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Abstract—DNA sequence classification is one of the major 

challenges in biological data processing. The identification and 

classification of novel viral genome sequences drastically help in 

reducing the dangers of a viral outbreak like COVID-19. The 

more accurate the classification of these viruses, the faster a 

vaccine can be produced to counter them. Thus, more accurate 

methods should be utilized to classify the viral DNA. This 

research proposes a hybrid deep learning model for efficient 

viral DNA sequence classification. A genetic algorithm (GA) was 

utilized for weight optimization with Convolutional Neural 

Networks (CNN) architecture. Furthermore, Long Short-Term 

Memory (LSTM) as well as Bidirectional CNN-LSTM model 

architectures are employed.  Encoding methods are needed to 

transform the DNA into numeric format for the proposed model.  

Three different encoding methods to represent DNA sequences as 

input to the proposed model were experimented: k-mer, label 

encoding, and one hot vector encoding. Furthermore, an efficient 

oversampling method was applied to overcome the imbalanced 

dataset issues. The performance of the proposed GA optimized 

CNN hybrid model using label encoding achieved the highest 

classification accuracy of 94.88% compared with other encoding 

methods. 
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encoding 

I. INTRODUCTION 

Viruses are the leading cause of infectious diseases and 
have a harmful impact on the human population. Recent 
examples of such viruses include COVID-19, SARS, and 
MERS. As a result of viral outbreaks, new vaccines have been 
developed for such pathogens [1]. When it comes to virus 
subtyping and taxonomy classification, the classification of a 
virus's genomic sequence is extremely vital to analyze and 
understand for faster production of such vaccines. A virus's 
genome is either made up of DNA or RNA, and it is referred to 
as a DNA virus or an RNA virus, accordingly [2]. An 
organism's genetic code is encoded in the deoxyribonucleic 
acid (DNA). Adenine (A), thymine (T), cytosine (C), and 
guanine (G) are the four nucleotides that the DNA consists of. 
These are referred to as the DNA nucleotide bases [3]. Each 
type of nucleotide has a binding to its complementary pair on 
the opposite strand in the double-stranded DNA. Adenine and 
cytosine form a pair with thymine and guanine, respectively. 
Single-stranded or double-stranded RNA are both possible for 
ribonucleic acid. T is replaced by U in RNA. The improvement 
of phylogenetic and functional research of viruses may be 

enhanced by the correct classification of genomic sequences 
[4,5]. Genomic sequences are classified into different groups 
based on their qualities, traits, or attributes, and this process is 
known as genomic sequencing classification. The more 
information is known about the virus, the closer an efficient 
vaccine can be developed quickly. Because viruses' genomic 
sequences may have little in common with those of other 
viruses, it is difficult to classify them. The genomic sequence 
can be classified using several different approaches. Machine 
learning models can be trained using well-understood 
sequences to predict the profile of unknown sequences [6]. As 
a new branch of machine learning, deep learning has emerged 
in the last several years. To represent data at increasingly 
higher levels of abstraction, these models employ multiple non-
linear transformations. These models can deal with complex 
challenges because of their many hidden layers. Many studies 
have used machine learning and deep learning algorithms to 
analyze DNA sequences [6,7]. Manual feature extraction is 
used in these machine learning models [8]. On the other hand, 
this can lead to various complications, such as selecting 
features that do not lead to the optimal solution or missing out 
on key features. Most significantly, the main key features from 
the DNA dataset extracted are not clear. Besides, it is difficult 
to extract these features manually using traditional machine 
learning algorithms. Therefore, an automatic feature selection 
approach is proposed to overcome this issue. One of the 
greatest deep-learning methods for extracting important 
characteristics from a dataset is convolutional neural networks 
(CNNs) [9,10]. This study proposes an optimized 
convolutional neural network architecture for DNA sequence 
classification using genetic algorithm (GA) optimization layer 
as well as a long short-term memory (LSTM) layer. LSTM is a 
kind of recurrent neural network (RNN). It can process entire 
sequences of data effectively [11]. Besides, A genetic 
algorithm (GA) is proposed to optimize the deep learning 
model. GA is a heuristic approach inspired by the process of 
natural selection that is used in computer science and 
operations research [12]. It is a subclass of evolutionary 
algorithms (EA) that includes other metaheuristics. Genetic 
algorithms are commonly employed to generate solutions to 
optimization and search problems by utilizing bio-inspired 
operators such as mutation, crossover, and selection [13,14]. A 
genetic algorithm optimization layer was implemented to 
improve the accuracy of the classification model. The 
introduction of evolutionary algorithms such as genetic 
algorithms showed to optimize deep neural network weight 
matrix [15]. Thus, optimizing the weight matrix of the 
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convolutional neural network can achieve a better classification 
accuracy. It can also give better classification results for the 
LSTM models as the CNN layer output is used as an input to 
them. As a proof of concept, the optimized model was 
compared with and without the proposed GA optimization 
layer. The accuracy of the model with the GA optimization 
layer is shown to be better than the model without it. 
Moreover, a comparison was held using the same dataset with 
previously implemented models. The used dataset contains 
more viral sequences that may dominate the learning process 
which lead to a false increase in the overall accuracy. 
Therefore, an improved oversampling approach was applied to 
overcome the imbalanced dataset issue. The main contributions 
of this paper include a proposal of a hybrid deep learning 
model for efficient viral DNA sequence classification and an 
introduction of an optimization evolutionary algorithm to the 
proposed classification framework to improve the overall 
accuracy. In addition, an efficient oversampling approach is 
applied for handling the imbalanced dataset as well as 
increasing the dataset class variability. Besides, one-hot 
encoding is newly experimented on the viral DNA sequence 
dataset as an encoding method whereas k-mer encoding [16] 
and label encoding was used before.  The paper is organized as 
follows: in Section II, the related work is reviewed. Section III 
describes the dataset and the different preprocessing techniques 
applied on the dataset. Then, the proposed approach is 
presented. In Section IV, the experimental results and 
comparisons with other models are demonstrated. Finally, the 
paper is concluded in Section V. 

II. RELATED WORK 

Different studies employed several models and techniques 
for the classification of viral sequences. In [17], a new 
approach for classifying the Avian Influenza A viral (AIAV) 
sequences of the hemagglutinin (HA) and neuraminidase (NA) 
genes into subtypes using DNA sequence data and 
physicochemical properties is proposed. Mainly using machine 
learning techniques, four different classifiers, Naïve Bayes, 
Support Vector Machine (SVM), K-nearest neighbor (KNN), 
and Decision Tree were compared. The Decision Tree achieved 
the best accuracy of 95%. 

In [18], the author proposed three models for the 
classification of different viral DNA sequences using raw DNA 
sequence data. The three classification models were CNN, long 
short-term memory (LSTM), and convolutional neural network 
bidirectional long short-term memory (CNN-Bidirectional 
LSTM). He used the Synthetic Minority Oversampling 
Technique (SMOTE) algorithm for data oversampling to 
overcome imbalanced dataset problem with two encoding 
methods: label encoding and k-mer encoding. Results showed 
that k-mer encoding achieved the best results with 93.16% 
accuracy of the CNN model. 

In [19], the author used Random Forest and Artificial 
Neural Network models with metagenomic sequences that 
were taxonomically sorted into virus and non-virus categories. 
The algorithms attained accuracy considerably above the level 
of chance, with an area under the ROC curve of 0.79. There 
were two codons (TCG and CGC) that showed the most 
discriminative features for classification. 

In [20], the author utilized combining two classification 
algorithms with ensemble techniques such as Xgboost and 
random Forest to improve the accuracy of classifying DNA 
sequence splice junction types for small example datasets. 
They achieved an accuracy of 96.24% for Xgboost and 95.11% 
for Random Forest. 

The author in [9] developed a novel method for classifying 
DNA sequences using a convolutional neural network and 
treating the sequences as text input. The author employed one-
hot vectors to represent sequences as input to the model. The 
approach was evaluated on 12 DNA sequence datasets. 
Significant improvements were found in all the previous 
models using his proposed approach for DNA sequence 
classification with improved accuracy up to 6.12% on the 
H3K4me3 dataset. 

Most of the existing works tend to focus on training the 
classification models without any kinds of optimization both 
on the preprocessing step and prior to the classification step. 
Therefore, in this research, a hybrid deep learning model with a 
genetic algorithm optimization layer is proposed. The genetic 
algorithm layer is applied to optimize the weights of the CNN 
model. The CNN model is then utilized for classification as a 
separate model as well as an input to the LSTM and CNN-
LSTM Bidirectional models.  This will greatly improve the 
overall accuracy. Thus, the classification method uses the 
optimized genetic algorithm to generate CNN weights. As a 
prior step in data preprocessing, Adaptive Synthetic Sampling 
Approach (ADASYN) is used to handle the imbalanced dataset 
issues. 

III. MATERIALS AND METHODS 

A. Dataset 

The DNA dataset was extracted from the National Center 
for Biotechnology Information (NCBI) 
(https://www.ncbi.nlm.nih.gov). NCBI contains entire DNA 
sequences for viruses which is publicly available. The acquired 
virus DNA sequence datasets are COVID, SARS, MERS, 
dengue, hepatitis, and influenza. In addition, entire DNA 
sequences for Zika and EBOLA viruses were collected. A 
FASTA file for each sequence data was collected and 
downloaded for complete genetic sequences of each class label 
with sequence ranges from 8 to 38,012 nucleotides. The 
collected dataset consists of 86,637 inputs. A distribution of 
each class label and the count of samples in each label is 
shown in Table I. 

TABLE I. DATASET CLASS DISTRIBUTION 

Class Label Number of Samples 

COVID 45216 

SARS 7311 

MERS 6735 

Dengue 1994 

Hepatitis 8577 

Influenza 11862 

Zika 1920 

EBOLA 3022 
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As shown in Table I, the minority classes like MERS, 
SARS, Zika, Ebola, and Dengue have low counts unlike 
COVID, Hepatitis, and Influenza. To overcome this 
imbalanced dataset issue, the Adaptive Synthetic Sampling 
Approach (ADASYN) [21] was applied. ADASYN is used to 
generate synthetic data for the minority classes to oversample 
them to match the majority classes. ADASYN is a generalized 
form of the SMOTE (Synthetic Minority Oversampling 
Technique) algorithm. SMOTE [22] is an oversampling 
technique in which synthetic samples are generated for the 
minority data class. Random oversampling can lead to 
overfitting, which is why this approach helps alleviate that 
problem [23]. The main difference between ADASYN and 
SMOTE is that by using ADASYN the number of synthetic 
instances generated for samples that are difficult to learn is 
determined by taking the density distribution into account. As a 
result, difficult-to-learn samples can be used to adaptively alter 
decision boundaries. ADASYN works by locating the closest 
k-nearest neighbors of the minority class using Euclidean 
distance. Then, it chooses a random neighbor, and a line is 
constructed between the neighbor and the minority class data 
point. A synthetic sample is generated between them. Fig. 1 
demonstrates how the synthetic data points are generated using 
ADASYN. 

B. Data Preproccessing 

The most important aspect of both machine learning and 
deep learning algorithms is preprocessing of data. It affects the 
accuracy of the proposed model drastically. DNA sequences, 
unlike text data, are sequences of consecutive letters without a 
space between them. No words or phrases can be found in the 
DNA sequence. As a result, k-mer encoding [16] is used for 
converting DNA sequences into word sequences. This 
preserves the nucleotide positions of each word in the 
sequence. Two vector encoding methods, one hot vector 
encoding, and label encoding are also used to represent the 
numerical values of the sequences [24]. One hot vector 
encoding, and label encoding are used because in contrast to 
image data, which is represented as a two-dimensional 
numerical matrix as an input to the CNN, text data is 
represented as a one-dimensional series of consecutive 
characters. As a result, it must be converted to numerical 
values to use as the input for the CNN model. A demonstration 
of both sequence encodings is shown in Fig. 2. 

Thus, encoding is the process of transforming nucleotide 
categorical data into numerical data. In this research paper, 
three different types of encoding methods, Label encoding, one 
hot vector encoding, and k-mer encoding, were experimented 
with separately to encode the DNA sequence and convert it to 
the suitable numerical form for deep learning. Label encoding 
is a popular method for representing categorical data as binary 
vectors efficiently. For each of the four classes of nucleotides 
(A, T, G, and C), each one is represented as a number to form 
an array. A is given the value of 1, C is given the value of 2, G 
is given the value of 3, and finally, T is given the value of 4. 
An example sequence of (AACG) will be represented as an 

array of integers of (1,1,2,3). In decimal-binary vector 
encoding, one-hot vector encoding for DNA sequences is 
another way of representing nucleotide sequence data in 
numerical vector representation. Each nucleotide is represented 
by a binary vector of length 4. A is represented as (1,0,0,0), C 
as (0,1,0,0), G as (0,0,1,0) and T as (0,0,0,1). Each nucleotide 
holds a vector representation of 4x1 dimension. Finally, k-mer 
encoding transforms the complete DNA sequence into smaller 
substrings of length k, which represents a word. These words 
can be used effectively in natural language processing 
techniques. 

C. Classification Methods 

Three deep learning models were applied. One model 
consists of the CNN layer only. The other two models consist 
of two layers. The first layer of both models is the CNN layer. 
The CNN layer is used as a feature extraction layer. The output 
of the CNN layer is given as an input to the second layer. The 
second layer of the first model is CNN-LSTM. The second 
layer of the second model is CNN-Bidirectional LSTM. One of 
the main contributions of this work is applying a standard 
Genetic Algorithm (GA) to optimize each CNN layer in the 
models. The GA layer is used to optimize the weights in the 
CNN layer, which in turn improves the accuracy of the 
classification models [25,26,27]. Each model is trained and 
tested using three different encoding methods, label encoding, 
one-hot vector encoding, and finally using k-mer encoding. A 
summary of the proposed workflow with the models is shown 
in Fig. 3. 

As demonstrated in Fig. 3, after the data preprocessing the 
GA layer is utilized to optimize the weights of the CNN layer. 
Then, the three models are used for the classification process. 

This section demonstrates the classification methods in 
detail. In subsection 1, a detailed demonstration of the 
proposed genetic algorithm optimization layer will be 
presented. Following that, in subsections 2 and 3 the used 
classification models will be explained, respectively. 

 

Fig. 1. Generation of Synthetic Data Points using ADASYN with k=4 as an 

Example and S1 Represents the Synthesized Point of the Minority Class 

where Xn Represents a Data Point. 
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Fig. 2. Difference between One-Hot Encoding and Label Encoding for DNA Sequences. 

1) Optimization layer using genetic algorithm (GA): 

Genetic algorithm [12] relies on biologically inspired 

operators including mutation, crossover, and selection to 

produce high-quality solutions to optimization and search 

problems. GA is mainly a heuristic approach for the 

optimization of search problems. It is used because the 

concern is about the optimization of the weights not how 

much time it takes. Thus, in this research, it is used to 

optimize the weights of the CNN layer. 

The standard GA progression originally proceeds as 
follows: 

 The population's initialization. 

 Evaluating each member's fitness. 

 Choosing parents to create children for the next 
generation. 

 Parental cross-over to create offspring. 

 Randomly mutating the offspring. 

 Keep evaluating, reproducing, and mutating until the 
loss function is optimized. 

The following are the proposed steps involved in 
integrating the GA with the CNN: 

 Randomization of initial values of each chromosome. 

 Substituting the CNN weights with the values of the 
selected chromosome. 

 Using the newly obtained weights to update the 
weights of the CNN. 

 Calculating the fitness of the present offspring by 
subtracting the resultant output from the goal output 
sequence. 

 Repeating the simulation for all members of the 
population. 

 Using a roulette strategy for selecting the parents of the 
next generation. 

 Crossover of the parents to produce new offspring. 

 Mutating the offspring with a 1% probability of 
mutation. 

 Repeat the previous steps until the evaluation metrics 
or loss function is optimized. A pseudocode of the 
proposed GA algorithm is shown in Algorithm 1. 

Algorithm 1: Genetic Algorithm for CNN Optimization 

Input:  

Population Number, n 

Iterations, I 
 
Output: Global best configuration of CNN weights Obest 

 

 

 Begin  

Generation of population n 

Random initialization of each chromosome in n 

       Set counter = 0 

       Compute the fitness function of each chromosome 

      While (counter < I) 

           Select chromosome pair using roulette 

           Calculate the fitness of the current offspring 

           Apply crossing over with 70% probability 

           Apply mutation with 1% probability 

           Replace old population with new population 

           Save the current configuration of offspring 

           Update Obest 

           Increment counter 

     End while 

     Return The best solution of configuration Obest 
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Fig. 3. Summary of the Proposed Workflow. 

In the proposed GA algorithm, the chromosomes of the 
original GA reflect the CNN weights in GA. The population, 
which is made up of several chromosomes, is seeded at 
random. The number of weight vectors is represented by the 
number of chromosomes. The fitness function is the training 
set's accuracy. As a result, while using CNN, the optimization 
challenge entails maximizing the accuracy of the training set. 

The first phase in the algorithm is the generation of the 
starting population. This is the first stage of the process. In the 
CNN model, the values of the hyperparameters are picked at 
random from the defined search spaces with the help of the 
python random module, which follows the uniform 
distribution. The fitness evaluation is the next phase. The 
validation accuracy and the average of the model's five highest 
training accuracy were both considered in the trials as fitness 
functions. The highest accuracy represents the highest fitness. 
The selection method employed is the roulette wheel. Then, the 
crossover and mutation stages proceeds. After the crossover 
occurs, the entire new generation gets mutated. Crossover is 
accomplished by picking hyperparameters between each parent 
at random in an equiprobable manner. Additionally, the parents 
are chosen equitably among the surviving. After forming a new 
generation, the procedure is repeated iteratively from the 
second step until the final condition is satisfied. The final 
condition in the context is the occurrence of a specified number 
of generations. The output of the algorithm is the configuration 
of the weight with the highest fitness. 

In order to keep track of the GA configuration on each 
generation after evaluating the loss function, the complete 
parameters of the generation are saved in memory with its 
corresponding accuracy as well as the selected parents: a 
Boolean flag which represents if mutation occurs or not, the 
mutated individual if any and finally the crossing over Boolean 
flag. 

2) Convolutional neural networks (CNN): In deep 

learning, Convolutional Neural Networks (CNN) [9] is a 

commonly used technique that may produce cutting-edge 

results for the majority of classification problems [9, 28, 29]. 

CNN not only works well in image classification, but it may 

also deliver accurate results when dealing with text data. CNN 

is mostly used to automatically extract the features from an 

input dataset, as opposed to machine learning models, which 

need the user to select the features from an input dataset. Text 

classification is processed using 1D CNN. CNN can only deal 

with numerical data. Therefore, the DNA sequence must be 

transformed into numerical values via one-hot encoding or 

label encoding. The CNN architecture extracts features from 

the input dataset through the use of a series of convolutional 

layers. After each convolutional layer, there is a maximum 

pooling layer, and the size of the derived features is lowered. 

This layer turns the words into a vector space model based on 

the frequency with which a word appears near other words in 

the text. For feature extraction, two convolutional layers with 

filters of 128 and 64 are used in the model, as well as a kernel 

of size (2 x 2) with ReLU as the activation function for the 

extraction of features. A max-pooling layer of size (2x2) is 

added to the feature map to minimize the overall size of the 

feature map. The softmax function [30] is utilized as the 

classification layer. In neural network models that predict a 

multinomial probability distribution, the softmax function is 

chosen as the activation function in the output layer. It 

produces an output that shows the probability of each class 

label. It can provide good results for multi-classification of 

DNA sequences. The CNN weights are already optimized due 

to the previous GA layer. Thus, the accuracy of the produced 

CNN layer is optimal for using it for the next models. 
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3) CNN-LSTM and CNN-bidirectional LSTM layers: Long 

Short-Term Memory (LSTM) [11] is an RNN that can learn 

the long-term dependencies in a sequence. It is used in the 

prediction and classification of sequences [10,11,26]. It 

consists of a succession of cells, each of which has three gates: 

input, output, and forget. In this situation, the LSTM will only 

retain certain information and discard others. The LSTM 

output gate uses the sigmoid activation function and the tanh 

activation function to analyze the cell state to determine what 

value can be produced. After the convolutional layers, a 100-

memory-unit LSTM layer is added to the model to help 

predict classification labels. The CNN output features are sent 

into the LSTM layer for classification. Hybrid models using 

CNN and LSTM are commonly used in NLP tasks to increase 

classification accuracy [9,10,11,29,31]. Text classification has 

been improved by using this hybrid model. With dropout 

layers and regularization approaches, the overfitting problem 

is minimized in the LSTM modeling process. DNA sequence 

classification is performed using a bidirectional LSTM/CNN 

hybrid model. The model employs a CNN for feature 

extraction and a bidirectional LSTM for classification. Then, 

CNN is sent into the Bidirectional LSTM as an input. DNA 

sequence classification makes use of a bidirectional 

LSTM/CNN hybrid model. For classification, the model relies 

on a bidirectional LSTM and CNN. The bidirectional LSTM 

has two RNNs, one for the forward sequence and one for the 

backward sequence [32]. 

IV. EXPERIMENTAL RESULTS 

The experiments were conducted on a machine using an 
NVIDIA 1660Ti GPU processor with a RAM size of 16GB. 
The CPU of the machine was Intel Core i5-8300H @2.30GHz 
with 4 Cores and 8 logical processors. The models were trained 
and tested using Tensorflow [33] in python. The dataset was 
divided into 60% training, 20% validation, and 20% testing 
using 10-fold cross-validation. 

Before the classification phase, the GA was experimented 
on with different parameters. Several number of generations to 
end the GA optimization were used. The best results showed 
that using 12 generations as the specified number of 
generations yielded the best results. Several mutation 
probabilities were also used but the one that yielded the best 
results was a 1% rate of mutation. The rate of crossing-over 
used was 70%. The categorical cross-entropy function was 
used in the case of one hot encoding while binary cross-

entropy was used with other embeddings as a loss function in 
the training phase. The error between the actual output and the 
goal label, on which the weights are trained and updated, is 
calculated using the loss function of the GA algorithm. A 
variety of hyperparameters, such as filter size, layer count, and 
embedding dimension, were used to evaluate the CNN, CNN-
LSTM, and CNN-bidirectional LSTM models but the same 
architecture is used and the same hyperparameters as [18] in 
testing and evaluation to correctly compare the results. The 
embedding layer has 8 dimensions, which is the initial layer. If 
a word appears often next to other words, this layer transforms 
it into the vector space. This layer, which employs random 
weights, is responsible for figuring out how each word in the 
training dataset should be embedded. For feature extraction, a 
2x2 kernel with ReLU as an activation function and two 
convolutional layers with 128 and 64-bit filters are added to the 
model. Adding a max-pooling layer of size reduces the feature 
map dimensions (2x2). Using the flatten layer, the feature maps 
are finally turned into single-column vectors. A thick layer 
with neurons 128 and 64 receives the output. The number of 
filters in each layer are 128, 64, and 32, respectively. The 
embedding dimension of 32 and a k-mer length of 6 are 
included in the filter's dimensions. The models were trained 
with 10 epochs each for each of the encoding methods. The 
resultant training accuracy for each model is shown in Table II. 

The same LSTM and LSTM/CNN hybrid models are used 
in [18] to correctly compare the results and improve upon the 
currently existing model after adding the GA layer and using 
ADASYN for oversampling as well as increasing the dataset 
variability. Increasing the number of class labels in the dataset 
and the number of input sequences also contributed to the 
overall better performance of the models. The accuracy 
increased as compared to [18] by the introduction of the two 
new class labels for the Zika and the Ebola virus as well as the 
additional data collected for the rest of the class labels. Label 
encoding achieved the best accuracy in the CNN classification 
layer in both training and testing thus it would achieve the best 
results in the remaining layers. This is because the CNN layer 
is used as an input to both the CNN-LSTM layer and the CNN 
Bidirectional LSTM layer. The models were trained and tested 
using GA optimization and without using GA optimization. 
Results show that GA optimization yielded noticeably better 
results in all label, one-hot and k-mer encodings than the 
results without GA optimization. Testing results and the results 
of the experiments using GA optimization and the same 
experiment without using the optimization layer are shown in 
Table III. 

TABLE II. TRAINING ACCURACY OF THE PROPOSED METHOD 

ENCODING METHOD 

CLASSIFICATION METHOD 

CNN CNN-LSTM CNN Bidirectional LSTM 

Label Encoding 95.12% 94.36% 93.82% 

One-Hot Encoding 94.57% 93.89% 93.22% 

K-mer Encoding 94.51% 94.21% 93.55% 
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TABLE III. COMPARISON OF CLASSIFICATION MODELS WITH AND WITHOUT GA OPTIMIZATION LAYER USING DIFFERENT ENCODING METHODS 

ENCODING 

METHOD 

CLASSIFICATION METHOD 

CNN CNN-LSTM CNN Bidirectional LSTM 

Using GA 

Optimization 

Without Using GA 

Optimization 

Using GA 

Optimization 

Without Using GA 

Optimization 

Using GA 

Optimization 

Without Using GA 

Optimization 

Label Encoding 93.51% 92.92% 93.27% 92.78% 93.20% 92.14% 

One-Hot Encoding 93.77% 93.16% 93.54% 93.02% 93.44% 93.13% 

K-mer Encoding 93.51% 92.92% 93.27% 92.78% 93.20% 92.14% 

With the addition of the GA optimization layer, label 
encoding, one hot encoding and k-mer encoding achieved an 
accuracy of 94.88%, 94.33% and 94.05%, respectively using 
the CNN model. Using CNN-LSTM, label encoding, one hot 
encoding and k-mer encoding achieved an accuracy of 94.42%, 
93.51% and 93.9%, respectively. Finally utilizing the CNN-
LSTM Bidirectional model, the accuracies were 93.74% for 
label encoding, 93.01% for one-hot encoding and 93.37% for 
k-mer encoding. On the other hand, without using the GA 
optimization layer the accuracy for each model was 
considerably less. CNN achieved an accuracy of 93.22%, 
93.50% and 93.54% for label encoding, one hot encoding and 
k-mer encoding, respectively. Using CNN-LSTM model, label 
encoding achieved an accuracy of 93.5%, one-hot encoding 
achieved an accuracy of 91.59% and k-mer encoding showed 
an accuracy of 92.16%. Finally, CNN Bidirectional model 
achieved an accuracy of 91.35%, 92.16% and 92.46% for label 
encoding, one hot encoding and k-mer encoding, respectively. 
Among all the three encoding techniques, label encoding is 
shown to achieve the best results overall with the introduction 
of the GA layer and without using it. 

In order to compare the results with [18], the two additional 
class labels Zika and EBOLA viruses were removed from the 
dataset and then the dataset was experimented on. Thus, the 
experiment was carried on using ADASYN for oversampling 
and the addition of the GA optimization layer in comparison 
with [18] who used SMOTE and the hybrid model without the 
addition of the GA layer. The resultant accuracies are shown in 
Table IV. Furthermore, only label encoding and k-mer 
encoding is demonstrated for comparison as in [18]. 

By comparing the results of k-mer encoding using GA and 
introducing two new class labels to the dataset and ADASYN 
oversampling method, the proposed method is proved to give 
better accuracy results than the previous model used by [18]. 
The best results from [18] were achieved using k-mer 
encoding. In the proposed method in this study the resulting 
accuracy using k-mer encoding were 94.05% using CNN, 
93.9% using CNN-LSTM and 93.37% using CNN 
Bidirectional LSTM. Whereas it previously resulted in 93.16% 
using CNN, 93.02% using CNN-LSTM and 93.13% using 
CNN-Bidirectional LSTM without GA optimization and using 
SMOTE oversampling with less dataset sequences and less 
class labels. Thus, the proposed method achieved best accuracy 
using k-mer encoding in comparison to [18]. It also achieved 
the best overall classification accuracy of 94.88% using label 
encoding. The training and validation loss curves for the three 
encoding methods are shown in Fig. 4. 

The accuracy curve shows that label encoding achieved the 
best training and testing results overall among all the three used 
encoding methods. One hot encoding showed similar results 
for both training and testing in CNN Bidirectional LSTM but 
better training accuracy using CNN and LSTM. Utilizing 
ADASYN resulted in better results in the overall training 
accuracy due to the optimized oversampling of the dataset in 
the minority class labels such as Zika and Dengue. As a 
limitation, improving the accuracy by introducing the 
optimization layer leads to an increase in computational time. 
Moreover, the generated synthetic dataset in the oversampling 
method might have some fuzzy class boundaries. 

TABLE IV. COMPARISON OF CLASSIFICATION MODELS WITH GUNASEKARAN, ET AL. [18] USING GA OPTIMIZATION AND WITHOUT THE ADDITION OF THE 2 

NEW CLASS LABELS 

ENCODING 

METHOD 

CLASSIFICATION METHOD 

CNN CNN-LSTM CNN Bidirectional LSTM 

Proposed Model 
Gunasekaran, et al. 

[18] 

Proposed 

Model 

Gunasekaran, et al. 

[18] 
Proposed Model 

Gunasekaran, et al. 

[18] 

Label Encoding 93.51% 92.92% 93.27% 92.78% 93.20% 92.14% 

K-mer Encoding 93.77% 93.16% 93.54% 93.02% 93.44% 93.13% 
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Fig. 4. The Resultant Training and Validation Loss Curves using GA Optimization and without using GA Optimization with all 3 Different Encoding Methods.

V. CONCLUSION 

The classification of viral DNA poses a major challenge in 
recent years. The accurate classification of the DNA of 
pandemic viruses will greatly help in the production of 
vaccines and the identification of new pathogens. This study 
proposes an optimized method for the accurate classification of 
viral DNA utilizing genetic algorithm for optimization 
classification using a hybrid deep learning model. The 
proposed method uses a genetic algorithm to optimize the 
weights of the CNN model which enhances the overall 
classification accuracy. The study also utilizes ADASYN as an 
optimized dataset oversampling technique for the minority 
class labels. Three encoding techniques were experimented 
with which are label encoding, k-mer encoding, and one-hot 
encoding which was not used in previously proposed models. 
The experiments showed that the proposed optimization layer 
GA and ADASYN with the deep learning model outperformed 
previously proposed models on the same dataset in terms of 
classification accuracy. The models were then trained and 
tested with GA optimization and without GA optimization. The 
GA optimization drastically affected the accuracy of the 
models. As a result, label encoding was shown to achieve the 
best accuracy of 94.88% using CNN. Besides, k-mer encoding 
achieved an accuracy of 94.05% whereas the best results 
achieved by a previously proposed model were 93.16%. As a 
result, it is shown that the introduction of an optimization layer 
improved the overall classification accuracy. The introduction 
of more evolutionary or optimization algorithms in future 
research could improve the accuracy further. Furthermore, the 
use of an optimized oversampling technique yielded better 
overall accuracy. Therefore, by using ADASYN which is an 
optimized version of SMOTE yielded better results. 

For future work, it is planned to introduce more viral DNA 
sequences in the training dataset and use other selection criteria 

for the GA selection algorithm which could further improve the 
accuracy of the classification. In addition, more optimization 
methods could be utilized. 
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