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Abstract—This paper proposes a new population-based global 

optimization algorithm, Ọdịgbo Metaheuristic Optimization 

Algorithm–ỌMOA, for solving complex bounded-

constraint/single objective real-parameter problems found in 

most engineering and scientific applications. It’s inspired by the 

human socio-cultural informal discipleship learning pattern 

inherent in the behavior of the Ndịgbo peoples; the subject – 

primary (Nwa-ahịa), in mercantile cycle grows to a secondary 

(Mazi) owing to the intuitive stratagem (dialect - Ịgba) embedded 

in an aged-long cultural model ―Ịgba-ọsọ-ahịa‖ (meaning, 

strategic marketing skills, and practice). The model mimics the 

search routine for satisfying a customer’s need in the market, 

built into exploration and exploitation applied in the 

mathematical model. About 30 complex classical unconstrained 

functions are tested, comparing results with that of five similar 

state-of-the-art algorithms. Also, 29 CEC-2017 single objective 

real constraint benchmark serious dimensional problems were 

simulated and compared against the winners of that competition. 

Validation includes statistical (t-test, p-value) comparison and for 

50 Dimension constraint problems as ỌMOA demonstrated 

superior performance. TCS (9.18%), WBP (6.3%), PVDP 

(601%), RGP (319%), RBP (760%), GTCD (202%), 

HIMMELBLAU (4%), and CDP (88.12%) are the improvements 

made on 8 CEC-2020 engineering real design problems against 

the former best performances; OMOA is simple to implement, 

replicate and applicable across domains. Also, some new, 

improved optimum was obtained in Shubert and Schaffer 4 

function compared to the global optimums. 

Keywords—Human socio-cultural; nature-inspired; informal-

learning; global optimization 

I. INTRODUCTION 

Humans and animals face challenges within their time and 
space of habitation, and they attempt to solve the challenges 
by making decisions and selecting and combining variables 
influencing the conditions. The challenges range from simple 
to difficult-complex ones, but the satisfaction derived from 
attaining the goal motivates effort for solution pursuant [1]. 
Engineering has availed very good solutions for small scaled 
problems using exact methods, but such fails when the 
problem becomes special and high dimension, become very 
costly and time consuming [2]. Meanwhile, the study of nature 
showed complex problems solved by meta-ideas and 
heuristics. The aesthetics that describes the meta-heuristics 
provide solutions that are near-optimal yet scalable with 
problem dimensions [3] despite the difficult procedural 

uncertainties [4]; the huge difficulty is associated with the 
mapping of routines called intelligence from rules or heuristics 
that describe events of nature which falls in a 
multidisciplinary field [5, 6]. Research in this direction has 
yielded several methodologies for solving engineering 
problems, yet more are anticipated [6]. This work aims to 
address some multidisciplinary domain concerns; a significant 
gap in balancing exploitation and exploration in populations of 
solution search impacts the state-of-art. Also, most recent 
works have scantily described the critical analogies of the 
metaphors that reflect the aesthetics of the target nature’s 
source with the derived mathematical models, while the 
majority favors hybridization. Also, only a handful of the 
existing algorithms had human behavior metaphors, which this 
work proposes. Based on life science, a simple category of 
existing solutions could be into biological and non-biological 
(abiotic) hybrids, Bio-Abiotic hybrids, Bio-Bio hybrids, and 
Abiotic – Abiotic hybrids; however other literature may use 
alternative categorizations such as Swarm, Evolutionary, and 
Human intelligence. Genetic algorithms (GA) led the natural 
biological methods [7]. Particle Swarm Optimization (PSO) is 
inspired by flocks of birds and schools of fish [8] [9]. A few 
others due to space constraints are; Artificial Bee Colony from 
bee foraging [10]; Ant Colony [11]. In literature, numerous 
applications of the metaheuristics includes scheduling, 
loading, packaging, design, and control [12], image 
processing, amongst numerous others. The abiotic category is 
based on artificial physical experiences, such as Tabu Search, 
which made use of the creation of a tabu list [13]; Water 
Evaporation Optimization (WEO), mimicking the evaporation 
of water [14, 15]; JAYA mimicking the gravitation towards 
success [15]; Atomic Orbital Search (AOS) [16], etc. Some 
modified/hybrids are; Grey Wolf and PSO [17] gave (GWO-
PSO), MOGSABAT [18] from the multiobjective 
gravitational search algorithm, and the echolocation ability of 
the bat algorithm [19]. Many other metaheuristic methods can 
be found [20, 21]. ỌMOA is a new strategy proposed by this 
work; the data is from the human population shown in 
Section II. The aesthetics are based on informal learning. The 
mathematical relations are developed in Section III and 
experiments, results and discussions are also presented in 
Section III, while Section IV is the conclusion. 

The data of this work is gathered from the Ndịgbo people’s 
mercantilism. This ideology is found in major Market setups 
across the World, where Ndịgbo are found in huge populations  

Kwame Nrumah University of Science and Technology Engineering 

Educational Project/African Center of Excelence (KEEP/ACE). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 1, 2023 

278 | P a g e  

www.ijacsa.thesai.org 

[22, 23]. They cooperate and maintain this characteristic 
ideology they call ―ịgba‖; meaning stratagem. [24, 25]. The 
aesthetics; every male is disciple/given-chance-to-hands-
on/learn informally in commerce backed by some form of 
agreement [26]; a model known to them as ―Ịgba-ọsọ-ahịa‖ 
which means strategic marketing skills acquisition and 
practice. Ahịa (market) is a solution space and holds all 
history of exploitations and explorations through Ịgba-ọsọ-
ahịa model [27]. There exist huge risks and sacrifices, but the 
Ndigbo tolerates them [27]. 

A. ỌMOA Algorithm Description 

In the Ahịa environment, the ultimate is to become a Mazi; 
The initial population is generated randomly as Ahịa-size. 
This is the ―initialization mode‖; The readiness, practicing, 
discipline, trading, cooperation, and the reluctance of the 
agents (known as ụmụ-ahịa in Igbo) is adjusted against the 
new environment each day; [from start-transduction mode to 
update-matching mode]. 

II. MODELING DATA AND AESTHETICS 

The work started with a collection of data from a local 
ahịa; the data is found at https://data.mendeley.com/datasets/ 
wt3vt72mph/1. A few assumptions and facts extracted from 
data include but are not limited to the following parameters: 

1) NORMS: (i) Every Mazi Own at least one shop. (ii) 

Every Nwa-ahịa is attached to a Mazi, a shop, and an ahịa. 

With an agreement, (iii) Death or risk are inevitable etc. 

2) AXUMES: (i) Every Nwa-ahịa must satisfy a certain set 

percent of discipleship requirements to become a Mazi. 

3) FACTS and Probable: (i) Certain Nwa-ahịa may 

succeed, fail, die, or get impeded. (ii) Certain Mazi may 

become greedy and unjust. (iii) Certain Ụmụ-ahịa had gotten 

second and third chances to make up, and many ahịa exist. 

B. Sample Size of Selected Market 

Data in Table I shows a snapshot of the collection, and the 
values represent the sub-total in each case. For example, the 
column representing ―Japan‖; ―JAPANLINE‖; ―shops:35‖; 
Parts: [12: ―Nissan‖, 23: ―Toyota Accessories‖, NULL:‖ x‖]. 

C. The Model - Ahịa 

The visualization of the setup of ahịa as a system (inputs, 
process, and outputs) schematically looks like Fig. 1 (left, 
right) 

Fig. 1(a) shows Ahịa [n+9] described in Fig. 1(b) 
explicitly; the lines show the nonlinear relationships. The 
inner layers are shops and are associated with entities enlisted. 
The local Ahịa are networked across major cities in Nigeria 
(Ibadan, Lagos, Onitsha, etc.) which affiliates to extensions in 
Countries like Japan and Germany. The Ahịa primary agent 
(humans) are ụmụ-ahịa, and secondary are ndi-ọsọ-ahịa, Mazi, 
Bankers, customers (Regular and Non-Regular), suppliers, 
forwarding and clearing and etc. Meanwhile, the number of 
decision variables in sales, storage, borrowing etc., varies with 
constraints of environments like the cash flow, religion, and 
local/global politics etc.; taking shop 9 – GermanyLine Fig. 2; 
it comprises 1 –Mazi, 5 – Ụmụ-ahịa, 1 – Onye-ọsọ-ahịa, 12 – 

Regular Customers, 100 – Emergency Customers and trading 
on Benz-Spare Parts as shown. 

TABLE I. SAMPLED DATA FROM A MARKET AND SHOP DISTRIBUTIONS 

Object 
JAPA

N 

TOYO

TA 

GERMA

NY 

AB

A 

BAMEN

DA 

Mazi 35 43 101 122 199 

Ụmụ-ahịa 210 250 591 696 1162 

Ndi-ọsọ-ahịa 35 43 101 122 199 

Regular Customers 2204 2786 5039 
1926

4 
23616 

Emergency Customers 2859 4646 10100 
1559

5 
20168 

Shops 

Nissan and Toyota Parts 12 x x x x 

Toyota Accessories 23 x x x x 

Toyota-Spare-Parts x 43 x x x 

Benz-Spare-Parts x x 22 x x 

Audi Parts x x 31 x x 

Gold and Volkswagen x x 24 x x 

Benz Engine x x 11 x x 

Benz-Dashboard and 

Accessories 
x x 13 x x 

Cloth and Okrika x x x 122 x 

Tokunbo Fridges & 

Phones 
x x x x 199 

 
Fig. 1. Ahịa business model and networks. 

 
Fig. 2. Snap off idumọta sampling. 

In obtaining the adjacency list from the data, assumptions 
made included (1) (1/0 means connected/not-connected) 
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respectively; (2) also shop data is deterministic data at capture 
time, the network of the single shop nine(9) is modeled, and 
the simulation – Bayes graph is as shown  

 
Fig. 3. The schematic representation of the network traffic. 

The complex network of the shop (54500 edges, 364 
nodes), on a market day named Ọrie; Fig. 3 is made. It depicts 
the intense cognitive field (energy) of nonlinear relationship 
maps responsible for transduced processes with experience 
(edges) of ụmụ-ahịa (nodes) that Ọrie day. Daily customer 
satisfaction time monotonically decreases with increasing 
edges, even with constraints in cycles. Beyond shop 9, 
thousands of shops contribute to the ahịa data; the computer 
structural model is shown in Fig. 4. 

 
Fig. 4. Ahịa environment across many shops. 

S1, S2, m1, m2, m3, m4, and M2 represents: shops 1, ndi-
ọsọ-ahịa, nwa-ahịa-1, nwa-ahịa-2, nwa-ahịa-3, nwa-ahịa-4, 
and many other distance ahịa (markets). The updates are 
processes of the ụmụ-ahịa transforming on every market day 
(Ọrie, Afọr, Nkwọ, Eke). The colours is evidence uncertainty. 

D. Initialization of Population (Market-Size) 

ỌMOA; with the decision variables, Ịgba-ọsọ-ahịa and D-
dimensions, the solution vector in the ahịa can be represented 
as (1). 

[ , , , ..., ]
1 2 3

Mazi x x x x
D


 (1) 

The fitness value of each Mazi will be computed as a 
vector of (2); 

( ) ( , , , .., )
1 2 3

f Mazi f x x x x
D

  (1) 

For instance, a new shop with new ụmụ-ahịa (ages of 3 
and 8 yrs.), some constraints of this age group include (a) 
Nostalgic energy in early months, inherent childishness 
(comprises of untargetted and undirected energies): chaotic 
sleeping patterns, food pattern, and desires for the first few 
months persist. But discipleship (hands-on, disciplinary 

actions, corrections, task handling, rewards) between 1 and 5 
years changes their energies to focused excitement; next is 
integrity and trust test; Each nwa-ahịa has a position and cost 
affected by such constraints and uncertainty in capacity, 
inductiveness, and reluctance. The population is generated 
using (3). 

( , )pop M D     (3) 

The Ф is a random generator, M is the market population 
(pop), and D is the dimension. The pseudocode is shown 
below. 

 

 

      

  

   

               

   

         

Initial parameters

Initialize the structure for the empty individuals

Initialize population array

while not termination Do

generate uniform random population with

bounded size of market

e      

  

 

  

valuate the cost of the individual

update individual population

end while

return best solution

 

E. Mathematics of Ịgba-ọsọ-ahịa  

Fig. 5(a) in 3-dimensional space during the search is 
shown in 2-Dimension as Fig. 5 (b) as agents move to satisfy 
customers’ scarce demand for ―gold‖ and ―leather‖ as in Fig. 4 
to exploit S1 and explore S2. 

 
Fig. 5. Ịgba-ọsọ-ahịa cooperation by to find gold. 

They cooperate, meet set thresholds, and satisfy the 
customer to get his Gold. Initializing a new Mazi, a new shop, 
and his contribution to the solution space will be given by (4). 

( )
1

U f Xn     (2) 

Combining equation (1) and (2); 

 { }

1 ,1

rx x mazi with new umu ahiai
U

x X mazi without umu ahiai
n

 


 

 (3) 

Some of the major constraints (3) as mentioned in 
Section II. n; the number of generations – the stopping criteria, 
r indicates x is random. Mazi cost alone in trade without ụmụ-
ahịa in the cycle of Ahịa days (6) resolves to a fitness vector: 

* ( ( , :))1U X P in n    (6) 
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Where ( ,:)P i  is the cost of Mazi in the population of P, i  

cycles of Ahịa days, and the transmute of Mazi’s energies via 
the training processes. At the same time, the ụmụ-ahịa adopt 
the emitted energies originating from multidiscipline like 
phycology, social tactics, resilience, experience, transactional 
techniques, relationship with customers, banks, etc., The 
differences compared to theirs cut across domains and, by 
analogy, involve transduction [28]. This process is given by a 
resemblance of balancing potentials and kinetics. 

1
2(1, ) * ( ( , :)) * * ( )T rand D P p Ef X r    (4) 

Where ( ,:)P p  in (4) is the cost of the new population at 

time p, Ef is the energy factor, while the rX  random ụmụ-

ahịa cognitive state of five analogous Bayesian energies 
interacting actively in a shop. 

1 / 8 * * ( )
1

X X Ef X
r i r ir  
  

 (5) 

1 / 40 * *
1 ( 1) ( 1)

X X Ef X
r i r i r i

 
     

  (6) 

1 / 80 *
( 1) ( )

X X
r i r i n


   

 (7) 

Equations (5), (6) and (7) are all nonlinear cognitive 
vectors, and ratios of series [1/8, 1/40, and 1/80] of time 
divisions (could take any ratio as they are probabilities of 
random events, recall a state ranges from 0 to 1), i, r remain 
the same; visually, a huge network ensues as shown below. 

 
Fig. 6. Cognitive correlations between nwa-ahịa (PN) to any. 

Fig. 6 clusters N1 ụmụ-ahịa with each other, and N2 and 
N3 are the clusters with customers. The probabilistic behavior 
of the interaction (edges) shows the very interesting transition 
of the ụmụ-ahịa (nodes) progress in the network in Fig. 7. 

 
Fig. 7. Progress of cognitive signature on ụmụ-ahịa character. 

Current time t ; the previous timestamps as the selected 

node (60). Search in a generation gives (11). 

1 / 8 * * ( ...
( 1)

1 / 40 * (1 / 80 * )))
( )

X X Ef X
r r i r i

Ef X
r i n

  
  

 

 (8) 

Where updates at r i taken during iteration. The compact 

dynamics (12); mimics a rhythmic nodding to music and 
stratagem - ịgba, which gives. 

*
1 1

U U T X
n n n r

 
 

  (12) 

Where  is a vector of emergent solutions. The 
threshold facilitates ụmụ-ahịa exploration; disciple-Rhythm - 

 known as discipleship compliance, given by (13). 

( )

ju if m rD OR jm

jx if m rD AND jm

U ij





  


  


  (9) 

Where m is a random number [0,1], delta has the same 
dimension and size as the solution but is pseudorandom. This 
cooperation serves as the bond linking one source to another 
[23, 29]. Mazi; sometimes sacrifices profit for an improved - 
customer base and to escape the local optima trap by analogy 
as Ịgba-ọsọ-ahịa updates; objectives of the fitness bound the 
strategy as given in Fig. 8. 

 
Fig. 8. Boundary strategy. 

Constraints are bounded as in A, N collapse to upper-
bound (UB) in B, and N collapse to lower-bound (LB) as 
shown in Fig. 8. Finally, methodic update results to best 
solutions shown. 

X Ui i
if f f

U if f ii Ui

X and f remainsthesameif f f
U ii








 (10) 

Where (10); fUi is the fitness function from the best cost of 
the discipleship and adjustments made (error correction), 
while fi is the best solution fitness of the original objective 
function, which is optimal. 

F. Graphical Flow of ỌMOA 

The ụmụ-ahịa can be considered as moving particles [30-
32]. Mazi realization comes after generations of successful 
cycles [33]; rather than unhealthy competition, all ụmụ-ahịa 
depends on each other; The main body’s pseudocode (2) 
during iteration is as follows: 

U n

rD
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Fig. 9. Ọdịgbo metaheuristic optimization algorithm - ỌMOA and 

pseudocode. 

The flow chart of Fig. 9 shows the methodology for 
applying the ỌMOA algorithm. The subsequent sections 
discuss applications. 

III. APPLICATION OF ỌMOA ON BENCHMARK FUNCTIONS 

Most metaheuristic algorithms use Pattern Matrix, and the 
solutions are identified as those that improved through the 
number of generations up until the convergence time of the 
simulation. ỌMOA inherent energy synergy principles. 

1) Default parameters are used 

2) 30 independent runs were used for Unconstraint 

Benchmark, 50 for constraint functions. The parameters for 

the engineering designs are as stated in the referenced 

literature provided 

3) The total number of cost function evaluations is 

1000·n·M, where M = 10 is the number of iterations. The 

logarithmic Scale was considered for visualization due to its 

convenience and compact. 

4) For the Constraint problems as depicted by the 

competition, a solution value less than 10−8 is treated as zero; 

several performance indicators for solution values are used: 

best, worst, mean, and standard deviation (Std). Test for 

convergence time also provided;  

A. Experiments and Comparison of Results 

ỌMOA is compared with five of the best similar 
algorithms as shown in Table II. Their codes are in the open 
domain/available online. The choice of only five is being 
mindful also of the limited space constraints to publish results. 

TABLE II. ALGORITHMS USED FOR VALIDATION 

S/N Algorithm Ref Category 

1 
Harris Hawks Optimization 

(HHO)-- 2019 
[34] Novel Idea 

2 Moth Search (MS)-- -2018 [35] Novel Idea 

3 
Elephant Herd Optimization 

(EHO)-- 2015 
[36] Novel Idea 

4 
LSHADE-SPACMA ( A2) -

2017 
[37] Hybrid/Modified 

5 EBOwithCMAR ( A3) ---2017 [38] Hybrid/Modified 

The list in Table II is a competitive group; notably, 4 – 5 
won the CEC 2017 competition [39, 40]. 

B. Experiment 1: Difficult Unconstraint Benchmark 

Functions 

ỌMOA is validated on the existing established algorithms 
listed in Table II with about 30 difficult functions chosen with 
modality (unimodal to check and confirm exploitation 
strength, multimodal for diversity or exploratory capability of 
ỌMOA), Separability (possible separable and non-separable) 
and then multi-dimensionality (confirming search and 
exploratory strength of ỌMOA). The performance averages 
are visualized using boxplots. Further, the significance and 
statistical students test (t-test) was conducted for all 
algorithms, with a time complexity test. A subset of test 
benchmark functions with varying degrees of difficulty is used 
to substantiate that ỌMOA can exploit and explore the 
solution space and find the solutions for optimum. In 
Table III, unconstraint benchmark test functions are 
categorized in modality, Separability, and Dimensionality (N), 
also: M is the modality, 0 – Uni-modal; 1 – Multimodal, S is 
the Separability, 0 – Non-Separable; 1 – Separable. 

TABLE III. FUNCTIONS, GLOBAL OPTIMAL VALUES, BOUNDS, AND 

DIMENSIONS 

Fun(fn) Fun-name SD F(x*) N M S 

F1 Step [-5.12, 5.12] n 0 30 0 1 

F2 Sphere [-1, 1] n 0 30 0 1 

F3 Sum Square [-5.12, 5.12] n 0 30 0 1 

F4 Quartic [-6.0, 6.0] n 0 30 0 1 

F5 Beale [-5.0, 5.0] n 0 2 1 0 

F6 Easom [-100.0, 100.0] n -1 2 1 0 

F7 Matyas [-10.0, 10.0] n 0 2 1 0 

F8 Colville [-10.0, 10.0] n 0 4 1 0 

F9 Zakharov [-5.0, 5.0] n 0 30 1 0 

F10 Schwefel 2.2 [-10.0, 10.0] n 0 30 1 0 

F11 Schwefel 1.2 [-10.0, 10.0] n 0 30 1 0 

F12 Dixon Price [-10.0, 10.0] n 0 30 1 0 

F13 Bohachevsky 1 [-100.0, 100.0] n 0 2 1 1 

F14 Booth [-10, 10] n 0 2 1 1 

F15 Holder Table [-10 10] n -19.2085 2 1 1 

F16 Michalewicz 2 [0.0, ]n -1.8013 2 1 1 

F17 Michalewicz 5 [0.0, ]n -4.6877 5 1 1 

F18 Michalewicz 10 [0.0, ]n -9.6602 10 1 1 

F19 Rastrigin [-5.12, 5.12] n 0 5 1 1 

F20 Schaffer2 [-100, 100] n 0 2 1 0 

F21 Schaffer 4 [-100.0, 100.0] n 0 4 1 0 

F22 Schaffer 6 [-100.0, 100.0] n 0 6 1 0 

F23 SixHumpCamelBack [-5,5] -1.0316 2 1 1 

F24 Bohachevsky 2 [-100.0, 100.0] n 0 2 1 0 

F25 Bohachevsky 3 [-100.0, 100.0] n 0 3 1 1 

F26 Shubert [-10.0, 10.0] n -186.73 5 1 1 

F27 Drop Wave [-5.12, 5.12] n -1 2 0 1 

F28 Rosenbrock [-6.0, 6.0] n 0 2 0 0 

F29 Griewank [-600.0, 600.0] n 0 30 1 0 

F30 Ackley [-32.0, 32.0] n 0 2 1 0 
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C. Benchmark – Unimodal and Separable Functions 

To tighten the competitiveness, we identified the 
algorithms with the highest performances with a t-value above 
0.05. ỌMOA and A3 (all best solutions in BOLD font) lead 
with equal best performance as shown in Table IV. The MS 
was next, followed by A1, HHO, and WFS. 

ỌMOA and A3 leading showed good exploration, and 
exploitation strength, particularly of ỌMOA obtained the best 
optimal objective solutions before the completion of 
generations. Fig. 10 also shows consistent distributions with 
fewer outliers. 

 
Fig. 10. Boxplot for unimodal and separable functions. 

 
Fig. 11. Comparison of convergence curve for unimodal and separable 

functions. 

Fig. 11 convergence comparison shows that ỌMOA, A3, 
A2, and WFS have faster and best convergences to the 
optimum in these problems while HHO lagged behind most of 
the time. 

D. Unimodal and Non-Separable 

The functions in this category include 30-dimensional 
problems Zakharov to Dixon Price with great complexity. 
Table V shows ỌMOA and A3 tops, followed by A2, A1, 
HHO, MS, and WFS. Besides Beale, which did not yield a 
better result, ỌMOA got even Easom, a problem with inherent 
complex nature. 

TABLE IV. UNIMODAL AND SEPARABLE FUNCTIONS RESULTS 

F(n) Measure ỌMOA HHO MS EHO A2 A3 

F1 Best 0.0E+00 1.3E-06 2.3E+00 5.5E+00 1.5E-01 0.0E+00 

n = 30 Worst 0.0E+00 7.6E-05 3.7E+00 6.4E+00 8.5E-01 0.0E+00 

f = 0 Mean 0.0E+00 2.2E-05 3.0E+00 6.1E+00 4.1E-01 0.0E+00 

 
Sd 0.0E+00 3.0E-05 3.1E+00 6.1E+00 4.3E-01 0.0E+00 

F2 Best 0.0E+00 0.0E+00 0.0E+00 6.7E-01 1.6E-01 0.0E+00 

n = 30 Worst 0.0E+00 1.1E-07 0.0E+00 1.7E+00 7.1E-01 0.0E+00 

f = 0 Mean 0.0E+00 1.1E-08 0.0E+00 1.1E+00 4.2E-01 0.0E+00 

 
Sd 0.0E+00 2.7E-08 0.0E+00 1.2E+00 4.1E-01 0.0E+00 

F3 Best 0.0E+00 0.0E+00 0.0E+00 2.2E-01 2.5 E+00 0.0E+00 

n = 30 Worst 0.0E+00 1.2E-07 7.2E-08 2.9E-01 1.2E+01 0.0E+00 

f = 0 Mean 0.0E+00 6.4E-09 4.3E-08 2.5E-01 6.3E+00 0.0E+00 

 
Sd 0.0E+00 2.4E-08 5.3E-08 2.5E-01 6.7E+00 0.0E+00 

F4 Best 0.0E+00 0.0E+00 0.0E+00 1.2E-06 2.1E-01 0.0E+00 

n = 30 Worst 0.0E+00 0.0E+00 0.0E+00 2.2E-06 5.0E+00 0.0E+00 

f  = 0 Mean 0.0E+00 0.0E+00 0.0E+00 1.6E-06 1.3E+00 0.0E+00 

 
Sd 0.0E+00 0.0E+00 0.0E+00 1.6E-06 1.5E+00 0.0E+00 
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TABLE V. UNIMODAL AND NON-SEPARABLE RESULTS FOR TESTED ALGORITHMS 

Function Measure ỌMOA HHO MS EHO A2 A3 

F5 Best 5.7E-07 0.0E+00 6.0E-05 1.1E-05 0.0E+00 0.0E+00 

n = 2 Worst 1.7E-01 0.0E+00 7.2E-04 2.3E-02 1.5E-05 0.0E+00 

f = 0 Mean 4.7E-02 0.0E+00 2.9E-04 7.9E-03 1.0E-06 0.0E+00 

 
Sd 4.8E-02 0.0E+00 4.2E-04 1.3E-02 2.9E-06 0.0E+00 

F6 Best -9.6E-01 0.0E+00 7.7E-04 1.2E-01 0.0E+00 0.0E+00 

n = 2 Worst -1.7E-235 1.9E-05 1.3E-03 5.7E-01 0.0E+00 0.0E+00 

f = -1 Mean -3.1E-01 1.1E-06 1.0E-03 3.8E-01 0.0E+00 0.0E+00 

 
Sd 3.6E-01 3.6E-06 1.1E-03 4.2E-01 0.0E+00 0.0E+00 

F7 Best 0.0E+00 0.0E+00 0.0E+00 4.3E-07 0.0E+00 0.0E+00 

n = 2 Worst 0.0E+00 0.0E+00 0.0E+00 3.0E-06 0.0E+00 0.0E+00 

f = 0 Mean 0.0E+00 0.0E+00 0.0E+00 1.9E-06 0.0E+00 0.0E+00 

 
Sd 0.0E+00 0.0E+00 0.0E+00 2.2E-06 0.0E+00 0.0E+00 

F8 Best 0.0E+00 1.6E-06 1.8E-01 1.1E+00 0.0E+00 0.0E+00 

n = 4 Worst 0.0E+00 7.7E-01 2.9E-01 3.2E+00 0.0E+00 0.0E+00 

f = 0 Mean 0.0E+00 3.4E-02 2.4E-01 1.9E+00 0.0E+00 0.0E+00 

 
Sd 0.0E+00 1.4E-01 2.4E-01 2.1E+00 0.0E+00 0.0E+00 

F9 Best 0.0E+00 0.0E+00 0.0E+00 3.6E-02 0.0E+00 0.0E+00 

n = 30 Worst 0.0E+00 7.7E-07 1.3E-08 9.1E-02 5.1E-08 0.0E+00 

f = 0 Mean 0.0E+00 8.0E-08 4.3E-09 6.0E-02 1.4E-08 0.0E+00 

 
Sd 0.0E+00 1.8E-07 7.4E-09 6.4E-02 2.1E-08 0.0E+00 

F10 Best 0.0E+00 4.3E-07 3.4E-05 4.8E-01 6.4E-03 8.7E-06 

n = 30 Worst 0.0E+00 2.7E-04 4.6E-04 6.2E-01 2.7E-02 4.3E-05 

f = 0 Mean 0.0E+00 4.7E-05 1.9E-04 5.4E-01 1.8E-02 1.8E-05 

 
Sd 0.0E+00 7.6E-05 2.7E-04 5.5E-01 1.9E-02 2.1E-05 

F11 Best 0.0E+00 0.0E+00 8.0E-08 3.4E+00 8.2E-02 0.0E+00 

n = 30 Worst 0.0E+00 1.9E-03 3.8E-07 4.2E+00 5.5E-01 0.0E+00 

f = 0 Mean 0.0E+00 9.4E-05 2.7E-07 3.8E+00 3.0E-01 0.0E+00 

 
Sd 0.0E+00 3.6E-04 3.0E-07 3.8E+00 3.4E-01 0.0E+00 

F12 Best 3.1E-09 8.6E-02 6.7E-01 1.1E+00 6.7E-01 6.7E-01 

n = 30 Worst 6.7E-04 2.6E-01 7.0E-01 1.3E+00 6.7E-01 6.7E-01 

f = 0 Mean 3.0E-05 2.4E-01 6.9E-01 1.2E+00 6.7E-01 6.7E-01 

 
Sd 1.2E-04 2.4E-01 6.9E-01 1.2E+00 6.7E-01 6.7E-01 
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Fig. 12. Boxplot of unimodal and non-separable results. 

The boxplot of Fig. 12 shows that the mean solutions 
distribution of the data of ỌMOA and A3 are tight, with little 
outliers equalling minimal deviation. 

The convergence comparison of Fig. 13 confirms the 
summary made at the beginning of the subsection. 

 

 
Fig. 13. Comparison of convergence curves for unimodal and non-separable 

function. 

E. Multimodal and Separable 

Complex structures, multiple, unequal hilltops, and 
valleys-shaped functions are tested as shown in Table VI. 
Besides the booth function, ỌMOA had remarkable 
exploratory abilities for the dimensionalities above n = 2 (i.e., 
n = 5, 10, 30) of the last three functions while tracking deeper 
than values provided by the global optima in literature for 
Holder Table, Michalewicz (2, 5, and 10). Rastrigin (n = 30) 
was also explored optimally by ỌMOA and HHO. 

TABLE VI. MULTIMODAL AND SEPARABLE RESULTS 

Function Measure ỌMOA HHO MS EHO A2 A3 

F13 Best 0.0E+00 0.0E+00 2.8E-08 5.4E-03 0.0E+00 0.0E+00 

n = 2 Worst 0.0E+00 2.7E-08 2.5E-07 1.5E-02 0.0E+00 0.0E+00 

f = 0 Mean 0.0E+00 3.3E-09 1.7E-07 1.0E-02 0.0E+00 0.0E+00 

 
Sd 0.0E+00 8.5E-09 2.0E-07 1.1E-02 0.0E+00 0.0E+00 

F14 Best 1.1E-04 0.0E+00 8.7E-06 3.8E-05 0.0E+00 0.0E+00 

n = 2 Worst 2.6E-02 4.1E-04 4.1E-04 3.7E-02 0.0E+00 0.0E+00 

f = 0 Mean 5.5E-03 9.1E-05 2.4E-04 2.0E-02 0.0E+00 0.0E+00 

 
Sd 5.9E-03 1.5E-04 3.0E-04 2.6E-02 0.0E+00 0.0E+00 

F15 Best -5.0E+04 0.0E+00 -1.8E+01 -1.7E+01 5.3E-06 0.0E+00 

n = 2 Worst -2.5E+04 1.3E-05 -1.1E+01 -1.1E+01 3.4E-04 0.0E+00 

f = -19.2085 Mean -3.9E+04 1.4E-06 -1.5E+01 -1.4E+01 1.0E-04 0.0E+00 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 1, 2023 

285 | P a g e  

www.ijacsa.thesai.org 

 
Sd 1.2E+04 3.4E-06 2.8E+00 2.7E+00 1.1E-04 0.0E+00 

F16 Best -1.8E+00 0.0E+00 1.2E-03 6.5E-03 0.0E+00 0.0E+00 

n = 2 Worst -1.7E+00 2.3E-06 7.4E-03 3.0E-02 0.0E+00 0.0E+00 

f = -1.8013 Mean -1.8E+00 2.9E-07 3.3E-03 1.7E-02 0.0E+00 0.0E+00 

 
Sd 1.4E-02 5.5E-07 4.4E-03 2.0E-02 0.0E+00 0.0E+00 

F17 Best -4.0E+00 1.5E-02 2.4E-01 9.0E-01 2.6E-06 0.0E+00 

n = 5 Worst -2.8E+00 1.2E+00 1.3E+00 1.2E+00 1.4E-04 4.4E-02 

f = -4.6877 Mean -3.6E+00 4.7E-01 8.5E-01 1.1E+00 4.0E-05 8.7E-03 

 
Sd 2.8E-01 6.1E-01 9.6E-01 1.1E+00 6.1E-05 1.8E-02 

F18 Best -5.5E+00 1.6E+00 3.4E+00 3.4E+00 8.6E-01 6.5E-01 

n = 10 Worst -4.2E+00 3.8E+00 4.9E+00 4.2E+00 1.3E+00 1.4E+00 

f = -9.6602 Mean -4.7E+00 2.9E+00 4.2E+00 3.9E+00 1.1E+00 1.1E+00 

 
Sd 3.5E-01 2.9E+00 4.2E+00 4.0E+00 1.1E+00 1.1E+00 

F19 Best 0.0E+00 0.0E+00 0.0E+00 8.3E-01 9.2E+01 1.5E+01 

n = 30 Worst 0.0E+00 3.3E-07 2.2E-07 1.2E+00 1.1E+02 7.3E+01 

f = 0 Mean 0.0E+00 2.1E-08 1.2E-07 1.0E+00 1.0E+02 3.5E+01 

 
Sd 0.0E+00 6.5E-08 1.5E-07 1.0E+00 1.0E+02 3.9E+01 

 

 
Fig. 14. Multimodal and separable boxplot. 

The visuals of the boxplot in Fig. 14 show mean solutions 
of ỌMOA adequately located in the region with very few 
deviations and outliers. 

 

 
Fig. 15. Convergence curves for multimodal and separable function. 

In Fig. 15, ỌMOA had made extra-advance to explore for 
solutions far better than all the compared algorithms in these 
problems. Even some of the solutions were far better optimum 
that set global values as the Holder Table model. 
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F. Multimodal and Non-Separable 

Table VII shows ỌMOA led the exploration alongside A3, 
A2, and HHO though the depth of the troughs in Six-Hump 

Camel, Shubert, and Drop Wave seems to have shown that 
ỌMOA dived deeper than the others with the peeks of 
Schaffer 4 also. 

TABLE VII. MULTIMODAL AND NON-SEPARABLE RESULTS 

Function Measure ỌMOA HHO MS EHO A2 A3 

F20 Best 0.0E+00 0.0E+00 0.0E+00 3.3E-07 0.0E+00 0.0E+00 

n = 2 Worst 4.3E-01 0.0E+00 0.0E+00 6.6E-07 0.0E+00 0.0E+00 

f = 0 Mean 9.3E-02 0.0E+00 0.0E+00 4.9E-07 0.0E+00 0.0E+00 

 
Sd 1.2E-01 0.0E+00 0.0E+00 5.1E-07 0.0E+00 0.0E+00 

F21 Best 0.0E+00 0.0E+00 5.8E-08 1.3E-06 1.0E-08 0.0E+00 

n = 4 Worst 1.6E-02 1.1E-05 7.4E-06 1.5E-04 2.5E-05 0.0E+00 

f= 0.29259 Mean 1.3E-03 1.2E-06 2.6E-06 5.3E-05 6.1E-06 0.0E+00 

 
Sd 3.7E-03 3.2E-06 4.3E-06 8.7E-05 9.3E-06 0.0E+00 

F22 Best 9.7E-03 0.0E+00 0.0E+00 5.2E+00 6.7E+00 5.5E+00 

n = 6 Worst 4.0E-01 2.3E-03 2.2E-08 6.1E+00 9.1E+00 7.5E+00 

f = 0 Mean 1.7E-01 9.0E-05 7.3E-09 5.7E+00 8.1E+00 6.6E+00 

 
Sd 1.2E-01 4.3E-04 1.3E-08 5.8E+00 8.1E+00 6.7E+00 

F23 Best -1.0E+00 0.0E+00 8.6E-07 1.7E-04 0.0E+00 0.0E+00 

n  = 2 Worst -1.0E+00 1.7E-08 3.4E-05 1.9E-03 1.1E-07 0.0E+00 

f= -1.03163 Mean -1.0E+00 2.2E-09 1.6E-05 8.2E-04 3.2E-08 0.0E+00 

 
Sd 9.6E-05 5.5E-09 2.1E-05 1.1E-03 5.3E-08 0.0E+00 

F24 Best 0.0E+00 0.0E+00 1.2E-08 5.7E-03 0.0E+00 0.0E+00 

n = 2 Worst 0.0E+00 3.3E-07 2.1E-07 2.8E-02 0.0E+00 0.0E+00 

f  = 0 Mean 0.0E+00 2.5E-08 1.2E-07 1.9E-02 0.0E+00 0.0E+00 

 
Sd 0.0E+00 7.7E-08 1.4E-07 2.1E-02 0.0E+00 0.0E+00 

F25 Best 0.0E+00 0.0E+00 0.0E+00 3.0E-03 0.0E+00 0.0E+00 

n = 2 Worst 0.0E+00 9.0E-06 1.4E-08 9.5E-03 0.0E+00 0.0E+00 

f  = 0 Mean 0.0E+00 6.2E-07 4.6E-09 7.2E-03 0.0E+00 0.0E+00 

 
Sd 0.0E+00 1.9E-06 8.0E-09 7.8E-03 0.0E+00 0.0E+00 

F26 Best -1.9E+02 -9.0E-06 1.1E-02 2.3E-01 -6.0E-06 -9.0E-06 

n = 2 Worst -1.9E+02 2.7E-04 3.2E-02 1.8E+00 8.2E-02 -9.0E-06 

f = -186.73 Mean -1.9E+02 2.4E-05 2.2E-02 1.2E+00 2.8E-02 -9.0E-06 

 
Sd 9.3E-02 6.5E-05 2.3E-02 1.4E+00 4.0E-02 0.0E+00 

F27 Best -1.0E+00 0.0E+00 0.0E+00 3.9E-06 0.0E+00 0.0E+00 

n = 2 Worst -1.0E+00 0.0E+00 1.8E-07 3.8E-05 0.0E+00 0.0E+00 

f =  -1 Mean -1.0E+00 0.0E+00 6.6E-08 2.6E-05 0.0E+00 0.0E+00 

 
Sd 0.0E+00 0.0E+00 1.1E-07 3.0E-05 0.0E+00 0.0E+00 

F28 Best 2.9E+01 1.1E-03 2.9E+01 3.8E+01 2.7E+01 0.0E+00 

n  = 30 Worst 2.9E+01 2.5E-01 2.9E+01 4.0E+01 2.8E+01 4.0E+00 

f  = 0 Mean 2.9E+01 4.5E-02 2.9E+01 3.9E+01 2.8E+01 1.2E+00 

 
Sd 9.0E-02 7.1E-02 2.9E+01 3.9E+01 2.8E+01 2.2E+00 

F29 Best 0.0E+00 0.0E+00 0.0E+00 9.3E-01 6.1E-04 0.0E+00 

n = 30 Worst 0.0E+00 1.1E-06 2.2E-08 1.0E+00 2.2E-03 0.0E+00 

f = 0 Mean 0.0E+00 6.9E-08 7.3E-09 9.7E-01 1.3E-03 0.0E+00 

 
Sd 0.0E+00 2.1E-07 1.3E-08 9.8E-01 1.4E-03 0.0E+00 

F30 Best 8.9E-16 1.1E-06 1.7E-05 4.3E-01 3.9E-03 1.9E-06 

n  = 30 Worst 8.9E-16 1.0E-04 3.6E-05 5.4E-01 6.2E-03 1.7E+00 

f = 0 Mean 8.9E-16 1.8E-05 2.4E-05 4.8E-01 5.0E-03 7.2E-01 

 
Sd 8.9E-16 2.7E-05 2.5E-05 4.9E-01 5.0E-03 9.0E-01 
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Fig. 16. Multimodal and non-separable boxplot. 

The boxplot in Fig. 16 shows the clear visuals, confirms 
ỌMOA better. The exploratory ability of the ỌMOA is 
evident from mean solutions distribution and standard 
deviations. 

The convergence is a reflection of the ability of the tree 
depth of the network of markets embedded in the model 
visualized in Fig. 17. 

 

 

 

 
Fig. 17. Convergence curves for multimodal and non-separable function. 
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G. Statistical Test and Significance 

Table VIII presents the entire statistical hypothesis test 
carried out to confirm the difference in mean and significance 
validation in the distribution of solutions by the algorithms on 
the 30 unconstraint benchmark functions. 

Table IX is the summary of the test conducted to prove the 
hypothesis of the performances of the experiment; 1:  means 
ỌMOA (in black ink) is more significant, -1: gives better 
significance to the contender (another algorithm), while 0: 
depicts no significant difference in performance (contender, 
equal, ỌMOA). 

TABLE VIII. T-TEST FOR PERFORMANCE AND HYPOTHESIS 

S/

N 

Algorithm/ 

Function 

HHO MS EHO A2 A3 

t-value p-value 
Sig

n 
t-value p-value 

Sig

n 
t-value p-value 

Sig

n 
t-value p-value 

Sig

n 
t-value p-value 

Sig

n 

1 Step 
-

5.8E+00 
2.5E-06 1 

-

2.8E+01 
2.1E-22 1 

-

7.5E+01 
8.7E-35 1 

-

1.3E+01 
8.9E-14 1 nan nan 0 

2 Sphere 
-

2.3E+00 
3.1E-02 1 nan nan 0 

-

1.4E+01 
9.6E-15 1 

-

1.5E+01 
5.4E-15 1 nan nan 0 

3 
Sum-

Square 

-

1.5E+00 
1.4E-01 1 

-

7.5E+00 
2.8E-08 1 

-

4.5E+01 
2.4E-28 1 

-

1.4E+01 
1.0E-14 1 nan nan 0 

4 Quartic nan nan 0 nan nan 0 
-

2.0E+01 
1.9E-18 1 

-

9.7E+00 
1.4E-10 1 nan nan 0 

5 Beale 5.3E+00 9.9E-06 -1 5.3E+00 1.1E-05 -1 4.1E+00 3.3E-04 -1 5.3E+00 9.9E-06 1 5.3E+00 9.9E-06 -1 

6 Easom 
-

4.6E+00 
7.5E-05 1 

-

4.6E+00 
7.2E-05 1 

-

8.0E+00 
9.1E-09 1 

-

4.6E+00 
7.5E-05 1 

-

4.6E+00 
7.5E-05 1 

7 Matyas nan nan 0 nan nan 0 
-

9.4E+00 
2.6E-10 1 nan nan 0 nan nan 0 

8 Colville 
-

5.3E+00 
1.1E-05 1 

-

5.1E+00 
2.0E-05 1 

-

3.0E+01 
1.7E-23 1 nan nan 0 nan nan 0 

9 Zakharov 
-

2.7E+00 
1.3E-02 1 

-

3.8E+00 
6.7E-04 1 

-

1.4E+01 
4.0E-14 1 

-

4.4E+00 
1.3E-04 1 nan nan 0 

10 
Schwefel 

2.22 

-

4.2E+00 
2.4E-04 1 

-

5.3E+00 
1.1E-05 1 

-

4.8E+01 
2.7E-29 1 

-

1.7E+01 
2.7E-16 1 

-

9.9E+00 
9.2E-11 1 

11 
Schwefel 

1.2 

-

1.4E+00 
1.6E-01 0 

-

1.1E+01 
1.2E-11 1 

-

6.1E+01 
3.0E-32 1 

-

1.1E+01 
2.3E-11 1 nan nan 0 

12 Dixon Price 
-

3.6E+01 
1.0E-25 1 

-

2.7E+02 
1.3E-50 1 

-

8.1E+01 
1.1E-35 1 

-

1.1E+04 
7.8E-98 1 

-

3.0E+04 

3.3E-

110 
1 

13 
Bohachevsk

y 1 

-

2.2E+00 
3.3E-02 1 

-

9.1E+00 
5.5E-10 1 

-

1.3E+01 
9.3E-14 1 nan nan 0 nan nan 0 

14 Booth 5.1E+00 2.1E-05 -1 4.9E+00 3.4E-05 -1 
-

5.5E+00 
7.3E-06 1 5.2E+00 1.6E-05 -1 5.2E+00 1.6E-05 -1 

15 
Holder 

Table 

-

1.8E+01 
2.1E-17 1 

-

1.8E+01 
2.1E-17 1 

-

1.8E+01 
2.1E-17 1 

-

1.8E+01 
2.1E-17 1 

-

1.8E+01 
2.1E-17 1 

16 
Michalewic

z 2 

-

7.1E+02 
5.9E-63 1 

-

6.8E+02 
2.0E-62 1 1.4E-59 1.3E-53 -1 

-

7.1E+02 
5.9E-63 1 

-

7.1E+02 
5.9E-63 1 

17 
Michalewic

z 5 

-

4.5E+01 
1.9E-28 1 

-

4.8E+01 
2.9E-29 1 

-

7.5E+01 
9.8E-35 1 

-

6.9E+01 
9.8E-34 1 

-

7.1E+01 
4.4E-34 1 

18 
Michalewic

z 10 

-

6.7E+01 
2.9E-33 1 

-

6.6E+01 
4.2E-33 1 

-

9.5E+01 
9.2E-38 1 

-

8.0E+01 
1.4E-35 1 

-

7.5E+01 
1.0E-34 1 

19 Rastrigin 
-

1.9E+00 
7.1E-02 0 

-

6.9E+00 
1.2E-07 1 

-

4.0E+01 
5.0E-27 1 

-

9.5E+01 
9.4E-38 1 

-

1.0E+01 
3.2E-11 1 

20 Schaffer 2 4.1E+00 3.1E-04 -1 4.1E+00 3.1E-04 -1 4.1E+00 3.1E-04 -1 4.1E+00 3.1E-04 -1 4.1E+00 3.1E-04 -1 

21 Schaffer 4 1.4E+00 1.7E-01 0 1.9E+00 6.7E-02 0 1.8E+00 7.8E-02 0 1.9E+00 6.8E-02 0 1.9E+00 6.6E-02 0 

22 Schaffer 6 7.8E+00 1.3E-08 -1 7.8E+00 1.2E-08 -1 
-

6.4E+01 
9.9E-33 1 

-

6.6E+01 
3.1E-33 1 

-

5.0E+01 
8.9E-30 1 

23 
6HumCame

l Back 

-

5.9E+04 

1.0E-

118 
1 

-

6.1E+04 

3.5E-

119 
1 

-

7.3E+03 
2.6E-92 1 

-

5.9E+04 

1.0E-

118 
1 

-

5.9E+04 

1.0E-

118 
1 

24 
Bohachevsk

y 2 

-

1.8E+00 
7.8E-02 0 

-

7.8E+00 
1.3E-08 1 

-

1.1E+01 
1.5E-11 1 nan nan 0 nan nan 0 

25 
Bohachevsk

y 3 

-

1.9E+00 
7.0E-02 0 

-

7.8E+00 
1.3E-08 1 

-

3.8E+00 
6.7E-04 1 nan nan 0 nan nan 0 

26 Shubert 
-

1.1E+04 
1.5E-97 1 

-

1.1E+04 
2.2E-97 1 

-

1.4E+03 
8.3E-72 1 

-

1.0E+04 
2.1E-96 1 

-

1.1E+04 
1.5E-97 1 

27 Drop Wave -inf 0.0E+00 1 
-

6.6E+07 

3.4E-

207 
1 

-

3.5E+05 

5.8E-

141 
1 -inf 0.0E+00 1 -inf 0.0E+00 1 

28 Rosenbrock 1.7E+03 9.7E-74 -1 
-3.3E-

02 
9.7E-01 0 

-

5.9E+01 
1.0E-31 1 2.2E+01 1.9E-19 -1 8.2E+01 7.4E-36 -1 

29 Grienwank 
-

1.9E+00 
7.4E-02 0 

-

3.8E+00 
6.7E-04 1 

-

1.4E+02 
2.2E-42 1 

-

1.3E+01 
6.9E-14 1 nan nan 0 

30 Ackley 
-

4.9E+00 
3.4E-05 1 

-

1.5E+01 
7.1E-15 1 

-

5.7E+01 
2.3E-31 1 

-

3.2E+01 
3.8E-24 1 

-

7.2E+00 
7.0E-08 1 

Sign (better) ==>  Significance (1 = ỌMOA; -1 = Alternative Algorithm; 0 = no significant difference), nan = not a number, inf = infinite 
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TABLE IX. SUMMARY OF SIGNIFICANCE AND RANK 

(-1,0,1) HHO MS EHO A2 A3 

OMOA [5, 8, 17] [4, 5, 21] [2, 1, 27] [3, 6, 21] [4, 13, 13] 

The highest equal performance point, 13 is between 
ỌMOA and A3, with ỌMOA leading with 13 optimal 
solutions, more than A3’s other 4 better performances. Next is 
HHO with 8 equal points, ỌMOA with 7 better optimal 
solutions, and HHO making 5 places. MS and A1 shared very 
close contest with EHO behind. Table X also is the 
presentation of the mean runtime measure given below.    

TABLE X. RUNTIME TEST RESULTS BASED ON RASTRIGIN 

ỌMOA HHO MS EHO A2 A3 

2.493096 45.6716 756.4435 788.1535 202.0933 217.6285 

The performance of ỌMOA in this section was very high 
on benchmark complex unconstraint problems compared to 
contending methods. 

H. Results and Statistical Testing with CEC 2017 

This section reports ỌMOA on real-parameter single 
objective optimization challenging problems featured in 
Computational Evolution Computation - CEC 2017 with a 
statistical comparison between ỌMOA and winners of the 
competition. 

I. Result of ỌMOA with CEC 2017 

The values are the differences between the global optima 
and the ones obtained with ỌMOA for 10D, 30D, and 100D 
during every 51 runs, as shown in the Table XI, and 
competition is presented in Table XII for 50D 

1) 10D, 30D, 50D and 100D Performances 

 The uni-modal functions EC1, EC2, and EC3 results 
were least expected within the number of functional 
evaluations provided, perhaps due to parameter tuning 
differences from recommended. 

 EC7 – EC10 multimodal functions all attained global 
optima in all dimensions. ỌMOA also met 10D and 
30D optimal values, with a minor difference for 50D 
and not too good 100D. EC5 solutions are not good in 
all dimensions; while EC6 10D was globally optimal, 
the rest dimensions were not impressive and inadequate 
for some ranges of solutions. 

 Hybrid functions optimization; ỌMOA yielded optimal 
global solutions for EC11, EC14 – EC17, and EC19 - 
EC20 leaving out EC12, EC13, and EC18 with not too 
good in solutions. 

 Besides EC21, EC22, and EC27 of the Composition 
functions with non-optimal solutions, ỌMOA achieved 
optimal global solutions for others, i.e., EC23, EC24, 
EC25, EC26, EC28, and EC29 in all dimensions, 
respectively. 

J. Time Complexity Analysis 

The competition provided appropriate information on the 
modalities to compute the time complexity [39]. The 
observation and experimentation shown in Table XII of this 
work is as follows: 

 Evaluate a code consisting of basic arithmetic operation 
for 1,000,000 iterations and recode the time (T0). 

 Evaluate the hybrid function EC18 for 200,000 times 
the four dimensions (10D, 30D, 50D, and 100D) with 
record (T1). 

 For every dimension, find the meantime of computing 

2T  the hybrid function EC18 five times run with a 

termination iteration of 200,000. 

 Calculate the time complexity of the algorithm using the 

relation 2 1 0( ) /T T T . 

Table XIII depicts that the complexity of ỌMOA is not 
increasing significantly with the increase in the dimension of 
the functions. 

TABLE XI. STATISTICAL RESULTS FOR CEC 2017 SIMULATIONS D10, D30, AND D100 

Tag Best Worst Mean Median Standard Deviation 

Tag 10D 30D 100D 10D 30D 100D 10D 30D 100D 10D 30D 100D 10D 30D 100D 

EC

1 
3.6E+3 6.3E+4 5.8E+5 1.7E+4 1.3E+5 1.7E+6 1.1E+4 9.9E+4 1.1E+6 1.1E+4 1.0E+5 1.1E+6 

3.1E+

3 
1.6E+4 2.7E+5 

EC

2 
3.6E+3 6.3E+4 

5.8E+0

5 
1.7E+4 

1.3E+0

5 

1.7E+00

6 
1.1E+4 

9.9E+0

4 

1.1E+00

6 
1.1E+4 

1.0E+0

5 

1.1E+0

6 

3.1E+

3 

1.6E+0

4 

2.7E+0

5 

EC

3 

1.9E+0

3 
7.3E+4 7.9E+5 1.8E+4 1.9E+5 1.8E+6 9.0E+3 1.3E+5 1.4E+6 8.9E+3 1.3E+5 1.4E+6 

3.5E+

3 
3.1E+4 2.5E+5 

EC

4 
0.0E+0 0.0E+0 1.9E+3 0.0E+0 0.0E+0 2.5E+3 0.0E+0 0.0E+0 2.3E+3 0.0E+0 0.0E+0 2.3E+3 

0.0E+

0 
0.0E+0 1.4E+2 

EC

5 
1.5E+7 4.0E+7 1.2E+8 1.5E+7 4.0E+7 1.2E+8 1.5E+7 4.0E+7 1.2E+8 1.5E+7 4.0E+7 1.2E+8 

0.0E+

0 
0.0E+0 0.0E+0 

EC

6 
0.0E+0 4.4E+2 9.0E+3 0.0E+0 1.8E+3 1.2E+4 0.0E+0 1.3E+3 1.1E+4 0.0E+0 1.3E+3 1.1E+4 

0.0E+

0 
2.9E+2 6.6E+2 

EC

7 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC

8 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC 

9 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC 

10 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 
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EC 

11 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC 

12 
3.7E+3 4.5E+4 2.4E+5 1.4E+4 7.7E+4 3.2E+5 8.5E+3 6.2E+4 3.0E+5 8.4E+3 6.2E+4 3.0E+5 

2.6E+

3 
6.5E+3 1.5E+4 

EC 

13 
1.6E+8 

1.4E+1

0 

4.9E+1

0 
3.7E+9 

3.8E+1

0 
9.4E+10 1.8E+9 

2.8E+1

0 
7.3E+10 1.8E+9 

2.8E+1

0 

7.4E+1

0 

8.3E+

8 
5.6E+9 

1.1E+1

0 

EC 

14 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC 

15 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC 

16 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC 

17 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC 

18 
3.8E+3 4.6E+4 2.4E+5 1.4E+4 7.7E+4 3.2E+5 8.5E+3 6.2E+4 3.0E+5 8.3E+3 6.2E+4 3.0E+5 

2.6E+

3 
6.5E+3 1.5E+4 

EC 

19 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC 

20 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC 

21 
1.3E+4 1.6E+5 7.9E+5 4.7E+4 2.6E+5 1.1E+6 2.8E+4 2.2E+5 1.0E+6 2.9E+4 2.2E+5 1.0E+6 

8.0E+

3 
2.6E+4 6.8E+4 

EC 

22 
3.6E+9 

2.1E+1

1 

1.8E+1

2 

4.0E+1

0 

6.1E+1

1 
3.3E+12 

1.6E+1

0 

4.0E+1

1 
2.7E+12 

1.5E+1

0 

3.9E+1

1 

2.7E+1

2 

7.8E+

9 

9.8E+1

0 

3.3E+1

1 

EC 

23 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC 

24 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC 

25 
0.0E+0 0.0E+0 5.0E+3 0.0E+0 0.0E+0 6.1E+3 0.0E+0 0.0E+0 5.6E+3 0.0E+0 0.0E+0 5.7E+3 

0.0E+

0 
0.0E+0 2.9E+2 

EC 

26 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC 

27 
1.3E+4 1.6E+5 7.9E+5 4.7E+4 2.6E+5 1.1E+6 2.8E+4 2.2E+5 1.0E+6 2.9E+4 2.2E+5 1.0E+6 

8.0E+

3 
2.6E+4 6.8E+4 

EC 

28 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

EC 

29 
0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 

0.0E+

0 
0.0E+0 0.0E+0 

TABLE XII. STATISTICAL COMPARISON OF ỌMOA AND STATE-OF-THE-ART ALGORITHMS FOR CEC 2017, 50D 

Tag JADE SHADE UMOEAsII MVMO LSHADE-cnEpSin EBOwithCMAR ỌMOA 

EC 1 
5.2385E-14 (2.5180E-

14) 

+ 

0.0000E+00 

(0.0000E+00) 

+ 

0.0000E+00 

(0.0000E+00) 

+ 

1.3313E-05 (5.6019E-

06) 

+ 

0.0000E+00 

(0.0000E+00) 

+ 

0.00+00 (0.00+00) 

+ 

2.80E+05 

(6.00E+04) 

EC 2 

1.3112E+13 

(8.5354E+13) 

– 

1.0801E+12 

(4.3906E+12) 

– 

0.0000E+00 

(0.0000E+00) 

+ 

1.8060E+17 

(1.2778E+18) 

– 

1.5686E+00 

(1.9314E+00) 

+ 

0.00+00 (0.00+00) 

+ 

2.20E+05 

(3.60E+04) 

EC 3 

1.7712E+04 

(3.7017E+04) 

+ 

0.0000E+00 

(0.0000E+00) 

+ 

2.1202E-09 (8.8715E-

09) 

+ 

5.3095E-07 (1.0965E-

07) 

+ 

0.0000E+00 

(0.0000E+00) 

+ 

0.00+00 (0.00+00) 

+ 

3.40E+05 

(6.60E+04) 

EC 4 

4.9625E+01 

(4.7914E+01) 

- 

5.6885E+01 

(4.6262E+01) 

– 

6.5462E+01 

(5.2164E+01) 

– 

3.5808E+01 

(3.6684E+01) 

- 

5.1401E+01 

(4.4262E+01) 

- 

4.29E+0l 

(3.32E+0l) 

- 

3.30E+01 

(4.80E+01) 

EC 5 
5.4288E+01 

(8.8034E+00) 

+ 

3.2859E+01 

(5.0387E+00) 

+ 

5.0801E+00 

(1.6684E+00) 

+ 

8.0787E+01 

(1.6432E+01) 

+ 

2.5166E+01 

(6.4447E+00) 

+ 

7.58E+00 

2.42E+00 

+ 

6.60E+07 

(0.00E+00) 

EC 6 
1.4489E-13 (9.1172E-

14) 

+ 

8.3876E-04 (1.0169E-

03) 

+ 

1.1951E-06 (1.9013E-

06) 

+ 

5.4321E-03 (3.3038E-

03) 

+ 

9.1569E-07 (1.0750E-

06) 

+ 

8.54E-08 

(1.14E-07) 

+ 

4.00E+03 

(3.80E+02) 

EC 7 

1.0140E+02 

(6.4883E+00) 

– 

8.0964E+01 

(3.7800E+00) 

– 

5.6459E+01 (7.1546E-

01) 

- 

1.2320E+02 

(1.2795E+01) 

- 

7.6639E+01 

(6.0618E+00) 

- 

5.79E+01 

(1.53E+00) 

- 

0.00E+00 

(0.00E+00) 

EC 8 

5.5234E+01 

(7.7643E+00) 

– 

3.2355E+01 

(3.8252E+00) 

– 

4.7781E+00 

(1.6264E+00) 

- 

7.5910E+01 

(1.6122E+01) 

– 

2.6319E+01 

(6.5917E+00) 

- 

7.9IE+00 

(2.47E+00) 

- 

0.00E+00 

(0.00E+00) 

EC 9 

1.1773E+00 

(1.3141E+00) 

– 

1.1123E+00 (9.3715E-

01) 

– 

1.7555E-03 (1.2536E-

02) 

– 

7.3843E+00 

(5.7735E+00) 

– 

0.0000E+00 

(0.0000E+00) 

= 

0.00+00 

(0.00+00) 

= 

0.00E+00 

(0.00E+00) 

EC 

10 

3.7500E+03 

(2.5448E+02) 

– 

3.3444E+03 

(2.9402E+02) 

– 

3.3804E+03 

(4.7255E+02) 

– 

3.4971E+03 

(4.3138E+02) 

– 

3.2001E+03 

(3.3972E+02) 

- 

3. 11E+03 

(4.0lE+02) 

- 

0.00E+00 

(0.00E+00) 

EC 

11 

1.3612E+02 

(3.3972E+01) 

– 

1.2065E+02 

(2.9317E+01) 

– 

4.5701E+01 

(9.1852E+00) 

– 

4.7488E+01 

(8.7237E+00) 

– 

2.1393E+01 

(2.0902E+00) 

- 

2.64E+01 

(3.36E+00) 

- 

0.00E+00 

(0.00E+00) 

EC 

12 

5.1468E+03 

(3.3233E+03) 

+ 

5.1362E+03 

(2.8785E+03) 

+ 

2.1449E+03 

(5.3559E+02) 

+ 

1.2955E+03 

(2.7935E+02) 

+ 

1.4753E+03 

(3.6472E+02) 

+ 

1.94E+03 

(5.34E+02) 

+ 

1.20E+05 

(1.00E+04) 
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EC 

13 

3.0338E+02 

(2.6999E+02) 

+ 

2.6565E+02 

(1.4944E+02) 

+ 

5.1787E+01 

(2.1985E+01) 

+ 

4.3776E+01 

(1.7622E+01) 

+ 

6.9430E+01 

(3.4457E+01) 

+ 

4.14E+01 

(2.45E+01) 

+ 

6.90E+10 

(1.10E+10) 

EC 

14 

1.0519E+04 

(3.1138E+04) 

– 

2.1578E+02 

(7.2995E+01) 

– 

2.9299E+01 

(2.4831E+00) 

- 

4.8524E+01 

(1.2153E+01) 

– 

2.6522E+01 

(2.4924E+00) 

- 

3.12E+0I 

(3.52E+00) 

- 

0.00E+00 

(0.00E+00) 

EC 

15 

3.4992E+02 

(4.4266E+02) 

– 

3.2262E+02 

(1.4201E+02) 

– 

4.1468E+01 

(1.0651E+01) 

– 

4.4630E+01 

(1.1280E+01) 

– 

2.5596E+01 

(4.0567E+00) 

- 

2.94E+0I 

(5.20E+00) 

- 

0.00E+00 

(0.00E+00) 

EC 

16 

8.5696E+02 

(1.7532E+02) 

– 

7.3389E+02 

(1.8854E+02) 

– 

3.9288E+02 

(1.5514E+02) 

– 

8.4082E+02 

(1.9349E+02) 

– 

2.7453E+02 

(9.9692E+01) 

- 

3.46E+02 

(1.46E+02) 

- 

0.00E+00 

(0.00E+00) 

EC 

17 

6.0010E+02 

(1.2128E+02) 

– 

5.1634E+02 

(1.1109E+02) 

– 

3.1356E+02 

(1.0636E+02) 

– 

5.1999E+02 

(1.3382E+02) 

– 

2.0706E+02 

(7.3064E+01) 

- 

2.75E+02 

(5.63E+0I) 

- 

0.00E+00 

(0.00E+00) 

EC 

18 

1.8906E+02 

(1.2561E+02) 

+ 

1.8946E+02 

(1.0338E+02) 

+ 

3.5997E+01 

(8.7118E+00) 

+ 

4.1756E+01 

(1.9445E+01) 

+ 

2.4332E+01 

(2.1179E+00) 

+ 

3.20E+01 

(5.99E+00) 

+ 

1.20E+05 

(1.00E+04) 

EC 

19 

3.2429E+02 

(1.2561E+03) 

– 

1.5976E+02 

(5.6842E+01) 

– 

2.2807E+01 

(3.7669E+00) 

– 

1.7338E+01 

(5.1321E+00) 

- 

1.7406E+01 

(2.4713E+00) 

- 

2.45E+0I 

(3.94E+00) 

- 

0.00E+00 

(0.00E+00) 

EC 

20 

4.3806E+02 

(1.3382E+02) 

– 

3.3382E+02 

(1.2079E+02) 

– 

2.3041E+02 

(1.2312E+02) 

– 

3.2965E+02 

(1.4772E+02) 

– 

1.1412E+02 

(3.5483E+01) 

- 

1.47E+02 

(7.44E+0l) 

- 

0.00E+00 

(0.00E+00) 

EC 

21 

2.5198E+02 

(9.6384E+00) 

+ 

2.3338E+02 

(5.1139E+00) 

+ 

2.0681E+02 

(2.5498E+00) 

+ 

2.7719E+02 

(1.6036E+01) 

+ 

2.2676E+02 

(7.0598E+00) 

+ 

2. 11E+02 

(4.06E+00) 

+ 

4.30E+05 

(3.40E+04) 

EC 

22 

3.3364E+03 

(1.8053E+03) 

+ 

3.1774E+03 

(1.5566E+03) 

+ 

1.7929E+03 

(1.9112E+03) 

+ 

3.2653E+03 

(1.7185E+03) 

+ 

1.5950E+03 

(1.6659E+03) 

+ 

3.65E+02 

(9.24E+02) 

+ 

9.20E+11 

(1.70E+11) 

EC 

23 

4.7956E+02 

(1.1766E+01) 

– 

4.5916E+02 

(8.7508E+00) 

– 

4.3459E+02 

(5.2143E+00) 

- 

5.0490E+02 

(1.5646E+01) 

– 

4.3929E+02 

(6.9001E+00) 

- 

4.34E+02 

8.16E+00 

- 

0.00E+00 

(0.00E+00) 

EC 

24 

5.4197E+02 

(7.6206E+00) 

– 

5.3106E+02 

(7.4577E+00) 

– 

5.0810E+02 

(2.6001E+00) 

- 

5.8374E+02 

(1.6940E+01) 

– 

5.1282E+02 

(5.5948E+00) 

- 

5.06E+02 

(3.85E+00) 

- 

0.00E+00 

(0.00E+00) 

EC 

25 

5.1923E+02 

(3.4820E+01) 

– 

5.0694E+02 

(3.6446E+01) 

– 

4.8281E+02 

(6.4445E+00) 

– 

5.0912E+02 

(3.1226E+01) 

– 

4.8034E+02 

(1.0816E+00) 

- 

4.89E+02 

(2.47E+0l) 

- 

0.00E+00 

(0.00E+00) 

EC 

26 

1.6146E+03 

(1.2169E+02) 

– 

1.4168E+03 

(9.7281E+01) 

– 

5.7211E+02 

(4.0709E+02) 

- 

1.9319E+03 

(2.8632E+02) 

– 

1.2026E+03 

(1.1870E+02) 

- 

7.06E+02 

(4.06E+02) 

- 

0.00E+00 

(0.00E+00) 

F27 
5.5080E+02 

(2.3427E+01) 

+ 

5.4925E+02 

(2.7842E+01) 

+ 

5.3743E+02 

(1.7376E+01) 

+ 

5.4355E+02 

(1.7557E+01) 

+ 

5.2543E+02 

(9.2143E+00) 

+ 

5.22E+02 

(7.75E+00) 

+ 

4.30E+05 

(3.40E+04) 

EC 

28 

4.9185E+02 

(2.0882E+01) 

– 

4.7943E+02 

(2.4173E+01) 

– 

4.7289E+02 

(2.1643E+01) 

– 

4.6481E+02 

(1.5047E+01) 

– 

4.5913E+02 

(1.1904E+01) 

- 

4.67E+02 

(1.79E+0I) 

- 

0.00E+00 

(0.00E+00) 

EC 

29 

4.7761E+02 

(8.0661E+01) 

– 

4.8716E+02 

(1.0502E+02) 

– 

3.6326E+02 

(2.0650E+01) 

– 

4.8938E+02 

(1.1489E+02) 

– 

3.5289E+02 

(9.7796E+00) 

- 

3.47E+02 

(1.97E+0I) 

- 

0.00E+00 

(0.00E+00) 

w/t/l 10/0/19 10/0/19 11/0/18 9/0/20 11/1/17 11/1/17  

 

TABLE XIII. TIME COMPLEXITY ANALYSIS 

Time Complexity T1 T2 TO (avT2 - T1)/T0 

10D 0.164781 0.556989 6.80E-02 5.77E+00 

30D 0.1695 0.627578 6.80E-02 6.74E+00 

50D 0.18455 0.715318 6.80E-02 7.81E+00 

100D 0.24258 0.846715 6.80E-02 8.89E+00 

K. Comparison of ỌMOA with the Winners of CEC2017 

(EC1-EC29) 

The subsection presents a performance comparison 
between the 50D problem size for ỌMOA and other state-of-
art high-performing algorithms, especially those that won the 
CEC2017 competition for real-parameter single objective 
optimization challenges, as shown in Table XII. The last row 
represents the values of a Wilcoxon rank-sum test at an alpha 
value of 0.05. The terms designate the status of the ỌMOA 

against each competing algorithm such that 

( .. .. ) ( .. .. ) / ( .. .. )w mean win t mean tie l mean loss   For an 

algorithm making its first entry, the results show very high 
success [41] shown by Table XII; ỌMOA had remarkably 
shown better performance on most of the complex problems 
considered, as the last row shows. Also, ỌMOA showed better 
performances compared with the winners of the competition 
(competing method, equity, ỌMOA w/t/l), e.g., 
(EBOwithCMAR won 11, equal in 1 and ỌMOA won 17). 

L. Benchmark Design Real Engineering CEC 2020 Single 

Objective Problems 

Eight (8) difficult engineering design-constrained problems 
that exhibit functional inequality and equality constraints are 
considered; compared with state-of-the-art algorithms from 
CEC 2020 real-world optimization issues presented in [42-44]. 
Among the results presented are the experiments’ statistical 
best, mean, median, worst, and standard deviations. Generally, 
all models follow a structure as shown in Eq. (15). 
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min ( )

. . : ( ) 0, 1, ...,

f x

s t g x n mn  
 (11) 

Where f is the fitness, xs’ are the design variables, g is the 
constraint with less than equality (often greater than for 
maximization problems), and n is the number of constraints. 
The conversion of the functional constraint from inequality to 
equality transforms the problem into equation (16). 
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( ) ( ) ( )
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. . 0( . . )

1
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f x f x g xp n n

n

s t i e penalty factor

if g isviolatedn
n if g is satisfiedn





  




 

  (12) 

Where fp (x) is the penalized objective function. High-
performing state-of-the-art algorithms are adopted and 
compared against the design of certain engineering problems 
of  Fig. 18 (a: Welded beam), (b: Pressure Vessel, and c: 
Compression Spring). The constraint violations are 
considered, and the penalty function method is used, which 
often transforms a constrained problem into an unconstrained 
continuous counterpart for ease of implementation. 

 
Fig. 18. Engineering design parameter problems. 

M. Statistical Comparison of Results for Tension / 

Compression Spring Design Problem 

The design problem in Fig 18 (c) aims at reducing the 
weight of the tension/compression spring without 
compromising domain properties like the shear stress, 
frequency wave, and displacement functionalities [45]. The 
control variables are wire diameter (x1), mean coil diameter 
(x2), and the number of coils (x3); the mathematical 
formulation is detailed in [42]. Upon the experiment, ỌMOA 
yielded the most optimal weight compared to the other high-
performing algorithms within a minimal number of function 
evaluations. The result of the compared simulation is shown in 
Table XIV. 

N. Statistical Comparison of the Results for Welded Beam 

Problem 

The welded beam problem Fig. 18 (b) [46] is to minimize 
the cost of construction. The impacting constraints include 
shear stress(𝜏); bending stress in the beam (𝜎); buckling load 

of the bar (Pc); end deflection of the beam (𝛿) and side 
constraints. The decision variables are (1) the thickness of the 
weld (x1), the length of the attached part of bar (x2), the 
height of the bar (x3) and the thickness of the bar (x4). The 
model formulation is given in [42]. And compared simulated 
statistical results in Table XV with parametric results in 
Table XVI. 

TABLE XIV. RESULTS FOR THE TENSION / COMPRESSION SPRING DESIGN 

PROBLEM 

Method Worst Mean Best SD NFEs 

GA1 0,012822 0.012769 0.012704 3.94E − 05 900,000 

GA2 0.012973 0.012742 0.012681 5.90E-05 80000 

CAEP 0. 015116 0. 013568 0. 012721 8. 42E-04 50,020 

CPSO 0.012924 0.012924 0.012674 5.20E-04 240,000 

HPSO 0.012719 0.012707 0.012665 1.58E − 05 81,000 

NM–PSO 0.012633 0.012631 0.01263 8.47E − 07 80,000 

G-QPSO 0.017759 0.013524 0.012665 0.001268 2000 

QPSO 0.018127 0.013854 0.012669 0.001341 2000 

PSO 0.071802 0.019555 0.012857 0.011662 2000 

DE 0.01279 0.012703 0.01267 2.7E − 05 204,800 

DELC 0.012665 0.012665 0.012665 1.3E − 07 20,000 

DEDS 0.012738 0.012669 0.012665 1.3E − 05 24,000 

HEAA 0.012665 0.012665 0.012665 1.4E − 09 24,000 

PSO–DE 0.012665 0.012665 0.012665 1.2E − 08 24,950 

SC 0.016717 0.012922 0.012669 5.9E − 04 25,167 

(μ + λ)-ES NA 0.013165 0.012689 3.9E − 04 30,000 

ABC NA 0.012709 0.012665 1.28E − 02 30,000 

LCA 0.01266667 0.0126654 0.0126652 3.88E − 07 15,000 

WCA 0.012952 0.012746 0.012665 8.06E − 05 11,750 

IGMM 0.0135125 0.0128657 0.0126652 2.56E − 04 4000 

APSO 0.014937 0.013297 0.0127 6.85E − 04 120,000 

MCEO 0.01350901 0.0127196 0.0126605 3.79E − 05 2000 

OMOA 0.01160 0.011241 0.0111090 0.0002354 2000 

TABLE XV. STATISTICAL RESULTS FOR WELDED BEAM PROBLEM 

Method Worst Mean Best SD NFEs 

CAEP 3.179709 1.971809 1.724852 0.443 50,020 

CPSO 1.782143 1.748831 1.7314849 0.0129 240,000 

HPSO 1.814295 1.74904 1.724852 0.0401 81,000 

PSO–DE 1.724852 1.724852 1.724852 6.7E − 16 66,600 

NM–PSO 1.733393 1.726373 1.72472 0.0035 80,000 

SC 6.399678 3.002588 2.385434 0.96 33,095 

DE 1.824105 1.768158 1.733461 0.0221 204,800 

WCA 1.744697 1.726427 1.724856 0.00429 46,450 

LCA 1.7248523 1.7248523 1.7248523 7.11E − 15 15,000 

IGMM 1.74769 1.732152 1.724855 7.14E − 03 8000 

APSO 1.993999 1.877851 1.736193 0.076118 50,000 

MCEO 1.7248732 1.7248621 1.7248523 1.02E − 05 12,500 

ỌMOA 1.6764577 1.622595 1.3534549 0.2390773 60000 
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TABLE XVI. COMPARISONS OF THE BEST SOLUTIONS FOR WELDED BEAM 

DV CAEP HGA NM-PSO WCA IGMM MCEO ỌMOA 

x1 0.2057 0.2057 0.20583 0.205728 0.205729 0.2057296 0.15203 

x2 3.4705 3.4705 3.468338 3.470522 3.470496 3.4704887 8.02626 

x3 9.0366 9.0366 9.036624 9.03662 9.036625 9.0366239 6.08668 

x4 0.2057 0.2057 0.20573 0.205729 0.205730 0.2057296 0.15775 

g1(x) −769.34 −769.34 −770.3698 −0.034128 −771.187 -771.2021 -0.3760+E4 

g2(x) 4.48154 4.48154 −0.053122 −3.49E − 05 −0.05976 -2.88E – 05 -1.83846+E4 

g3(x) −0.2283 −0.2283 −0.228310 −1.19e − 6 −0.228310 -0.228310 -0.00002+E4 

g4(x) 0 0 1.00E − 04 −3.43298 −1e − 6 0 0 

g5(x) 2.60337 2.603347 −0.031555 −0.080728 −0.0319920 -1.85E – 05 -0.0222+E4 

g6(x) −0.0807 −0.08070 −0.080830 −0.23554 −0.08072 -0.08073 0 

g7(x) −3.4332 −3.43321 −3.43316 −0.013503 −3.4329802 -3.43298 -0.0003+E4 

f(x) 1.72457 1.724577 1.724720 1.724856 1.7248552 1.724852 1.622595 

In less than 60000 functional evaluations of 10 runs, 
ỌMOA yielded a mean cost that is the most optimal for the 
welded beam in comparison while obeying the constraints. 

O. Results for Pressure Vessel Design Problem 

The Pressure Vessel Design objective in Fig. 18 (b) [47] is 
to minimize the cost associated with materials, building, and 
welding of a cylindrical vessel with capped ends and a 
hemispherical-shaped head. The impacting variables include 
the shell thickness x(1), the head thickness x(2), the inner 
radius x(3), and the length of the cylindrical section excluding 
the head x(4); the model formulation is given in [42]. 

The yield of ỌMOA on the Pressure Vessel design 
problem produced the best optimal mean value and had a far 
smaller number of function evaluations of Table XVII. 

ỌMOA met all the inequality constraints; best mean fitness 
as shown, followed by MCEO, WCA, and NM-PSO, 
respectively. However, contrary to the large number assigned 
to the penalty using the other algorithms, ỌMOA found better 
results with negligible penalty value for problems of spring 
and welding beam, and even no penalty was applied to vessel 
design. 

TABLE XVII. THE PRESSURE VESSEL DESIGN PROBLEM RESULTS 

Method Worst Mean Best SD NFEs 

GA1 6308.497 6293.8432 6288.7445 7.4133 900,000 

GA2 6469.322 6177.2533 6059.9463 130.9297 80,000 

CPSO 6363.8041 6147.1332 6061.0777 86.45 240,000 

HPSO 6288.677 6099.9323 6059.7143 86.2 81,000 

NM–PSO 5960.0557 5946.7901 5930.3137 9.161 80,000 

G-QPSO 7544.4925 6440.3786 6059.7208 448.4711 8000 

QPSO 8017.2816 6440.3786 6059.7209 479.2671 8000 

PSO 14076.324 8756.6803 6693.7212 1492.567 8000 

CDE 6371.0455 6085.2303 6059.734 43.013 204,800 

WCA 6590.2129 6198.6172 5885.3327 213.049 27,500 

LCA 6090.6114 6070.5884 6059.8553 11.37534 24,000 

IGMM 6061.2868 6060.1598 6059.7143 0.5421 8000 

APSO 7544.49272 6470.71568 6059.7242 326.9688 200,000 

MCEO 6060.3096 6060.0315 6059.7143 1.2532 7500 

ỌMOA 870.8983 848.7333 846.27055 7.7880052 2000 

P. Robot Gripper Problem 

The complexity involved in manipulating the grippers to 
minimize the difference between the minimum and maximum 
forces of the robotic action is ongoing research. Seven design 
variables, geometric properties, with about seven inequality 
constraints, are targeted. The Mathematical formulations are 
found here in [48]. 

 
Fig. 19. Schematics of robotics gripper system. 

Fig. 19 is schematics of the robotic gripper system, and the 
experimental result is shown in Table XVIII. 

TABLE XVIII.  THE STATISTICAL RESULTS OF ROBOTIC GRIPPER 

OPTIMIZATIONS 

Variables (TLBO) AOS ỌMOA 

Best 4.247643634 2.54383686 0.0000000000 

Mean 4.93770095 2.791745357 0.6661765869 

Worst 8.141973 3.14335667 6.4675702717 

Std-Dev 0.56 0.226323642 1.8645193071 

a 150 149.9973899 27.248574186 

b 150 149.880236 150 

c 200 200 200 

d 0 0 0 

e 150 149.9954554 71.18076298 

f 100 100.9429469 300 

t 2.339539113 2.297394124 2.124666881 

g1(x) -28.09283911 -49.99996461 -47.7172 

g2(x) -21.90716089 -5.23E-06 -2.2828 

g3(x) -33.64959994 -49.99996461 -200.6371 

g4(x) -16.35040006 -3.53E-05 150.6371 

g5(x) -79999.998 -79737.112 0 

g6(x) -9.8E-11 -36.02117726 -4.0000 

g7(x) -0.00001 -0.943046876 -0.0200 
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The experimental result of ỌMOA on the gripper problem 
showcases a new optimum as against the optimum global set 
value [42]; also better than the competing algorithms in 
comparison [44]. 

Q. Rolling Element Bearing 

Five design variables that affect the optimal design of a 
rolling bearing with the capacity to carry load efficiently 
amidst nine inequality constraints are considered in the design. 
The mathematical derivations are provided by [42], while we 
show the schematics in Fig. 20. 

 
Fig. 20. Schematics of rolling bearing. 

The result of the experiment is shown in Table XIX. 

TABLE XIX. RESULTS OF ROLLING BEARING AND STATISTIC COMPARISONS 

WITH ỌMOA 

 (TLBO) ABC GWO ALO AOS ỌMOA 

Best 81859.74 
85428.24

95 

85529.08

30 

85546.63

77 

83918.492

93 
6232.0171

29 

Mea

n 

81438.98

7 

85121.75

44 

83395.08

49 

84032.86

36 

82175.212

66 
9468.3133

94 

Wor

st 

80807.85

51 

83859.08

51 

43543.45

08 

73872.81

64 

83826.383

37 

14246.414

60 

Std-

Dev 
0.66 362.57 8224.5 3121.8 23.38511 

2239.4436

27 

Dm 21.42559 125.6599 125.7090 125.718 125 150 

Db 125.7191 21.40862 21.42316 
21.42524

2 
21.875 

10.860427

72 

Z 11 11 11 11 
10.777009

05 

4.5100000

00 

fi 0.515 0.515 0.515 0.515 0.515 
0.5942954

10 

f0 0.515 0.515 0.529322 
0.515170

18 
0.515 

0.5802317

89 

KDmi

n 
0.424266 0.427166 0.420867 

0,454164

6 

0.4761106

18 

0.4000000

00 

KDma

x 
0.633948 0.668849 0.633296 

0.646492

4 

0.6581426

45 

0.6000000

00 

E 0.3 0.3 0.300224 
0.300001

22 
0.3 

0.3000000

00 

e 0.068858 0.071386 0.02 
0.063800

3 
0.02 

0.0200000

00 

Chi 0.799498 0.6 0.619432 
0.610759

2 

0.6182422

02 

0.6000000

00 

With an optimum global set at (25287.918415), the 
experimental result of Table XIX shows that ỌMOA had set a 
better global optimum as it also performed better than the 
competing algorithms  [44]. 

R.  Gas Transmission Compressor Design (GTCD) 

Four variables with one inequality constraint are targeted 
when designing the gas transmission compressor. The work 
[42] provides the mathematical formulation while we show the 
schematics in Fig. 21 and the solutions provided by many 
optimization state-of-the-art to designs. 

 
Fig. 21. Schematic of gas transmission compressor system with design 

variables. 

The results of the comparison for the experiment on GTCD 
are shown in Table XX. 

TABLE XX. RESULTS OF OPTIMIZATION OF GTCD AND STATISTICAL 

OUTCOMES 

Algorithms     
Optimum 

cost 

 x1 x2 x3 x4  

CLPSO 45.8830 1.571778 27.18201 1.45592 3.7381430E+06 

ABC 50.0000 1.185882 24.89145 0.39507 2.9845610E+06 

ACOR 49.6067 1.174456 23.92940 0.37862 2.9671090E+06 

ABC 50.0000 1.207839 24.49319 0.45792 2.9755610E+06 

KH 35.6206 1.092393 31.99460 1.10937 3.4608480E+06 

WOA 49.7095 1.178115 24.72718 0.38796 2.9650350E+06 

HHO 49.9844 1.180801 24.20547 0.39429 2.9650910E+06 

BOA 20.0000 1.000000 20.00000 0.16475 3.1364520E+06 

HGSO 50.0000 1.164785 25.72731 0.35606 2.9689110E+06 

LIACOR 50.0000 1.178480 24.58628 0.38882 2.9648960E+06 

SMO 50.0000 1.178284 24.59259 0.38835 
2.9648954E+06 

 

OMOA 50.0000 1.00000 20.1422 60 9.8081911E+05 

The experimental results show ỌMOA had a set a new 
global optimum than that set by the competition as the global 
optimum is (2.9648954173E+06) [42], with the other 
algorithms as presented in [49]. 

S. Himmelblau's Function 

This nonlinear function has been used to test many novel 
metaheuristic algorithms; it has five main design variables and 
six inequality constraints to be handled, as shown in 
Himmelblau [50]. In Table XXI, we show the results of the 
performances of the metaheuristic algorithms used in 
comparison. 

The experimental result shows that ỌMOA obtained a 
better minimum compared to the competing algorithms and set 
a new global optimum compared to the global presented by 
[42], which is  −3.066554E+04, with the other algorithms as 
presented in [49]. 

T. Multiple Disk Clutch Brake Design Problem 

The design objective is to minimize the mass of the 
multiple disk clutch brake, five decision variables with nine 
nonlinear constraints. The mathematical formulation is given 
in [42]. 
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TABLE XXI. STATISTICAL AND PERFORMANCE OF ALGORITHMS ON THE 

HIMMELBLAU COMPLEX PROBLEM 

Algorith

m 
X1 X2 X3  X4 

OPTIMA

L 

CLPSO 86.3511 34.276 31.279  32.758 −2.99E+04 

ABC 78 
33.272

9 

30.6521

6 

44.3040

2 
36.4902 −3.05E+04 

ACOR 78 33 
30.0480

8 

44.9380

6 
36.7053 −3.06E+04 

ABC 78 33 
30.1961

7 
45 36.3524 −3.06E+04 

KH 
78.9989

2 

33.005

7 

30.6702

1 

43.6357

9 
35.5313 −3.04E+04 

WOA 
79.3603

1 
33 

30.0490

6 

42.5411

0 
37.2748 −3.05E+04 

HHO 78 33 
30.0075

7 

44.9929

7 
36.7473 −3.06E+04 

BOA 78 33 
30.3113

9 

39.5904

9 
31.5837 −3.01E+04 

HGSO 78 33 
3.10983

1 

4.00229

9 
3.62353 −3.03E+04 

LIACO

R 
78 33 

29.9952

6 

45.0000

0 

36.7758

1 
−3.06E+04 

SMO 78 33 29.995  36.7758 −3.06E+04 

ỌMOA 79.8729 43.856 27.078 29.1039 29.1039 -3.19E+04 

 
Fig. 22. The schematic geometric representation of the multiple disc clutch 

design. 

Fig. 22 is schematics geometric representation of the clutch 
disc problem. However, the experimental results are shown in 
Table XXII. 

TABLE XXII. SHOWS THE RESULTS OF THE PERFORMANCE OF 

METAHEURISTIC METHODS ON THE CLUTCH DESIGN PROBLEM 

Algorith

ms 
x1 x2 x3 x4 x5 optimum 

CLPSO 
75.959

32 

97.069

36 

1.0105

8 

909.478

64 

2.0972

3 

0.280152637613

733 

ABC 
69.999

74 

90.000

00 

1.0000

0 

697.479

83 

2.0000

0 

0.235242474598

156 

ACOR 
70.000

00 

90.000

00 

1.0000

0 

718.003

97 

2.0000

0 
0.235242457900

804 

ABC 
70.000

00 

90.000

00 

1.0000

0 

317.170

55 

2.0000

0 
0.235242457900

804 

KH 
70.000

00 

90.000

00 

1.0000

0 

481.079

88 

2.0000

0 

0.235242458886

112 

WOA 
70.000

00 

90.000

00 

1.0000

0 

182.355

43 

2.0000

0 

0.235242457901

052 

HHO 
70.000

00 

90.000

00 

1.0000

0 

304.207

38 

2.0000

0 
0.235242457900

804 

BOA 
67.726

99 

90.000

00 

1.0000

0 

673.069

21 

2.0000

0 

0.248171278270

212 

HGSO 
69.999

45 

90.000

00 

1.0000

0 
8.73600 

2.0000

0 

0.235248138956

563 

LIACOR 
70.000

00 

90.000

00 

1.0000

0 

169.998

45 

2.0000

0 
0.235242457900

804 

SMO 70.000 90.000 1.000 999.99 2.000 0.2352424579 

ỌMOA 80.000 90.005 1.000 1000.0 2.000 0.1250434142 

ỌMOA performed better than ABC, which was reported as 
best at the time of competition report, and others in this design 
problem and further set a much better global optimum than 
benchmarked in [42]; 0.23524245790; with the other 
algorithms as presented in [49]. 

IV. CONCLUSION 

In this work, Ọdịgbo Metaheuristic Optimization 
Algorithm – ỌMOA, a new nature-inspired population-based 
metaphor, was proposed and used in experiments and 
engineering designs with very great performance. The idea 
stemmed from the informal learning pattern and discipleship, 
which is ingrained in the socio-cultural behavior of the 
indigenous peoples - the Ndigbo of a West African tribe is 
presented. The learners cope through practice and observation. 
The experiment conducted considered 30 benchmark 
unconstraint problems, 29 CEC 2017 (50D) real-parameter 
single objective constraint optimization, and about 8 
engineering design constrained problems from CEC 2020; the 
results showed that OMOA had balanced exploitation and 
exploratory capacities with very good convergence time too. 
Comparison to the performance of other well-established state-
of-the-art algorithms depicts the exceptional performance of 
the automata. The significant test also confirms the relative 
efficiency of ỌMOA with t-values and p-values presented in 
Table VIII and summarized in Table IX. The convergence 
time test using the Rastrigin function also shows OMOA had 
better speed than the contender in Table X. The competing 
algorithms were the most award winners in past competitions 
from 2017 till date. In all complex engineering problems 
presented, ỌMOA had performed remarkably well and had, in 
some cases, set new minimum attainable best solutions; Of 
interest are the new values better than the set global optimums 
in some functions and engineering designs (Clutch Disc, 
Himmelblau, GTCD, Rolling Bearing, Robotic Gripper). 

The future direction is to further validate with the most 
recent CECs and design optimization problems in other fields. 
Meanwhile, ỌMOA shows merit to be considered in the 
current state-of-the-art. 
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