
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Watchdog Monitoring for Detecting and Handling of
Control Flow Hijack on RISC-V-based Binaries

Toyosi Oyinloye1, Lee Speakman2, Thaddeus Eze3 and Lucas O’Mahony4
Department of Computer Science

University of Chester, Chester, UK1,3,4

School of Science, Engineering and Environment
University of Salford, Manchester, UK2

Abstract—Control flow hijacking has been a major challenge
in software security. Several means of protections have been
developed but insecurities persist. This is because existing pro-
tections have sometimes been circumvented while some resilient
protections do not cover all applications. Studies have revealed
that a holistic way of tackling software insecurity could involve
watchdog monitoring and detection via Control Flow Integrity
(CFI). The CFI concept has shown a good measure of reliability
to mitigate control flow hijacking. However, sophisticated attack
techniques in the form of Return Oriented Programming (ROP)
have persisted. A flexible protection is desirable, which not
only covers as many architecture structures as possible but also
mitigates known resilient attacks like ROP. The solution proffered
here is a hybrid of CFI and watchdog timing via inter-process
signaling (IP-CFI). It is a software-based protection that involves
recompilation of the target program. The implementation here is
on vulnerable RISC-V-based process but is flexible and could be
adapted on other architectures. We present a proof of concept
in IP-CFI which when applied to a vulnerable program, ROP
is mitigated. The target program incurs a run-time overhead of
1.5%. The code is available.

Keywords—Watchdog; return oriented programming; RISC-V;
control flow integrity; software security

I. INTRODUCTION

Securing software from hijacking and exploitation is a
major step in software development lifecycle and has been
faced with persistent challenge especially in the area of control
flow hijacking. Attacks via Return Oriented Programming
(ROP) [1] remain a source of concern in spite of existing basic
and sophisticated protections. Basic protections like DEP/NX
[2], which are generic do not mitigate ROP. This is be-
cause they are centered around blocking execution of injected
code. Although these provide some measure of protections,
attacks that stem from code reuse [3] like ROP which are
not detectable by memory protection mechanisms, cannot be
stopped by data execution prevention. On the other hand, the
original CFI [4] relies on the precision of the Control Flow
Graph (CFG). The CFG facilitates the detection of abnormal
behaviour in the protected process but [4] inaccuracies in
the CFG is one of the limitations cited by [4]. Besides, the
classic CFI is a non-generic solution. Another non-generic
CFI-based solution is Modular Control Flow Integrity (MCFI)
[5] which offers a reasonably high level of precision. Recent
studies also proffered solution in the form of PUFCanary
FIXER [6], a hardware-based CFI which is also limited due
to possible information leak where the PUFCanary FIXER
inherits known canary limitations. There are other variations of

CFI implementation which have contributed positively to the
efforts to combat Control Flow Hijacks (CFH) but limitations
exist. This could be due to specificity in the architecture that
the solution was built on, as we have it in [4], or variation in
source code language of target program as we have in MCFI
[5], or general cost of implementation for hardware reliant
fixes as exist in [7, 8], or the overhead incurred. Gaps and
limitations in the realistic adoption of existing solutions inspire
the continuous search for adaptable protection for vulnerable
applications against attacks like ROP.

Aside from these limitations in existing protection tech-
niques, studies on software protection are mainly implemented
on specific system architectures focusing on elements that are
involved in the execution of applications. Previous studies on
protection measures have mostly focused on earlier architec-
tures like x86 [4] and ARM [9]. This is justifiable because
in past years, attention has been given to securing computers
and servers which are mostly built on x86. However, in recent
years, new technologies have emerged which require more
options of protections. The RISC-V [10] technology is one
of such which in recent years has gained popularity among
producers of CPUs for automotive, smart devices, health
tracking devices, etc., [11] because it is open source and more
affordable. Also recently, the first laptop running on RISC-V
processor has been introduced [12]. With these advancements
in technology, a proactive measure of protection is desirable for
vulnerable applications and the infrastructures on which they
reside. RISC-V is an open-sourced instruction set architecture
(ISA) and it was built on the already-established RISC tech-
nology [13]. Unlike most other ISAs, RISC-V was designed
by academics and was made to be flexible and affordable, not
only for use in academic research but also for deployability in
hardware and software designs without incurring any royalties.
For this reason, producers of embedded device, smart devices,
etc., have opted for it. Not much attention has been given
to securing RISC-V compared to other architectures like x86.
Existing protections might not adequately provide the needed
protection for RISC-V- based programs and systems.

Recent studies [14, 15] have highlighted gaps in existing
protections especially for RISC-V programs and specifically
against ROP as a result of hidden execution paths in the
Control Flow Graph applied for implementing CFI. This study
was embarked on with the goal to fill the gaps by increasing
adaptability of protection mechanism for surmounting ROP.
The concept implemented in this paper builds on a previous
study [16] which proposed the possibility of securing vul-

www.ijacsa.thesai.org 830 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

nerable processes via inter-process communication. A novel
approach was derived as Inter-process CFI (IP-CFI) which
adopts the CFI concept alongside inter-process signaling and
watchdog monitoring to detect abnormal behaviour in vul-
nerable applications. The vulnerable process is monitored by
another process during execution. If a deviation is suspected
in the control flow of the process, a watchdog function and
inter-process signaling is triggered to further handle control
flow monitoring.

According to [16], in-line CFI could be implemented by
inserting labels to mark the start and end of each function
with some additional instructions to perform checks on the
flow of execution. In building on this technique, the watchdog
adopts the time-out concept to extend monitoring whenever the
process exceeds a stipulated time frame. The idea of watchdog
monitoring is not new for securing systems. For example,
study by [17] presents the grenade for monitoring mobile
apps especially against denial of service (DoS) attacks. The
research [17]’s grenade uses a countdown timer which is not
reloadable once it begins to countdown. The author in [17]
opted for this same technique to avoid a hijack of processors
where a malicious program is able to extend its own life. In a
similar line of thought, we avoid a possible extension of any
malicious code execution by running a waiting time based on
the intended purpose of the protected process. This is because
unlike grenade which relies on the operating system timer, IP-
CFI uses a monitoring program that is dedicated for monitoring
a target process to increase flexibility. Some waiting time is
also triggered in the target process and the monitor to achieve
inter-process signaling. If a CFH is detected, further exploits
can be prevented by an outright halting of the process.

The detection is made possible by initially analysing the
vulnerable program to chart its intended execution path repre-
senting the CFG of the program, through static and dynamic
analysis. In IP-CFI, values are passed from in-line CFI into
shared memory where the monitor performs status check of the
vulnerable process. Inter-process communication is achieved
using atomic operation via semaphore and mutex on shared
memory. Values that are used in the monitoring processes are
stored in immutable registers and set in assembly code before
completing compilation. Since IP-CFI is a software-based
implementation which involves addition of enhancement code,
the target program would require rebuilding after appending
the enhancement code to implement the new protection.

This paper discusses the use of static analysis, dynamic
analysis, RISC-V assembly coding, insertion of in-line checks
for IP-CFI which provides a behaviour-based detection, and
handling of CFH via Inter-process signaling on programs built
and run on the RISC-V architecture. Most similar existing
solutions are centered on the x86 system architecture and
lack capacity to protect applications running on other CPUs
like RISC-V. For this reason, the solution presented here is
built around the RISC-V architecture but could be adapted for
programs running on other CPUs. The rest of this paper is
structured beginning with related works discussed in Section
II. The methodology and implementation details are held
in Section III while Section IV highlights the outcome of
implementation, evaluation and application. Section V is a
conclusion on this study and possible future works.

II. RELATED WORKS

Studies on software exploitation and protection have re-
vealed control flow hijacks as a major source of concern in
software security. Researchers have identified strengths and
weaknesses of existing mitigation techniques by demonstrating
various instances and concepts. The issue of CFH is partic-
ularly complex because there are different factors that need
to be considered in proffering a lasting solution. This could
be the consideration of the programming language of build,
the low precision of CFG, CPU architecture on which the
applications are running, and the cost of applying hardware
solutions. The protection offered through CFI has potentials if
applied alongside external enhancements. According to [18],
CFI being a concept is flexible and could be enhanced by
additional operations.

The classic CFI which was implemented on x86 architec-
ture by [4] presented a promising solution to the challenge of
CFH. A concept that relies on expected behavior, detection
of deviations from expected behavior and trustworthiness of
detector/enforcer. The classic CFI concept makes use of CFGs
to apply inline reference monitoring (IRM) with which the
protected application is rewritten. This was however found
to be inefficient in its fine-grained form and not realistically
implementable. Since the outcome of study by [4], other imple-
mentations have been studied in [5, 19, 6, 8], etc. These held
some reliable outcomes with variations in structure, model,
and platform but the mechanism still involves cross-checking
flow of execution in comparison to intended flow. The integrity
of the process is then enforced by introducing a halt or other
forms of handlers to the situation.

Aside from existing limitations is realistic implementation
of the classic CFI, recent studies [14, 15] have revealed the
possibility of Hidden Execution Paths (HEP) which are not
detectable and therefore omitted in the mapping when a CFG is
built. While addressing ROP as a threat model on RISC-V, [14,
15] identified how ROP could persist on RISC-V platforms as a
result of gadgets that could be obtained from overlapping code.
It is therefore desirable to have a protection that is capable of
an overview of the protected program. IP-CFI does not seek
to know what gadgets are involved in the attack but to ensure
the continuity of genuine execution and the termination of
illegitimate flow in execution. Previous forms of CFI [4, 20]
have their protection mechanism lying within the protected
binaries which to an extent provides an impactful protection
but the CFI itself might be unreliable due to low precision in
CFG. In the case of [20], HEPs that were recently identified
[14] could enable attack bypassing the checks. In this study,
an additional monitoring process is adopted so that the in-line
CFI could be monitored from outside of the target process
while a watchdog is triggered if a deviation is suspected.

We present here a software-based protection. The classic
CFI [4] was also software-based and was accomplished without
recompilation of the program and no access to source code.
This was made possible on the x86 implementation because
CFG that was used in performing CFI checks were built using
Vulcan [21]. Vulcan is not yet compatible with the RISC-V
environment and as the program used here is a simple one,
the CFG was done using Ghidra and Gdb for analysis. On the
other hand, there exists compiler-based implementations like
Gfree [20] which requires a part of the binary to be rewritten

www.ijacsa.thesai.org 831 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

and recompiled because the solution aims to eliminate gadgets
that are based in libraries. Similarly, the protection here applies
some additional lines of instruction to the protected target at
the assembly level and also requires a full compilation into
executable after the enhancement code has been inserted. The
insertion of code has been automated but in-line checks are
still inserted manually. A RISC-V target C-source code can be
passed as argument into a startup script to be compiled with
the enhancement code. The monitor however runs separately
and need to be run concurrently as with the target program.

A state-of-the-art study presented in [18] observed that
all eleven software-based CFI that were examined could be
bypassed, although they each provided some protections in
one way or another. They identified fine-grained CFI as a
strong defense but incurs high overhead because of the use
of shadow stack. Coarse-grained CFI on the other hand is a
looser form that checks if control-flow transfers has originated
from a return instruction and if its destination can be targeted.
Three hardware-based CFI were examined and they were
identified as difficult to be realistically implementable as such
approach requires changes to the IT ecosystem that would
incur additional cost on the system. [18] made conclusions
that a hybrid form of CFI that combines existing protections
might improve security in a CFI protected program. This study
aims to adopt this suggestion by combining the use of In-line
CFI, Inter-Process Monitoring (IPM), and watchdog time-out.

Another recent study [6] presents FIXER for protecting
RISC-V applications using hardware. Subsequent improvement
on FIXER involves the use of a PUFCanary [22]. This however
had its own limitations in that a diversion may occur before
the canary check, also FIXER does not protect against memory
disclosure and it may cause the custom instruction to be by-
passed.

[17] came up with a study back in 2000 with foresight
on the advancement in technology in the future which we
are now in. They foresaw a future where the use of com-
puterised devices would become the norm and based on this,
they presented the idea of grenade based on the concept of
watchdog timer to protect against malicious mobile apps and
ensure stability in services running on vulnerable systems. The
use of a watchdog timer is a reasonable option for combatting
a variety of attacks including Denial of Service (DoS) attacks.
This is a relatable scenario as we find that ROP attacks on
RISC-V, when chained in some particular order could lead
to denial of service. The protection presented here adopts a
similar approach by applying the watchdog concept alongside
in-line CFI to ensure that such DoS attacks are detected and
handled.

During this study, we identify RISC-V ROP gadgets that
cause the denial of service. Among numerous possibilities of
the outcome of ROP, DoS could occur when chained ROP
gadgets don’t include an instruction to redirect execution to a
location where other chained gadgets could be executed. This
would normally involve the use of a ld instruction to change
the value of the previous return address to the next destination.
For example, using ld ra sp(40) to load the malicious address
from a stack under attackers control into the ra register to be
fetched as next destination. If the gadget does not include this
type of instruction, then the execution iterates over the last
bunch of instructions via the previous value that is in the ra

register causing a loop. In this case, execution results in a loop
over the last bunch of instructions in the chained gadgets. The
author in [17] also relate with a similar circumstance by giving
another practical scenario where a bunch of code running on
an electricity meter device should trigger a reload of credits
to sustain service. However, an interference in transaction
between user’s bank and the meter, due to malicious code that
leads to an endless looping of a bunch of code would not
ensure that the meter is turned off if the user’s account is not
credited. This could be detrimental to the service provider as
well as users.

There are various ways of evaluating new protections.
The choice of percentage run-time performance evaluation
is selected here because the executable binary changes after
additional instructions have been added to it. A watchdog
waiting time is included which inevitably increases run-time.
In addition to these, the target now has to communicate with
the monitor by passing out data via shared memory. All of
these would impact the run-time as the program now does more
than it was originally built to do. It is important to present
the impact of the new technique with such useful detail so
that the technique would adequately represent itself among
other possible options. As producers of technological devices
continue to build devices with variation in purposes, contin-
uous study of possible protections for vulnerable software is
needful. This continues to provide options in protections for
users and vendors to choose from. This study has selected a
distinct feature of watchdog waiting time combined with in-
line CFI checks via inter-process monitoring as another means
of enforcing CFI.

III. THREAT MODEL

Previous studies have revealed ROP as a persisting threat
to vulnerable programs. There could be other threats occurring
in form of UAF [23] and double free [24], etc. This study
focuses on ROP as a threat particularly when the chained
ROP gadget ends up in a denial of service. The sample C
program for this study was written with the bugs that are
relevant for simulating the threat model. The program accepts
input from user at some point in execution and also has a
buffer overflow vulnerability which was leveraged upon to
mount ROP attacks. Two new gadget finders were written to
extract gadgets from the sample program and selected gadgets
were chained to be passed into the target program as input to
mount ROP attacks. The outcomes of the ROP attacks differed
because of the difference in the ret gadgets and the order in
which the gadgets were chained. A more detailed discussion
on this would be featured in our future works. One of the
outcomes from the various ROP attacks was selected for use
here as threat model to demonstrate how the IP-CFI works.
The gadgets were chained in a planned order such that when
the byte stream is passed as input into the target process, a
trap is hit where the program runs into a loop causing a denial
of service.

IV. SUMMARY OF THE IP-CFI APPROACH

In this section we discuss an overview of the IP-CFI
approach. More details to elements in the protection system
are given in Section V. The IPC-CFI is built as a protection
system where the vulnerable process is monitored by another

www.ijacsa.thesai.org 832 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

process and values relevant for protection exist within the
target process which is monitored by another process. The
goal is to monitor the execution flow upon entry and exit
from each function. The first step taken was to use GCC
to compile the vulnerable C program with libraries inclusive
so as to increase the possibility of having useful gadgets in
the binary. Next, simple static and dynamic analysis on the
vulnerable program to identify what elements are critical in
the execution path of the process. Analysis tools were Ghidra
for reverse engineering, Objdump for static analysis and Gdb
for dynamic analysis. The analysis gave us a clear mapping of
the intended control flow and the choice was made to insert
lines of assembly instructions (enhancement code) to label all
function prologues and epilogues.

The choice of 777, 888 and 0 as values to be set as labels
was made for experimental purpose and future works will
introduce how the values could be hidden through encryption
or applied at run-time. 777 is used to identify intended function
prologues while 888 marks the unintended functions. The value
0 is passed at the epilogues to trigger a switch off in the in-line
CFI value. The labels serve as values for in-line CFI checks as
well as values for inter-process CFI checks. For inter-process,
these values get written into shared memory through atomic
operation of semaphore and mutex. The values are interpreted
by the monitor as flags to indicate the status of the functions
within the target during execution. This makes up the first part
of the IP-CFI protection.

The second part of the protection involves the monitoring
where the status value that was written to the shared memory is
harnessed for further CFI checks. To achieve this, a C program
was written which applies atomic operations to read into the
shared memory. The program also implements a watchdog
timer based on the status value read from the shared memory
and halts the target process if a CFH is detected. In evaluating
the effectiveness of the method, we analysed the run-time
performance overhead. This was done by running two timed
versions of the program with normal input 110 times. One
version was the original program and the second version was
one that had the enhancement code for protection applied
before compilation. Data cleaning was done to eliminate 10
outliers form each data set and statistical analysis were done
to validate the result of the two data sets of the run times
in seconds. An average was calculated for each data set of
100 run-times. The average values were then applied to the
formula:

Overhead = (Run-time with IP-CFI – execution time with-
out IP-CFI)/execution time without IP-CFI

The overhead was calculated without the waiting time of 5
seconds which is required by the target process to enable inter-
process communication. The overhead obtained is reasonable
considering that some lines of code were inserted into the
target for the new protection. The information obtained in
the implementation were then used to make deductions and
propose possible future works.

A. Exploitation and Protection Implementation Environment

The exploitation and protection implementation environ-
ment was set on a Linux Fedora computer system within
which an embedded Linux Fedora RISC-V64 QEMU emulator

(Fedora EM) was running as shown in Fig. 1. The use of the
QEMU was necessary as the RISC-V architecture has not yet
been adapted for direct run on PCs. The Fedora EM once
started, was used to create, edit, compile and recompile the
target program with all enhancements.

Fig. 1. Setting up a RISC-V System on QEMU Emulator

B. The Target Program

The target program used in this project is vulnerable to
buffer/stack overflow and ROP. To simulate exploitation, we
pass a of chain of ROP gadgets into the target. Details of this is
given in Section V. Protection of the target in the first instance,
adopts a CFI concept which makes use of checks inserted at
the function prologue and epilogue of all direct functions. A
comparison between the value that marks the intended function
and the expected value from where it is called makes it possible
for the CFI to detect a hijack. If the condition is not met,
then the next instruction is executed, which halts the program,
thereby avoiding further exploitation. As this In-line CFI on
its own does not adequately protect the process from attacks
stemming from ROP, we introduce other relevant protection
concept in form of watchdog timing out where Inter-Process
Communication (IPC) is used to establish IPM as a supervisory
mechanism over the in-line CFI. In this case, the target process
writes the in-line CFI value out into a shared memory and that
value serves as the status value for an independent process to
read and determine what action to take based on the status.

C. The IP-CFI Monitoring Program

The monitor is written in C program and values to be
checked will be fetched from the relevant registers. It is an
external independent process that is run concurrently with
the IP-CFI-enabled target program to keep track of its exe-
cution. The external process consists of supervisory routine
and a watchdog timing-out function which are implemented
to ensure that the process maintains its intended flow. This
Monitoring process communicates with the target program by
reading its status from shared memory.

D. Shared Memory

In the Linux environment, there are two APIs that could
be used to facilitate IPC- System V and POSIX. Both APIs
provide IPC objects for reading and writing, but POSIX is
safer to use as it does not permit execution for any category
of user. According to [25], POSIX APIs are multithreaded-safe
and we find it relevant for this project. POSIX APIs are also
implemented with a backing file and we use that approach here
to ensure compatibility, portability and persistence while the
monitor accesses shared memory. In setting up shared memory,
we mapped a shared file into the memory region shm open
using mmap(). The file could persist unless we delete it using

www.ijacsa.thesai.org 833 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

shm unlink. We used shm open to open the shared memory
object and we used semaphore to avoid race conditions. The
semaphore is also used as a mutex to lock/unlock access for
the monitoring process and the target process.

E. Control Flow Integrity

CFI hinges on the ability of protection tool to observe the
behavior pattern of the protected program during execution,
detect anomalies and enforce the control flow integrity. The
steps to it as implemented in IP-CFI is as follows:

1) Observing Program’s Behaviour: The factors that are of
importance in implementing this concept is a prior knowledge
of expected flow of execution. This is a core step to the
success of this method and it is achieved by carrying out
thorough analysis on the vulnerable process. Each process
varies in purpose, ability and vulnerability. The approach
here is to establish the purpose of the process and identify
vulnerabilities that are tied to the procedure by which that
purpose is established. For example, a program that interacts
often with users would have a higher attack surface. Also,
processes that run for longer times will tend to be more
vulnerable than short lived processes. The program is analysed
by admin to identify the critical spots that lie within. The
behavioural pattern is obtained from the CFG of the program
prior to execution.

2) Detect Deviations: The success of a CFI-based pro-
tection depends on its ability to promptly detect a deviation
from the expected pattern. Factors that are of importance here
are the ability of the process to log in its status report into
shared memory and to monitor delays in getting the status
report value updated. The in-line value that is stored in the
immutable registers are fetched and used to identify the status
of the process. With this status, the watchdog is able to
take the necessary action depending on the value read from
shared memory. This also involves admin intervention prior to
installation of the program. The time lapse that is permitted
between the checks done by the watchdog is set prior to
compilation.

3) Enforcing CFI: To enforce the integrity of the target
process, CFI demonstrated here focuses on the external pro-
tection against CFH in a situation where attack bypasses in-
line monitoring. This involves the insertion of instructions
that enforce the CFI of the process. The enhancement code
is inserted in assembly code into the protected binary. The
needed elements for achieving these are relevant instructions
and storage for the label values that are used in checking the
legitimacy of each called function. The effectiveness of IP-
CFI also lies in the trustworthiness of the detector/enforcer.
To build an enforcer we combine two different sets of code in
assembly language that are inserted into the target program -
in-line CFI checks and Inter-process signaling code, and then
a newly built external independent program that monitors the
in-line CFI and inter-process status values.

F. The First Set of Enhancement Code

This fulfils the checks and enforcement of CFI and func-
tions fully as in-line CFI. This relies primarily on the strategic
positioning of checks in the target code. The positioning is
determined by obtaining CFG of the program to see the

possible pathway of execution. This involves a way of mapping
out all subroutines in the program and identifying the direction
of flow as intended by the programmer. A CFG could be
built by making use of relevant reverse engineering tools. The
authors in [4, 26] made use of Vulcan in developing a CFG
but Vulcan is limited in use and is not implementable on
RISC-V. Other useful reverse engineering tools are Ida and
Ghidra which are effective in the x86 as well but none of
these are yet to be effectively tailored to reverse engineer
RISC-V-based applications. We have access to the sources
code for our sample program here and that makes it a more
straightforward process. However, in order to be able to use
IP-CFI for programs that has been compiled without access
to source code, a useful workaround that we applied was to
use Ghidra on Fedora Linux running in x86 to reverse the x86
version of the same program. We found that this was useful
foresight for easy analysing of the program in the RISC-V
environment.

Further to this, static analysis informed us on the re-
quirement for inserting the checks into the target. With these
information, essential checks were inserted into the target
in assembly code. The inserted in-line checks consist of
fixed labels that mark intended functions along the execution
pathway with matching values. Unintended functions along
the execution pathways are marked with different values. At
the beginning of execution, the value is set to 0 and would
remain as 0 until a function call is made. If a function call
is made, there would be two possibilities to the value which
would either be a trigger to match the intended pathway or
unintended pathway. The way labels are inserted would vary
with the architecture of the underlying system. The RISC-
V which is adopted here allows for straightforward storage
of the values needed to achieve this process of the labels.
The important objects for setting the values here are registers
while the function prologue and function epilogues are used
to position the in-line CFI checks and relevant action. Other
pieces of code as shown in Fig. 2 that work in this phase are
geared towards halting the target process based on the in-line
CFI checks.

Fig. 2. Flow Chart of Target Process with In-Line CFI.

www.ijacsa.thesai.org 834 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

1) Wrongmove: This is a two-line instruction block that
performs the halt to the vulnerable process by making a
system call. For a sensitive program like the target, a proper
handler needs to be triggered once a CFH is detected. Hence
for this protection, the in-line CFI hands over control to the
operating system by making an ecall on RISC-V. The ecall
is an established RISC-V system call that ensures the transfer
of control to the kernel so that the attacked process can be
halted. This is achieved by setting the relevant value of 93
into a register a7 in assembly code.

2) Storing the Label: The values used in the in-line CFI
are set as numbers 777 and 888 to demonstrate the protection
as these could be other values, provided that the value held
by each of the intended nodes match the legitimate caller. An
important decision that was made here is where to store the
value to ensure that it is preserved throughout each function.

In RISC-V, values are stored in registers but the important
register for storing our values were selected based on specific
attributes. As the value in the label will be used for monitoring
control flow status, it is important for the value to be unchange-
able within its function. For this reason, the s2-s11 registers
are found suitable. These registers are referred to as saved
registers. They have the ability to preserve the values stored in
them within the function. Subroutines do not normally change
the values and If they do, they will have to save the value and
restore at the end of its execution.

For this purpose, only registers in this category can be
used as other registers do not share the same attribute. They
will either have specific roles or are temporary registers which
means that the value that they hold will not be preserved.
Apart from preservation, it is important and ideal to have
labels that cannot be manipulated by attackers. This limitation
is being studied for future improvement on the protection
method. This would make those registers a strong tool for the
implementation of this protection technique on RISC-V. For
the demonstration here, the s3 and s4 registers were selected.
Another option to using a known value as the label is to
generate a scrambled value at run-time. This is however outside
the scope of this study but is an area that could be considered
for future studies. Outline of in-line checks as as follows:

G. The Second Set of Enhancement Code

This fulfils inter-process communication by logging status
report from the target program to a shared memory. The
status report is fetched from the outcome of the in-line CFI
mechanism and values held in labels that have been set to mark
the main execution path of the process, taking cognizance of
its entry into and exit from critical nodes. This code is a new
function that consistently writes the value contained in the s3
and s4 registers into a log to share the status of the target with
a monitoring process.

1) Status Logging: The instructions that handle this step
is inserted into the target assembly and it carries out open,
write and close system calls to achieve this. It also applies an
atomic operation involving a semaphore to these calls to avoid
race conditions. Portions of this code were retrieved from [27]
examples of shared memory.

H. IP-CFI

The CFI monitoring is enhanced by attaching an additional
monitoring method involving another process attributed as not
vulnerable as it runs with zero user interaction. The monitoring
process performs the function of observing the target process
by implementing an atomic inter-process signaling. The main
tool that the monitor uses is information read from memory
shared with the target process. In the case of ROP attack, it
was observed that the status could appear legitimate whereas,
a hijack has occurred undetected. For this reason, monitoring
is extended to watchdog timing out.

1) The Watchdog Routine: The watchdog routine sets a
counter to keep track of the target process. The demonstration
in this report gives allowance of three cycles of checks by
the watchdog. The first and second cycles could be enabled
to restart the process without user intervention while the third
cycle puts a halt to the target process. The number of allowable
cycles can be adjusted to suit the performance or function of
the protected program. For the demonstration here, the restart
is not included for any of the cycles.

V. IMPLEMENTATION

As this protection is aimed at combating memory com-
promise through buffer/stack overflow that lead CFH via ROP
input, promptness and accuracy in detecting deviations is very
important it. The earlier a protection system is able to detect
deviation and enforce integrity, the higher the chances of
establishing a secure process.

A. Exploiting the Target

The first step to demonstrating the protection is to demon-
strate an exploit. ROP is dependent on availability of gadgets
and the ability of attacker to craft a byte stream to accomplish
their malicious goal. Implementing ROP on RISC-V is more
complex than x86 but is achievable. The aim is to control the
execution from the stack by passing carefully crafted input
through buffer overflow.

B. Gadget Finders

In order to make a variety of gadgets available to us, we
wrote two gadget finders, RETGadget and JALRGadgets in
Linux scripts and applied with the target as an argument to
extract gadgets from it. The gadget finders are available and
can work on RISC-V-based programs.

C. Passing Chained Gadgets

Once the gadgets were extracted, we mapped out ROP
chains in various order based on a theoretical approach by
[28]. According to [28], we can pass gadgets that will help us
to store values and addresses in the registers that we intend to
use to mount the ROP. The author in [28] classified the gadgets
as functional gadgets and charger gadgets. The functional
gadgets will hold the instructions for the actual attack while the
chargers(linkers) gadgets will load the registers with addresses
of the functional gadgets and other useful values. The linkers
can be used to create a fake frame as shown in Fig. 3 and
4, which we can exploit further to pass malicious values into
registers and other elements on the stack. Each of the ROP

www.ijacsa.thesai.org 835 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

chains was passed as input into the target to see how it could be
exploited. In Fig. 3, the charger simply creates the fake frame
with values loaded or copied from one location or register to
the other. An exit is then called.

Fig. 3. Exploiting Target to Manipulate Some Registers and Exit Abruptly.

Further exploit is done as shown in Fig. 4 where two
functional gadgets are chained to the linker. However, the
outcome of this chained gadgets is different from that in Fig. 3
as this results in a loop. This is because we used a functional
gadget that does not overwrite its previous value in ra register.

Fig. 4. Exploiting the Target to Cause a Loop.

The order in which gadgets are crafted in RISC-V would
determine the outcome of the exploit. This has a lot to do with
the value of the ra register that gets overwritten from time to
time as execution steps into and out of library functions or
other functions that get called within a function. This can only
be detected during dynamic analysis and remains undetectable
to user as no feedback is written to standard output but the
process appears to be hanging as it doesn’t crash. This a typical
attack that could lead to denial of service and the IP-CFI
protection is able to detect and handle it.

D. Protecting the Target

With the attack in place, we then applied the IP-CFI
protection. The monitoring process is run concurrently with

the target. Each time a new function is called in the target, the
status is updated by the target process via the shared memory
as shown in Fig. 5. The status value indicates what sort of
function is being executed and at what stage of the function the
execution is. Once the monitor reads into the shared memory, it

Fig. 5. Target Writes into Shared Memory.

takes the necessary action depending on the value. The denial
of service is promptly identified and stopped. The possible
flow of execution of the monitor based on the possible values
that could be held in the status report is shown in Fig. 6.

E. Applying IP-CFI to a Source Code

There are three steps in setting up a program to use IP-
CFI. We begin with the C source code and end up with
an executable. The steps include two stages of compilation
with the insertion of enhancement code between stages. The
relevant scripts:IP-CFI-make.sh and IP-CFI-full-compile.sh,
the monitor program IP-CFI-monitor-watchdogv1, and the
enhancement code IP-CFI-enhancement-code.s are required.
Step 1:
Run IP-CFI-make.sh passing the C source code as argument
Step 2:
Find the resultant assembly (.s) and manually insert CFI-
checks. Instructions are mapped out as follows:
Within main function:
Insert the following lines before the first call to a function

www.ijacsa.thesai.org 836 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Fig. 6. Flow Chart Showing Inter-Process Monitoring as Status is Read from
Shared Memory.

li s3,777 #set monitoring label for legit function
Within all intended functions that are not main:
Insert the following lines at the prologue:

Line 1:

li s4,777 #inserted for legit function

Line 4:

call IPCFIfunclog #log status

bne s4,s3,.Wrongmove. #enforce in-line CFI
Insert the following lines at the epilogue (just before ra register
is loaded or before call to exit):

li s4,0 #Switch off CFI label

call IPCFIfunclog #update status
Within all unintended functions:
Insert the following lines at the prologue:

Line 1:

li s4,888 #inserted legit label

Line 4:

call IPCFIfunclog #log status

bne s4,s3,.Wrongmove. #enforce in-line CFI
Once all checks have been inserted save the file and exit.
Step 3:
Run IP-CFI-full-compile.sh passing the saved assembly (.s) file
as argument. The resultant executable within current working

directory can be run concurrently with the monitor. Work is in
progress to fully automate these stages.

VI. EVALUATION

In evaluating the protection, further observations were
made with various forms of ROP chains passed into the target.
An exploitable target was used. With the watchdog in place,
the protection was applied to the target while different ROP
chains were passed as input into it. The protection was found
to be effective. The impact that the additional prologue and
epilogue code might have on the execution time of the program
was considered. In this section, we evaluate the new protection
by obtaining the relative performance overhead with respect to
our target program.

A. Results and Discussion

The outcome of analysing the run-time overhead of the
new protection is discussed in this section. While IP-CFI
effectively surmounts ROP with a run-time overhead of 1.5%,
there could be variations in the outcome execution time based
on the waiting time set in order to accomplish synchronisation
between the monitor and the protected process. Details of how
the run-time overhead is calculated are as follows:

Run-time type Average of run-time

w/o IP-CFI 3.26 ± 0.12 (milli seconds)

w/ IP-CFI 8.06 ± 0.16 (milli seconds)

Run-time overhead w/ IP-CFI

((8.06 – 3.26)/3.26) = 1.47239264 (approx. 1.5%)

This presents a reasonable overhead when the additional
pieces of code are included into the target. When the program
is run concurrently with the monitor, some waiting time is
required in order to establish communication between the
target and monitor. This could vary from one program to
another as it largely depends on the purpose of the program.
For the sample program, a 5 seconds waiting time is applied
to accommodate the time required for the monitor to read into
the shared memory and take the necessary action.

While the full protection surmounts ROP, the waiting time
applied appears to significantly increase the overall response
time. However, the extra time incurred here is artificial. In
reality, it is not additional run-time as the program would
function fully without the waiting time. Waiting is needful
to achieve interoperability between the two programs here and
this outcome could differ if various scenarios are considered. In
this instance, IP-CFI has been applied on a simple program and
the outcome may vary more favourably with larger programs.
On the path of the monitor, a 10 seconds wait is involved but
this is independent of the target and does not impact the target
run-time.

Furthermore, the run-time may vary slightly with the num-
ber of functions that accept the enhancement code. However,
since the functions will only run one at a time, the overhead
would not be greatly impacted. Also, optimization was set
to 0for the samples used here. The two options of level of
protection could be applied to vulnerable process- one with
full IP-CFI, and the other without the watchdog waiting time.

www.ijacsa.thesai.org 837 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

An alternative to the IPC via signalling, in order to monitor
in-line CFI with less waiting time is the direct monitoring of
the process from the kernel. A study by [31] presented this
as a security measure but not with regards to CFI. According
to [31], every process reports its logs somewhere in the file
system and this could be harnessed as useful information for
the kernel to monitor processes. If the kernel were to be used
directly for monitoring the CFI, other related elements like the
in-line CFI value and watchdog timing routine might need to
be reconsidered.

A limitation of IP-CFI is that the values in the labels
might leak and the registers that holds those values could be
reused by an attacker. Although the impact of this with IP-
CFI implementation against a CFH does not yet appear to be
considerable. The possibility of locking the s3 and s4 registers
is being considered for future works, as well as ways to encrypt
the label values to generally improve on the IP-CFI protection.

Currently, RISC-V applications exist in highly sensitive
eco-systems as they are commonly used and constantly run-
ning. IP-CFI is aimed as a broad spectrum of protection cutting
across various eco systems. For efficiency, it is however aimed
to protect applications that are built for long running services
or those performing a single role. The RISC-V platform is
well structured for such applications and is expected that the
intended purpose of the application would inform the choice
of protection. The RISC-V architecture is being implemented
for several health monitoring devices. A recent study by
[29, 30] presents a cutting-edge technology in form of an
implantable medical device (IMD) for conditioning the human
body electrical activity which runs on a RISC-V processor. [11]
also produced a RISC-V-based microprocessor that could be
used in devices for personalized health management aside from
other devices like electronic voting machines, smart cards, etc.
These devices match the category of devices that are dedicated
for a single purpose and applications that are run on them
might benefit from the IP-CFI protection.

VII. CONCLUSION AND FUTURE WORKS

Here, we have presented a proof of concept using IP-CFI,
a new protection mechanism which is based on the concept of
CFI combined with an external monitoring program. IP-CFI
effectively resolves a denial of service from lingering when
ROP is mounted. The main strength of the system is its ability
to detect delays in change of the status value logged into shared
memory where the monitoring process fetches information
for taking actions towards maintaining the integrity of the
protected program. With a prompt detection of delay, the target
process can be halted to prevent furtherance of attack process.

The possibility of sustaining an execution while preventing
furtherance of attack is an area that previous CFI solutions have
not really addressed as CFI tends to halt processes once an
attack is detected. One of the areas we explored in the process
of this study is a way that the monitor could trigger a restart
to the program rather than a halt. So far, we have no way of
preserving existing data such that the restart of the process is
done without side effects. This option would be explored in
future works especially for environments that some of these
vulnerable processes might require seamless continuity.

In this study, we have opted for a higher-level monitoring
process to give us more control of the protection, as well as
increase flexibility in the settings. The overall response time
can be improved upon by optimising the IPC and setting the
monitor to respond asynchronously. This is being considered
for future works.

REFERENCES

[1] H. Shacham, ”The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86),” ACM conference on Computer
and communications security, pp. 552-561, 2007.

[2] Microsoft Corporation, Microsoft Documentation, 31 May
2018. [Online] Available:https://docs.microsoft.com/en-
us/windows/win32/memory/data-execution-prevention.[Accessed 22
April 2020].

[3] Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P, ”On
the Expressiveness of Return-into-libc Attacks,” Sommer R., Balzarotti
D., Maier G. (eds) Recent Advances in Intrusion Detection. RAID 2011.
Lecture Notes in Computer Science,, vol. 6961, 2011.

[4] M. Abadi, M. Budiu, U, Erlingsson, and J. Ligatti, ”Control Flow
Integrity,” in CCS ’05: Proceedings of the 12th ACM conference on
Computer and communications security, New York, United States, 2005.

[5] B. &. T. G. Niu, ”Modular Control-Flow Integrity,” in PLDI ’14:
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2014.

[6] De, A, Basu, A, Ghosh, S.,& Jaeger, T., ”FIXER: Flow Integrity
Extensions for Embedded RISC-V,” in 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2019.

[7] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar & D.
Song, ”Code-Pointer Integrity,” in The Continuing Arms Race: Code-
Reuse Attacks and Defenses, Association for Computing Machinery and
Morgan & Claypool, 2018, p. 81–116.

[8] C. Sadullah, D. Leila, Z. Boyou, J. Ajay & E. Manuel, ”Efficient Context-
Sensitive CFI Enforcement Through a Hardware Monitor,” in Detection
of Intrusions and M17th International Conference, DIMVA 2020, Lisbon,
Portugal, June 24–26, 2020, Proceedings, Lisbon, Portugal, 2020.

[9] M. Neugschwandtner, C. Mulliner, W. Robertson, & E. Kirda, ”Runtime
Integrity Checking for Exploit Mitigation on Lightweight Embedded
Devices,” International Conference on Trust and Trustworthy Computing,
vol. 9824, pp. 60-81, August 2016.

[10] A. Waterman, K. Asanovi & J. Hauser, ”The RISC-V Instruction
Set Manual, Volume II: Privileged Architecture, Docu- ment Version
2021120,” 2021.

[11] IIT Madras, ”IIT Madras, Indian Institute of Technology
Madras,” IIT Madras, 24 Sept. 2020. [Online]. Available:
https://www.iitm.ac.in/happenings/press-releases-and-coverages/iit-
madras-develops-and-boots-moushik-microprocessor-iot. [Accessed 08
July 2022].

[12] DeepComputing, ”xcalibyte.com,” xcalibyte, 28 06 2022. [Online].
Available: https://xcalibyte.com/roma-preorder/. [Accessed 04 07 2022].

[13] A. Samuel O, ”An Overview of RISC Architecture,” in Proceedings of
the 1992 ACM/SIGAPP Symposium on Applied Computing: Technolog-
ical Challenges of the 1990’s, Kansas City, Missouri, USA, 1992.

[14] G, Gu, and H. Shacham, ”No RISC No Reward:Return-Oriented Pro-
gramming on RISC-V,” 29 July 2020.

[15] G-A. Jaloyan, K. Markantonakis, R. N. Akram, D. Robin, K. Mayes,
and D. Naccache, ”Return-Oriented Programming on RISC-V,” ASIA
CCS ’20: Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, p. 471–480, October 2020.

[16] T. Oyinloye, L. Speakman, T. Eze, ”Inter-Process CFI for
Peer/Reciprocal Monitoring in RISC-V-Based Binaries,” in 20th Euro-
pean Conference on Cyber Warfare and Security, 2021.

[17] F. Stajano, R. Anderson,AT &T Laboratories Cambridge, ”The Grenade
Timer: Fortifying the Watchdog Timer Against Malicious Mobile Code,
” in Proceedings of 7th International Workshop on Mobile Multimedia
Communications (MoMuC 2000), Waseda, Tokyo, Japan, 2000.

www.ijacsa.thesai.org 838 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

[18] S. Sayeed, H. Marco-Gisbert, I. Ripoll, and M. Birch, ”Control-Flow
Integrity: Attacks and Protections,” Applied Sciences, vol. 9, no. 20, p.
4229, October 2019.

[19] M. Zhang and R. Sekar, ”Control flow integrity for cots binaries,”
SEC’13: Proceedings of the 22nd USENIX conference on Security, p.
337–352, August 2013.

[20] K. Onarligolu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, ”G-Free:
defeating return-oriented programming through gadget-less binaries.,”
in Proceedings of the 2010 Annual Computer Security Applications
Conference, New York, NY, 2010.

[21] A. Srivastava, A. Edwards, and H. Vo., ”Vulcan: Binary transformation
in a distributed environment,” Microsoft Research:Technical Report:
MSR-TR-2001-50, 2001.

[22] De, A, Basu, A, Ghosh, S., & Jaeger, T., ”Hardware Assisted Buffer
Protection Mechanisms for Embedded RISC-V,” in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2020.

[23] Common Weakness Enumeration, ”cwe.mitre,” 19 July 2006. [Online].
Available: https://cwe.mitre.org/data/definitions/416.html. [Accessed 17
July 2022].

[24] Common Weakness Enumeration, ”cwe.mitre,” 19 July 2006. [Online].
Available: https://cwe.mitre.org/data/definitions/415.html. [Accessed 17
July 2022].

[25] Oracle, ”Oracle Programming Interfaces Guide,” 2012. [Online].
Available: https://docs.oracle.com/cd/E26502 01/html/E35299/svipc-
posixipc.html#scrolltoc. [Accessed 04 06 2022].

[26] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis, ”Out Of
Control:Overcoming Control-Flow Integrity,” in 2014 IEEE Symposium
on Security & Privacy, San Jose, CA., USA., 2014.

[27] M. Kalin., ”Inter-process communication in Linux: Shared storage,”
2019.

[28] B. Deac, ”InfoSec Write-ups,” 14 March 2022. [Online]. Avail-
able: https://infosecwriteups.com/return-oriented-programming-on-risc-
v-part-1-dd9817b52d2b. [Accessed 25 06 2022].

[29] A. Arnaud, M., Miguez, J. Gak, R. Puyol, R. Garcia-Ramirez, E.,
Solera-Bolanos, R. CastroGonzalez, R. Molina-Roblkes, A. Chacon-
Rodriguez, R. Rimolo-Donadio, ”A RISC-V Based Medical Implantable
SoC for High Voltage and Current Tissue Stimulus,” in 2020 IEEE 11th
Latin American Symposium on Circuits & Systems (LASCAS), Costa
Rica, 2020.

[30] A. Arnaud, M., Miguez, J. Gak, R. Puyol, R. Garcia-Ramirez, E.,
Solera-Bolanos, R. CastroGonzalez, R. Molina-Roblkes, A. Chacon-
Rodriguez, R. Rimolo-Donadio, “Siwa: a RISC-V RV32I based Micro-
Controller for Implantable Medical Applications,” in 2020 IEEE 11th
Latin American Symposium on Circuits & Systems (LASCAS),, Costa
Rica, 2020.

[31] W. Kehi, G. Yueguang, C. Wei & Z. Tong, ”The Research and Imple-
mentation of the Linux Process Real-Time Monitoring Technology,” in
012 Fourth International Conference on Computational and Information
Sciences, 2012.

www.ijacsa.thesai.org 839 | P a g e


