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Abstract—Biometric authentication systems have always been 

a fascinating approach to meet personalized security. Among the 

major existing solutions fingerprint-biometrics have gained 

widespread attention; yet, guaranteeing scalability and reliability 

over real-time demands remains a challenge. Despite innovations, 

the recent COVID-19 pandemic has capped the efficacy of the 

existing touch-based two-dimensional fingerprint detection 

models. Though, touchless fingerprint detection is considered as a 

viable alternative; yet, the real-time data complexities like non-

linear textural patterns, dusts, non-uniform local conditions like 

illumination, contrast, orientation make it complex for realization. 

Moreover, the likelihood of ridge discontinuity and spatio-

temporal texture damages can limit its efficacy. Considering these 

complexities, here, we focused on improving the input image 

intrinsic feature characteristics. More specifically, applied 

normalization, ridge orientation estimation, ridge frequency 

estimation, ridge masking and Gabor filtering over the input 

touchless fingerprint images. The proposed model mainly focusses 

on reducing FPR & EER by dividing the input image in to blocks 

and classify each input block as recoverable and nonrecoverable 

image block. Finally, an image with higher recoverable blocks 

with sufficiently large intrinsic features were considered for 

feature extraction and classification. The Proposed method 

outperforms when compared with the existing state of the art 

methods by achieving an accuracy of 94.72%, precision of 

98.84%, recall of 97.716%, F-Measure 0.9827, specificity of 

95.38% and a reduced EER of about 0.084. 

Keywords—Ridge orientation; Gabor filtering; region masking; 

ridge frequency; contactless fingerprint 

I. INTRODUCTION 

The last few decades have witnessed exponential rise in 
advanced technologies, including software computing, 
decentralized computing, smart intelligence, sensor and 
hardware systems. Despite significant innovation and 
technological horizon, personalized security or system security 
often remains a challenge under dynamic application 
environment [1]. Whether it is data, channel or infrastructure, 
guaranteeing security for these key systems has remained as an 
open challenge for academia-industries [2]. In the last few 
years, the rise in attack events too has increased significantly. 
The different attacks models have been developed on the basis 
of the exploiting user’s or system access credentials like 
passwords, smart card attack loss, impersonation, Brute Force 
attacks etc. [1][2]. Most of these attacks have resulted huge 

data losses and breach, financial losses, system failure, and 
even the loss of life. Unlike cryptographic concepts, in the last 
few years biometric driven authentication systems have 
increased significantly [4][5] having superior potential with 
high scalability, interoperability and time-efficiency. Its 
efficacy can easily be visualized as Aadhar Card system by 
Unique Identification Authority of India (UIAI) [17]. 
Interestingly, more than a billion of population in India 
possesses a fingerprint driven Aadhar card for its verification. 
Though, Aadhar is a multi-modal system; however, evolved 
with fingerprint identification. In contemporary world whether 
it is corporate official attendance systems, entry or exit or even 
attendance systems in schools, fingerprint had remained a 
viable choice. In sync with such significances, a large number 
of efforts have been made by academia-industries; however, 
the recent pandemic of COVID-19 has limited the scope of the 
classical touch-based fingerprint authentication systems [6]. 
COVID-19 pandemic has almost limited the efficacy of the 
touch-based two-dimensional fingerprint driven modalities, as 
this pandemic was found exponentially spreading due to inter-
personal infection through such frequently touching devices 
[14][15]. For instance, in certain offices, an executive could be 
seen trying his/her fingers many times to get system access. 
Fun, apart, but the severity of such frequent problems is high in 
real-world applications. The local conditions like sensor 
efficiency, optimality, sample distortion, scratches and 
humidity etc. often impact efficacy of the classical touch-based 
fingerprint techniques [3][7]. To alleviate such issues, 
improving feature modality in conjunction with contactless 
identification system seems to be the motivation for academia-
industry for future efforts [8-12]. Noticeably, unlike touch-
based two-dimensional feature learning environment, 
retrieving fingerprint feature under different orientation, 
lighting conditions is a complex problem. Moreover, suffer 
from the low accuracy and hence such system often undergoes 
false positive under varied local feature conditions and spatio-
temporal complexities. Therefore, to cope up with touchless 
fingerprint identification system demands, researchers require 
improving local conditions, feature modalities as well as 
learning environment [13][16]. These key scopes are 
considered as the key driving forces behind this study. 

In the last few years very few but significant efforts have 
been made towards touchless fingerprint detection methods. 
Jonietz et al. [3] recently tried to use depth camera and mobile 
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devices to perform touchless fingerprint detection. Despite 
RGB image and depth information combination, the key 
problem of non-uniform cues over feature space makes it 
limited towards realistic purposes. To alleviate such issues, 
Pang et al. [18] derived a three-dimensional feature model 
from input image that helped in improving ridge-valley 
information. To achieve it, authors at first employed least 
square method to fit a local paraboloid surface that helped 
estimating the local surface curvature and tensors curvature. 
Though, this approach helped in improving ridge-value 
orientation and depth information; however, at the cost of 
increased computation. Unlike previous works, Jonietz et al. 
[19] designed touchless finger detection model exploited 
aggregated channel features with RGB color space for finger 
segmentation that in conjunction with geometric shape helped 
estimating the fingertip for verification. Zaghetto et al. [20] too 
made effort to alleviate issues primarily caused due to 
orientational complexity and resulting spatio-temporal feature 
changes. To achieve it, authors applied Multiview scanner with 
multilayer neuro-computing. Despite their ability to address 
bad positioning problem, they could achieve the highest 
accuracy of 94%, which still needed to be improved. Though, 
Galbally et al. [8] made effort to improve accuracy by applying 
Laser sensing technique named 3D: FLARE. Yet, this 
approach was limited to yield a scalable solution for real-world 
purposes. Noticeably, these all approaches failed in providing a 
solution with scalability and efficacy towards real-world 

application. However, the depth assessment indicates that 
improving local input condition with superior feature 
segmentation and learning can yield superior performance. 

Considering above stated key issues and allied scopes in 
this research, the emphasis was made on multi-dimensional 
optimization including pre-processing, feature extraction and 
eventual learning model. Being touchless approach, we 
considered normal three-dimensional RGB images as input, 
which is then processed for histogram equalization followed by 
contrast improvement and filtering. Recalling, non-linear ridge 
value patterns and local textural variations, we performed 
image normalization using Z-score method. Here, we 
performed block-wise normalization to improve contrast 
information. Subsequently, orientation image estimation was 
performed to improve local feature distribution. Moreover, it 
enabled frequency image estimation to make further spatio-
temporal feature learning better. As post frequency image 
estimation, we performed ridge mask generation and Gabor 
filtering to ensure optimal local spatio-temporal textural feature 
(STTF) distribution for further minutiae detection. Unlike 
classical approaches, we performed three-dimensional minutiae 
projection and ridge mapping that improved overall feature 
space to achieve better spatio-temporal features for further 
learning. Finally, cropping the improved ridge mapping 
information, we performed deep-STTF feature extraction by 
applying Gray-level Co-occurrence Matrix (GLCM) followed 
by classification using random forest algorithm. 

TABLE I. ILLUSTRATION OF 3D CONTACTLESS FINGERPRINT SAMPLES 

1 

    

2 

    

3 
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II. METHODOLOGY 

This section focuses on improving input data environment 
to ensure reliable fingerprint detection. In major touchless 
fingerprint detection models the viewing angle, image 
orientation, loss of ridges or damaged ridges and furrow 
structure, varying lighting or contrast etc. often impacts 
features, that eventually influences overall prediction accuracy. 
Considering this fact, in this paper, we focused on alleviating 
local data complexities. Moreover, we intend to guarantee 
intrinsic feature driven local conditioning so as to make 
optimal feature extraction without depending on the classical 
minutiae detection and segmentation. To achieve it, the 
proposed work encompasses data acquisition, Local Pre-
conditioning and Image Quality Enhancement followed by 
feature extraction, classification and performance analysis. 

A. Data Acquisition 

In sync with the targeted contactless environment for 
fingerprint detection system, in this work we collected 
contactless three-dimensional sensor driven images to prepare 
datasets. The 3D touchless fingerprint datasets were collected 
in such a manner that it could enable effective learning under 
data heterogeneity and diversity to make it more efficient under 
realistic environment. Training over the large heterogeneous 
fingerprint patterns can make artificial intelligence driven 
models robust towards realistic purposes. Moreover, it can help 
achieving high reliability. We considered the 3D Fingerprint 
dataset comprising a large contactless fingerprint sample. 
Noticeably, for our case study we considered a total of 50 
subjects and the samples collected were from the subjects aged 
in between 28 to 55 years. The subjects comprised a total of 40 
man and 10 women that eventually contributed 160 and 40 
fingerprint samples, correspondingly. The data considered had 
been collected under natural light conditions with standard 
illumination. Here, no specific light or illumination control 
measure was applied. To introduce diversity in reference to the 
viewing angle, illumination, contrast, orientation etc., subjects 
were instructed to stand in-front of the camera; and were 
instructed to move freely while keeping target fingers within 
camera vision range. Though, the similar dataset named 3D-
FLRE-DB retrieves each fingerprint sample 15 times, where 
five different samples were obtained at a specific speed; we 
considered data retrieval at the random movement without any 
pre-calibrated speed definition. To introduce mode STTF 
feature heterogeneity the samples were not collected 
consecutively rather were captured at the different interval or 
gaps. To achieve it, once capturing one sample from a subject, 
the sample from another subject was captured, and this process 
was followed across the sample collection process over target 
subject volume. This approach was primarily done to introduce 
high spatial variability and textural heterogeneity to improve 
learning efficiency. A snippet of the data considered in this 
study is given in Table I. 

1) Preliminary: Let,   be the input fingerprint image with 

    dimensional matrix, with  (   ) as the pixel intensity 

for the ith row and the jth column. In sync with touchless 

input, we hypothesize that the input images possess minimum 

resolution of 600 dots per inch, which is not difficult in 

contemporary high-definition camera. Thus, for the input 

images with aforesaid specification, the mean and the variance 

of the fingerprint image   in its gray-level form are derived as 

equation (1) and (2) respectively. 

 ( )  
 

  
∑ ∑   (   )   

   
   
                (1) 

   ( )  
 

  
∑ ∑  ( (   )   ( ))

    
   

   
               (2) 

B. Local Pre-conditioning and Image Quality Enhancement 

The overall proposed local pre-conditioning model 
encompasses the following key processes: 

 Image Normalization. 

 Local Orientation Estimation. 

 Local Frequency Estimation. 

 Ridge Masking. 

 Gabor Filtering and Smoothening. 

The proposed model at first performed normalization in 
such a manner that it retains a pre-defined mean and variance 
characterized. 

2) Image normalization: Consider  (   ) be the gray-level 

value for the input touchless fingerprint image where (   ) be 

the corresponding pixel values. Moreover, let   and     be 

the measured mean and variance of the input image  . In this 

case, the normalized gray-level image for the input  (   ) can 

be obtained as  (   ), which is mathematically derived as per 

equation (3). 

 (   )  

{
 

    √
    ( (   )  ) 

   
     (   )    

   √
    ( (   )  ) 

   
          

          (3) 

In (3),    and      represents the expected mean and the 
variance values, correspondingly. In the proposed model, 
normalization is performed as a pixel-wise function and 
therefore it retained the native image clarity, especially ridge-
and-furrow structure for further feature extraction and learning. 
Here, the key motive was to minimize the variations in the gray 
-level values in the direction of ridges and furrows so as to 
enable further processes more efficient without losing any 
intrinsic information. 

3) Ridge orientation estimation: In reference to the 

touchless fingerprint, where the input image can have spatio-

temporal differences caused because of varying light 

conditions, change in orientation, spatial and temporal feature 

non-linearity. To ensure optimal feature learning, we focused 

on improving ridge STTF. To achieve improved ridge 

information and allied intrinsic values, we performed ridge 

orientation estimation. In this work, we designed a least-mean 

square image orientation estimation concept for orientation 

image estimation. The proposed Ridge Orientation Image 

Estimation model is accomplished in multiple sequential steps. 

A snippet of the involved algorithm and allied implementation 

is given as follows: 
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Step-1: Split the input Gray-level image in     
dimension. Here, we considered       dimension to split 
input image into multiple grids. 

Step-2: Estimate the gradient information in   and   
directions for each pixel element (   ). Here, the gradient in   
and   directions were,   (   ) and   (   ), respectively for the 

input pixel elements (   ) . In this work, to ensure low 
computational overheads over a large input image, we applied 
Sobel operator method to perform gradient estimation. 

Step-3: Measure the local orientation values for each input 
block, especially centered at the pixel element (   )  by 
applying following mathematical formula. 

  (   )  ∑ ∑    (   )  (   )
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In (6),  (   ) represents the LMS value of the local ridge 
orientation for the block centred at the pixel location (   ). In 
fact, ridge orientation signifies the direction which is 
orthogonal to the dominant direction of the Fourier spectrum 
over     window. 

Step-4: This is the matter of fact that unlike touch-based 
fingerprint detection models, touchless image driven 
approaches might undergo more noise, reflections, dust related 
problems. In addition, touchless images can have the likelihood 
of the more damaged or corrupted ridge values or orientation, 
which can also be given rise due to the change in orientation or 
light intensity, contrast etc. Non-uniform skin surfaces too can 
show different spatio-temporal distribution for the ridge and 
furrow values in touchless fingerprint images. In sync with 
such complexities and allied challenges, the estimated values 
of the local ridge orientation can become inaccurate as well at 
certain time. In reference to these issues, we recall a hypothesis 
stating that as the local ridge orientation values vary gradually 
in local vicinity, especially in those neighboring localities 
where there is no singular point takes place or appear. In this 
reference, the use of a low-pass filter can be employed to 
manipulate the incorrect local ridge estimation (6). Now, to 
achieve it the orientation image is converted into a continuous 
vector field (CVF), which is mathematically derived as per (7) 
and (8). In above (7) and (8), the variables    and    

represent the   and   components of the vector fields, 
correspondingly. 

  (   )     (  (   ))              (7) 

  (   )     (  (   ))             (8) 

Then performed LPF filtering by applying following 
mathematical approaches (9-10). 
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In (9-10), the parameter   represents the two-dimensional 
LPF possessing single integral where the size of the filter is 
considered as      . We performed smoothing at the block 
level where the filter size was fixed as    . 

Step-5: Update the local ridge orientation at the pixel 
position (   ) by using (11). 

 (   )  
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 (   )

  
 (   )

)           (11) 

Thus, applying above stated approach of smoothening and 
allied orientation image estimation we obtained a uniformly 
oriented field image, which is consequently processed for 
frequency estimation. 

4) Ridge frequency estimation: As stated in the previous 

sections, in case of touchless fingerprint images, especially 

when there are no minutiae in certain neighborhood, the gray-

level values along ridges can be reconstructed as a sinusoidal 

wave. Noticeably, these sinusoidal-shaped waves are modelled 

towards the direction orthogonal to the local ridge orientation. 

Because of this reason, another key intrinsic feature from the 

input fingerprint images can be obtained in the form of local 

ridge frequency estimation. In other words, similar to the ridge 

orientation, ridge frequency can be modelled as an intrinsic 

feature for the touchless fingerprint images. In the proposed 

model, to estimate the ridge frequency information in a 

neighborhood we employed the pre-estimated measures like 

normalized image and the ridge orientation images. Let,   and 

  be the normalized and the orientation images, respectively. 

Then, with these values, we estimated ridge frequency using 

following sequential implementation approach. 

Step-1: Split the input Gray-level image in       
dimension. 

Step-2: Estimate the orientation window with fixed size 
    (128  64) over each block, centred at the pixel 
information (   ). 

Step-3: In reference to the Step-2, estimate the 
  signature ( [ ]  [ ]    [   ]) of the ridges within the 
window, conditioned at: 

 [ ]  
 

 
∑  (   )               

             (12) 

    (  
 

 
)     (   )  (  

 

 
)     (   )         (13) 

    (  
 

 
)     (   )  (

 

 
  )     (   )         (14) 

In case there exists no minutiae in the oriented window, the 
x-signature constitutes a discrete sinusoidal-shape wave, 
possessing the similar frequency as that of the ridges in 
oriented window. This as a result, enables estimation of the 
ridge frequency from x-signature. Consider that  (   ) be the 
mean pixel counts in between the two subsequent peaks in the 
x-signature, then the ridge frequency  (   ) is measured as per 
(15). 
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 (   )  
 

 (   )
             (15) 

In case there is no consecutive peaks available in x-
signature, then the frequency is assigned a fixed value -1 that 
helps in differentiating it from the genuine frequency values. 

Step-4: In case, the fingerprint images are taken over a 
predefined and definite resolution, then the value of frequency 
of the ridges within certain vicinity remains within a definite 
range. In case of 600 dots per inch resolution (DPI) this range 

remains within the level of *
 

 
 
 

  
+. In this manner, in case the 

measured value of the frequency becomes higher than the 
above stated range, the frequency is assigned a value -1, 
signifying that no genuine frequency could be estimated or 
observed. 

Step-5: In touchless fingerprint images and corresponding 
blocks where the minutiae or ridges are corrupted due to any 
local or personal regions, it doesn’t constitute any well-
structured sinusoidal wave. In this case, it becomes inevitable 
to interpolate those frequency values of those specific blocks 
from the frequency of the adjacent blocks possessing well-
structured frequency. Here, we applied the following measures 
to perform interpolation, over each block centered at the pixel 
location (   ). 

  (   )  
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 (   )     (   )     

∑ ∑   (   ) ( (         ))
    
      

    
      

∑ ∑   (   ) ( (         )  )
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Where,  ( )  {
        
           

 

 ( )  {
        
           

           (17) 

In (16),    refers the discrete Gaussian kernel with mean 

and variance are assigned as 0 and 9, correspondingly. Here, 
the other components    be the size of kernels which was 
fixed at 7. In case there exists minimum one block possessing 
the frequency value of -1, then the value of   is swapped to   , 
and the above stated process is repeated (Step-5). 

Step-6: Considering the gradual change in the inter-ridge 
distance variation, the proposed model applies LPF to 
eliminate the outliers. 

 (   )  ∑ ∑   (   )
    

      

    

      
  (         )   (18) 

In (18),    represents the two-dimensional LPF with single 
integral, while      be the filter’s size. 

5) Ridge masking: As stated above, in real-time touchless 

fingerprint image a block or allied pixel can be either in non-

recoverable or recoverable region. And therefore, 

classification of the blocks or pixels in above stated categories 

can be done on the basis of the wave’s shape analysis. In this 

work, we employed three distinct features including 

amplitude( ) ,frequency( )  and variance( ) . Consider that, 

 [ ]  [ ]    [ ]  be the x-signature of a specific block 

centered at the pixel position (   ), then the aforesaid three 

different features pertaining to that block are obtained as per 

the following approach. 

Step-1: Assign the value of   as the mean height of the 
peak and the mean depth of the valley. 

Step-2: Define   as 
 

 (   )
, where  (   ) refers the number 

of pixels in between the two consecutive peaks (average 
value). 

Step-3: Estimate the value of variance  , as per (19). 

  
 

 
∑ ( [ ]  (
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             (19) 

Thus, applying this method we estimated a large number of 
three-dimensional patterns for each input image. Moreover, k-
NN classifier was applied to classify each block of     
dimension that classifies each input block as recoverable or 
non-recoverable so as to help identifying the most suitable set 
of feature blocks for feature extraction. In case a block was 
found recoverable, the corresponding region was estimated. In 
case, the fraction of the recoverable region was lower in 
comparison to a predefined threshold (             ), we 
dropped that image for further feature extraction and learning. 
Finally, an image with higher recoverable image with 
sufficiently large intrinsic features were considered for further 
feature extraction and learning, so as to improve fingerprint 
detection and classification. Here, we label the recoverable 
region  (   ) as 1, while non-recoverable region is labelled as 
0. Now, once identifying the optimal set of intrinsically 
enriched images, we performed filtering to improve spatio-
temporal feature distribution. The details of the filtering 
method applied is given in the subsequent section. 

6) Gabor filtering and smoothening: This is the matter of 

fact that the structure of the parallel ridges in fingerprint 

image, especially possessing well-structured orientation and 

frequency can provide sufficiently large intrinsic information 

to drop irrelevant and noisy components. On the other hand, 

the sinusoid waves pertaining to the ridges too change 

gradually in the local fixed orientation. Because of this reason, 

a bandpass filter can be designed in such a manner that it 

would eliminate all unexpected or undesired noise 

components, while retaining the true ridge information for 

further learning. In reference to this scope, Gabor filter can be 

a viable solution as it possesses both orientation-selective 

characteristics as well as frequency-selective characteristics in 

both frequency as well as spatial domains. Considering this 

fact, we applied Gabor filter as the bandpass filter to eliminate 

noise components while preserving genuine ridge structures in 

fingerprint images. The Gabor filter can typically be presented 

as (20). 

 (       )     {
 

 
[
(     ) 

  
  

(     ) 

  
 ]}    (       )    (20) 

where   refers the Gabor filter’s orientation, while   
represents the frequency of a sinusoidal wave. The components 
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   and    be the space constants pertaining to the Gaussian 

envelope towards   and  , correspondingly. Here, the 
modulation transfer function of the considered filter is stated as 
per (21). 

 (        )            , 
 

 
*
[(      )    ] 

  
  

(     ) 

  
 +-  

          , 
 

 
*
[(      )    ] 

  
  

(     ) 

  
 +-          (21) 

In (21),           and          . 

To implement Gabor filters over each input touchless 
fingerprint image, three different parameters including the 
frequency of the sinusoidal wave   , filter orientation and 
standard deviation of the Gaussian envelope in the different 
directions    and    are considered. Here, the frequency 

characteristics of the filter   is estimated by employing local 
ridge frequency and the ridge orientation values. In the 
proposed model, the selection of trade-off between    and    is 

maintained in such a manner that higher the trade-off, more 
noise tolerant. However, it might cause spurious ridge 
information. On the contrary, smaller the values, the lower the 
Gaussian envelope,    and   . However, it might be less 

effective towards noise elimination. In this work,    and    

values were assigned as 4.0, each. Now, consider that the input 
gray-level input fingerprint image be  ,   be the ridge 
orientation image, while   be the ridge frequency image, and   
be the recoverable mask. Then, the improved fingerprint image 
  is obtained using the following equation. 

 (   )   

{
        (   )   

∑ ∑  (     (   )  (   ) (       ) 
    

       

    

       
         

      (22) 

Thus, the final local pre-conditioned and improved 
fingerprint images are processed further for the feature 
extraction and identification. 

C. GLCM Driven STTF Textural Features Extraction and 

Classification 

In this research work, GLCM functions as a descriptive 
statistical feature distribution model assessing the probability 
of the pixel’s gray scale values over an input fingerprint image. 
Functionally, it extracts high-dimensional statistical features. In 
this work, the varied STTF features are distributed uniformly 
throughout the pre-processed input image. In this work, over 
each input fingerprint image we extracted the different STTF 
features, which were later combined together to yield a 
composite feature vector for learning and classification. In this 
method, the retrieved spatio-temporal textural features were 
derived in the form of a matrix representing pixel intensities 
 (   ) , centered on the pixels (   ) . In this manner, we 
extracted different spatio-temporal textural features for each 
input pre-processed images, with distinct probability matrix 
    . Here, the above stated probability matrix signifies the 

differences of the intensity between the pixel elements   and   
that later helps in detecting motion patterns. In GLCM gray-
scale refers the pair association along a direction, and therefore 
retrieving the gray-scale values can yield a matrix representing 
the association matrix among the pixels towards the target 

direction. We obtained symmetric matrix   by amalgamating 
the gray-scale information along with the allied transpose 
values. It enables estimation of the cumulative relationship 
among pixels in one direction. We normalized the symmetric 
association matrix   using (23) to obtain the probability matrix 
    . 

     
    

∑     
   
     

            (23) 

With the extracted values of     , the different STTF 

features including Contrast, Energy, Homogeneity, Correlation, 
Mean, Standard deviation, Variance, Kurtosis and Skewness 
are obtained. As stated, a total of nine STTF features were 
obtained for further feature learning. Here, our predominant 
goal was to retain maximum possible and significant features 
for learning and classification so as to achieve higher accuracy. 

Once extracting above stated nine different GLCM 
features, we performed horizontal concatenation to estimate a 
composite feature vector for further learning. The composite 
GLCM feature obtained is given in equation (24). 

             (
                  
                    

)        (24) 

Now, once estimating the composite feature vector 
(         ), we projected it for feature learning and 
classification. As stated, in this work we intended to exploit 
maximum possible feature instances to ensure optimal learning 
by Random Forest learning method and hence classification 
accuracy. 

III. RESULTS AND DISCUSSION 

As stated above, in this section we mainly focus on 
assessing efficacy of the proposed contactless fingerprint 
detection and classification model, qualitatively as well as 
quantitatively. In other words, here we examine whether the 
use of local pre-conditioned image improvement yields 
superior performance. Before discussing the simulation results 
quantitatively, a snippet of pre-conditioned and enhanced 
results is given as follows. 

Fig. 1(a) presents a random input 3D touchless fingerprint 
image. Here, it can easily be visualized that the illumination at 
the image center and bottom is relatively higher in comparison 
to the top corners. Moreover, the ridge structures in lower right 
bottom are unclear with high level of ambiguity. Furthermore, 
the straight division lines on the left side (bottom to top) can 
easily be visualized in this sample image, which can disrupt the 
ridge continuity to make further feature segmentation or allied 
feature learning. Noticeably, there are numerous local 
conditions such as low temperature, salty water contact by 
which the ridge values get changed temporarily. Though, with 
touch-based classical methods while pressing finger over the 
sensor, such local deformations get suppressed; however, in 
touchless fingerprint detection it can have decisive impact on 
feature learning and hence classification. To alleviate such 
issues, we performed local pre-conditioning to improve the 
ridge quality for further feature extraction. As repeatedly stated 
in the previous sections, we intended to guarantee ridge 
continuity over the different local conditions while ensuring 
that the ridges contain sufficient intrinsic features. To achieve 
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it, we applied the different pre-processing steps like image 
normalization, ridge orientation estimation, frequency 
estimation, ridge masking and filtering. Fig. 1(b) presents the 
normalized image output obtained from the original input 
image. Here, the impact of normalization can easily be 
visualized. Now, recalling the methodological intend where we 
intended to improve ridge structure continuity even over non-
linear textural fingerprint surfaces, we performed ridge 
orientation estimation as shown in Fig. 1(c). The ridge 
frequency obtained over each grid is given in Fig. 1(d). In 
Fig. 1(e) presents the ridge masking results where the high 
frequent ridges are masked as 1, while the less frequent ridges 
are labelled as 0. Here, the key motive was to retain the ridge 
information carrying densely distributed features. The 
improved ridge structure is obtained by filtering (Fig. 1(f)). 
Here, observing the results it can easily be understood that the 
improved 3D touchless fingerprint image caries more uniform 
ridge’s distribution with precisely perceptible structure, which 
can provide more efficient feature vectors for further learning 
and classification. The other images (Fig. 1(g) and Fig. 1(h)) 
represent the binary images, where 1(g) depicts the binarized 
image over the input (1(f)). Observing the bottom of the 
binarized image (Fig. 1(g)), it can be found that the bottom of 
the image carries ambiguities primarily because of ridge and 
furrow diversity, conjunction and non-linear bifurcation, 
random cuts etc. This as a result can impact STTF textural 
features and hence overall fingerprint detection accuracy. 
However, retaining a threshold driven approach can retain only 
feature intensive components to perform further feature and 
classification. Thus, observing the results in Fig. 1, it can be 
stated that the inclusion of the proposed model can yield 
superior feature vector for further learning and classification. 
Noticeably, in our proposed model to perform feature 

extraction we considered the improved ridge image (Fig. 1(f)) 
as input, which is hypothesized to yield superior performance. 

The statistical performance outputs were measured by 
obtaining confusion matrix in terms of Accuracy, Precision, F-
measure, Specificity, Recall and EER and are listed in Table II. 

This is the matter of fact that a large number of studies 
have been done towards touch-based fingerprint detection 
systems; however, the efforts made towards touchless 
fingerprint detection are countable and very rare. Our depth 
literature assessment revealed that merely countable a dozen of 
efforts is made so far to introduce 3D touchless data for 
fingerprint detection. To assess relative performance, we have 
selected the recent methods like [8-12]. Ritesh and Ajay [9] 
developed a collaborative paradigm by exploiting ridge-valley 
minutiae information to perform contactless fingerprint 
detection. In their effort, authors mainly focused on improving 
minutiae under complex input data environment (like unclear 
ridge bifurcation, varied viewing angle and allied textural 
gradiance). Moreover, authors tried to suppress spurious 
minutiae information so as to improve accuracy and reliability. 

TABLE II. PERFORMANCE ASSESSMENT 

 Proposed method 

Accuracy 94.72% 

Precision 98.84% 

Recall 97.71% 

Specificity 95.38% 

F-measure 0.9827 

Equal Error Rate 0.084 

 

    

1(a) Input image 1(b) Normalized Image 1(c) Ridge orientation 1(d) Ridge Frequency 

    
1(e) Masking over reliable 

feature space 
1(f) Improved Ridge structure 

1(g) Binary image with full-

scale input 

1(h) Binary image with 

Threshold (Reliability >0.5) 

Fig. 1. Pre-conditioned and Enhanced Results by the Proposed Method.
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Authors applied the different datasets or fingerprint 
matchers like NBIS Biometric Image Software, MCC, and 
COTS (Commercial off-the-shelf), and therefore obtained the 
different performance over the different benchmark data. 
Interestingly, over the NBIS matcher they could achieve the 
EER of 13.33%. Noticeably, in comparison to their effort our 
proposed model exhibited EER of 0.084%. It shows superiority 
of our proposed model over the existing approach [9]. 
Recently, Galbally et al. [8] developed 3D-FLARE, a touchless 
fingerprint detection model; however. Despite the fact that 
their approach was quite complex in real-world realization, it 
exhibited EER of 10.03%. Though, to alleviate aforesaid data 
environment complexities, authors [8] made effort to segment 
yaw angle with fingerprint and fingertip separation etc., which 
was followed by hybrid feature extraction using local binary 
patterns (LBP) and Histograms of Oriented Gradient (HOG) 
features. Authors applied LBP+HOG features obtained from 
the segmented features to perform classification. 

Authors could achieve the average EER of 10.03%, which 
is still higher than our proposed model. Kumar and Kwong 
[10] proposed a single camera driven touchless fingerprint 
detection model. In fact, it was a 3D minutia matching concept 
that made effort to recover extended 3D fingerprint features 
from the reconstructed 3D fingerprints. The EER performance 

by authors [10] was 1.02%, which is far more than our 
proposed model. An improved model by Lin and Kumar [11] 
applied deep learning driven multi-view touchless fingerprint 
detection model. This approach exploited multi-view deep 
representation to perform touchless fingerprint detection. Their 
proposed model [11] encompassed convolutional neural 
network where one fully convolutional network was applied to 
perform fingerprint segmentation, while three other layers were 
employed to learn 3D multi-view fingerprint feature 
representation. Undeniably, authors made effort to address at 
hand complexities with contactless fingerprint detection 
models that resulted into reduced EER value (0.64%). Zheng 
and Kumar [12] performed 3D fingerprint identification by 
exploiting recovered surface normal and albedo information. 
The key novelty of this approach was that it didn’t require any 
surface reconstruction rather it employed different 
mathematical approaches to retrieve surface normal and albedo 
information, which was later used for learning and 
classification. The EER performed by this approach was 
2.49%, which was higher than our proposed model. Thus, 
observing overall performance outcomes and allied inferences 
as shown in Fig. 2, it can be stated that the proposed touchless 
fingerprint detection model outperforms other state-of-the-art 
methods.

 

Fig. 2. Comparison of Equal Error rate of the Proposed Method with the Existing State-of-the-Art Methods. 

IV. CONCLUSION 

Since the inception, the fingerprint detection models have 
always been considered as a vital alternative of the classical 
cryptosystems. Undeniably, being fast in execution and diverse 
in spatio-temporal presentation, fingerprint-based systems turn 
out to be more efficient solution for personalized security and 
access control purposes. This efficacy makes fingerprint-based 
authentication system as one of the most used approaches for 
corporates, financial sectors, smart home and industrial 
monitoring and control. Despite robustness, being touch-based 
paradigm, its optimality has been challenges under different 
operating environment, especially in reference to the health and 
hygiene. During the recent pandemic of COVID-19, touch-
based fingerprint models were found vulnerable due to touch-
based infection probability. To alleviate such issues, 
contactless fingerprint detection method can be a viable 
solution; however, being touchless in nature such approaches 
might undergo different complexities like the impact of 
viewing angle, textural non-linearity, non-uniform illumination 

and contrast, ridge and furrow ambiguity, ridge discontinuity, 
etc. On the other hand, extracting structural features or other 
STTF features over aforesaid local adversaries can impact 
overall efficacy. In other words, training over a feature 
obtained from ambiguous or minimally distinct spatio-temporal 
feature space can give rise to the high false positive rate (FPR) 
and Equal Error Rate (EER). To alleviate such problems, it 
requires multiple optimization measures including local quality 
improvement or ridge improvement, and information-rich 
feature extraction. To achieve it, at first a local pre-
conditioning concept was derived that mainly focused on 
improving ridge’s orientation and spatial presentation so that 
the optimal features could be extracted. Recalling the fact that 
extracting features over the ambiguous ridges or furrows or 
even over detached ridges can lead false positive, the proposed 
pre-processing model helped in alleviating aforesaid 
complexities. This approach eventually retains only those 
feature-rich spatial components having clearly observable or 
distinctly distributed ridges for reliable feature extraction and 
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classification. As a future work we can experiment with the 
different feature extraction methods and learning algorithms to 
improve the accuracy of classification. Efforts can also be 
made in feature extraction stage like using Deep Neural 
Networks to reduce the Equal Error Rate and False Positive 
rate. 
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