme is 
subsequently applied in optimization areas [16]. The basic 
idea of OBL is to generate a set of opposite numbers from first 
initial solutions generated by RNG, as follows: Let   
[     ]  is a random value. The opposition value of   is 
defined by: 

 ̆                     (15) 

Based on Eq. (15), the opposite point for optimization in 
dimension space D is defined as follows: 

Let                    ) be the  th member of the 

population and each member      be bounded by (   ,   ) and 

   [       ]    {       }  Thus, the opposite value of 

  ̆  ( ̆     ̆        ̆ ) is defined as: 

 ̆                 ,                  (16) 

Both   and  ̆ is merged. Now, let us assume      is the 
cost function in minimization problem. If cost function value 
of    ̆  is smaller than     ,    ̆        , point   can be 

replaced with  ̆. Otherwise, point   will stay in the current 
population. All the population members will be evaluated and 

the initial population with fittest members among   and  ̆ is 
formed. 

D. Quasi Opposition-based Learning (QOBL) 

Another family of OBL is quasi-opposition learning 
(QOBL) which modified version of OBL that increases 
population uniformity [17]. Considering the opposite point in 
equation 16, the middle point    {           }  is 

calculated as follows: 

   
       

 
    {       }           (17) 

Then, quasi-opposite point  ̆     
    

      
   is selected 

randomly within the range of opposite points of  ̆ and middle 
point  : 

 ̆ 
  {

  (    ̆   )          

  ( ̆      )          

          (18) 

where   is a random value drawn uniformly in the range 

of lower bound and upper bound. Like OBL,  ̆  and   are 
merged and the best solution is chosen, that is, the fitness of 
the cost function. 

E. Chaotic Map 

Another alternative of uniformly distributed random 
numbers for diversification generation is chaotic map. This 
approach is based on the deterministic and chaotic systems 
and it is not necessarily random. In this paper, we investigate 
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one family of the chaotic map, which is Tent map [18] which 
is defined as: 

    
     

 {

    
   

   
        

  

 
(      

   
)        

          (19) 

where     
     

 is  th variable of  th individual in  th 

iteration.     
   

 is the initial variable that is generated randomly 

using RNG. In this strategy, solutions which are generated 
from Tent map are not predictable and are highly sensitive to 
initial variables. 

V. RESULT AND DISCUSSION 

A large-scale model is used to test the different 
initialization methods in ESS algorithm. The model involves 
dynamic processes that reproduce the response to a pulse in 
extracellular glucose concentrations of central carbon 
metabolism (CCM) in E. coli. This model consists of 18 
metabolites: 17 internal metabolites in cytosol and 1 
extracellular metabolite (glucose) in extracellular 
compartment. 

These metabolites consists of PEP, G6P, PYR, F6P, G1P, 
6PG, FDP, GAP, CPEP, CG6P, CPYR, CF6P,GLCex, CG1P, 
CPG, CFDP, CGAP and Glucose. The model also contains 48 
reactions coupled with 166 kinetic parameters. The 
mathematical formulation and description of this model can be 
found in [19]. Table I summarizes the characteristics of CCM 
E. coli model. 

TABLE I. CHARACTERISTICS OF THE CENTRAL CARBON METABOLISM 

(CCM) IN E.COLI 

Number of 

kinetic 

parameters 

Dynamic 

metabolites 

Observed 

metabolites 

Noise 

level 

Lower 

value 

Upper 

value 

116 18 9 Real 
    
       

     

     

Note: For fair comparison, lower and upper bound are set as a function of     , where      is a set of 

kinetic parameters obtained from original publication. In this data, only observed metabolities are 

measured. 

In order to obtain statistically significant result, we ran 
each initialization method discussed in Section IV, 20 times 
and reported the best, mean, and worst results; as well as 
average function evaluations, CPU time and standard 
deviation. Function evaluation for each run was limited to 
100,000 (the stopping criteria) to let the algorithm obtain the 
best parameter values. The RefSet size used was 36, which is 
the recommended size in this problem. With the high number 
of function evaluations and hundreds of parameters, the 
minimization process is expected to consume very lengthy 
CPU time. To surmount this drawback, Parallel Computing 
Toolbox in MATLAB has been used and it expedited the 
computation by assigning each run to eight different 
processors (logical cores) simultaneously. In this strategy, 
eight computations for each method was run independently 
using parfor loop which is available from the abovementioned 
toolbox. It should be noted that a single run takes 
approximately 11 hours, so 20 runs take approximately 220 
hour. Using the parallel strategy, 20 runs only take 

approximately 33 hour, which reduced 72.6% of CPU time 
needed. All methods were experimented on i7 CPU with 
16GB RAM which implemented in MATLAB 2015. 

Table II shows that the best (minimum) cost function was 
obtained from QOBL method with             . The 
second best value is 229.1855, which was obtained from CR. 
Only RNG, OBL and TENT produced cost function values 
which were slightly higher than the published benchmark 
value, 233.90. The results revealed that QOBL is the best 
method in finding global minimum. However, although 
QOBL presented the minimum value, its average standard 
deviation was relatively higher than RNG, OBL and TENT. 
RNG is the most consistent method followed by OBL, having 
4.5955 and 4.7331 standard deviation each, respectively. In 
terms of search effort, RNG produced the lowest average of 
function evaluations (1.2327e+05) and also its CPU time is 
also the lowest with 3.8191e+04 seconds. It should be 
observed that QOBL is the best initialization method if we 
consider its ability in minimizing the cost function in large-
scale parameter estimation problem. 

TABLE II. EXPERIMENTAL RESULTS OBTAINED FROM THE 20 RUNS 

CONDUCTED USING DIFFERENT INITIALIZATION METHODS 

Initializat

ion 

method 

Best 

value 

Worst 

value 

Mean 

value 

Standa

rd 

deviati

on 

Functio

n 

evaluati

on 

CPU 

time (s) 

RNG 
234.66

51 

252.04

59 

245.70

53 
4.5955 

1.2327e

+05 

3.8191e

+04 

CR 
(rerun) 

229.18
55 

270.03
39 

245.54
27 

10.058
6 

1.2421e
+05 

4.3142e
+04 

OBL 
234.52

23 

250.91

20 

243.99

61 
4.7331 

1.2546e

+05 

4.1942e

+04 

QOBL 
210.05

11 

255.00

70 

241.42

11 
9.3596 

1.2830e

+05 

4.2574e

+04 

TENT 
234.28
76 

259.88
41 

246.22
48 

6.4994 
1.2533e
+05 

4.0755e
+04 

Note: The best (minimum) value of cost function (weighted nonlinear least square) is shown in shaded 

cell. CR (rerun) indicates our own experimental result (in case when comparing with publish result in 
the next subsection). 

Additional information to compare the different 
initialization methods is given in Fig. 1 and Fig. 2. The figures 
depicts the best curves (with minimum cost function  ) among 
the 20 runs obtained from RNG, CR, OBL, QOBL and Tent 
methods. The curves show that all methods are able to 
minimize the cost function at a similar rate in terms of 
function evaluations and CPU time. Note that we have set the 
same initial guess as the initial value for all methods. This 
gives fairer comparison and assumes that the search space is 
feasible. In Fig. 1, starting from the first fractions of 1,000 
function evaluations, QOBL has better speed and found 
acceptable cost function value when it reached approximately 
25,000 function evaluations. Meanwhile, CR has the slowest 
speed until it reached around 40,000 evaluations. All methods 
continued to progress they reached the final evaluations. In 
this case, QOBL found the best value of 210.051 at 123,979 
function evaluations. At the end of the evaluations, all 
solutions were able to achieve equivalent solutions in terms of 
quality, although, the best (minimum) value was obtained by 
QOBL while the worst (maximum) value obtained by RNG. In 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 8, 2022 

477 | P a g e  

www.ijacsa.thesai.org 

Fig. 2, default initialization method based on CR has obtained 
slow convergene rate compared to others. It can be noticed 
where CR obtained acceptable value of cost function when 
CPU time reached nearly 8 hours, while QOBL reached the 
acceptable value at nearly 1.3 hours. The results revealed that 
RNG which is mostly used initialization method and CR as 
default initialization method in ESS have obtained poor result. 
Meanwhile, initialization method based on QOBL is a better 
alternative which was not only able to speed up convergence, 
but also obtain optimal solution. 

To evaluate the quality of the parameter estimates, we 
compared the best result (QOBL) with a published benchmark 
result [20]. One thing to note is benchmark result used 
conventional CR as their initialization methods for the ESS. 
Table III shows that our study produced the best cost function, 
  = 210.05 compared to the benchmark’s   = 233.90. 
However, our work obtained a bigger number of function 
evaluations compared to CR, with a difference of 33,251 
evaluations. In terms of CPU time, the benchmark also 
produced shorter time of approximately 3 hours for a single 
run. Due to different stopping criteria used (the benchmark 
study uses CPU time) and different hardware specifications, 
comparing QOBL and CR in terms of CPU time seems unfair. 
It should be noted that in terms of efficiency in finding global 
minimum, method used in this study produced better results 
compared to CR. 

 

Fig. 1. Convergence of the Five Initialization Methods in Scatter Search. 

 

Fig. 2. Slow Convergence of the Five Initialization Methods in Scatter 

Search. 

TABLE III. COMPARISON OF QOBL METHOD WITH PUBLISHED 

BENCHMARK IN SCATTER SEARCH 

Initialization 

Methods 

Best cost 

function 

  

Number of 

function 

evaluations 

CPU Time 

(seconds) 
       

QOBL 210.05 12.3979e+04 4.1671e+04 2.3773 

CR [20]  233.90 9.0728e+04 1.0800e+04 2.4921 

Note: The best values are shown in shaded cell. 

The decision variables (kinetic parameters) obtained from 
QOBL may provide the optimal model prediction since it 
produced the lowest cost function   and may produce best fit 
to experimental data. The goodness of fit can be measured by 
calculating root-mean-square-error (     ) for all 
metabolites.      is used to measure prediction error which 
is the different between experimental data and predicted 
model. The following equation defines     , 

      √
∑ ∑     

       
   

       
     

  
       

   

    
     

       
               (20) 

with the same notation defined in Eq. (1). In this case, 
normalized RMSE is used to cater for different magnitudes of 
observables. Each RMSE is divided by the range of value of 
observables as defined as, 

       
    

   (         )                
         (21) 

  

 

Fig. 3. Model Prediction over Experimental Data. 
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Thus,        is the sum of all       for all 
observables. Table II shows our        is lower than the 
benchmark, means that it has better fit compared to the 
parameters obtained in the benchmark. 

To measure the goodness of fit from parameter estimates 
with QOBL, we plot the model prediction over experimental 
data as shown in Fig. 3. For the sake of brevity, we plot only 
four out of nine metabolites. We chose metabolites which 
have very high nonlinear biological system, namely, PEP, 
G6P, PYR and F6P. The figure shows dynamic concentration 
change of extracellular glucose that responded to a pulse in 
central carbon metabolism. To compare the goodness of fit 
with other parameters, we also plot another fit based on 
parameters value from original published results and 
benchmark results. It should be observed that kinetic 
parameters retrieved from initialization methods based on 
QOBL represent a good fit between experimental data and 
predicted model. 

VI. CONCLUSION 

This paper studies different initialization methods and 
investigated their performance and effects on solving large-
scale parameter estimation problem. We compared five 
initialization methods which are based on stochastic and 
randomization methods and implement them in ESS 
algorithm. Experimental results revealed that the choice of 
initialization (diversification generation) methods influenced 
the performance of the algorithm. The quality of solution, 
speed of convergence and statistical results were obtained with 
different characteristics derived from different initialization 
methods. Our statistical analyses revealed that the most 
popular initialization method, random number generator 
(RNG) performs poorly and there are significant better 
alternatives to this method, which have comparable 
computational requirements. In addition, the accuracy of 
model prediction also depends on the choice of initialization 
methods. Further investigation is needed to discover whether 
the same findings can be produced when different models and 
problems associated with parameter estimation are used. More 
intensive studies also need to be conducted on why some 
methods are generated more consistent performance in terms 
of statistical analysis and value of kinetic parameters in 
biological systems. 
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