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Abstract—This paper demonstrates the feasibility of a
database reconstruction attack on open-source database en-
gines and presents a defense method against it. We launch a
Flush+Reload attack on SQLite, which returns approximate,
noisy volumes returned by range queries for a private database.
Given the volumes, our database reconstruction uses two al-
gorithms, a Modified Clique-Finding algorithm and Match-
Extension algorithm, to recover the database. Experiments show
that an attacker can reconstruct the victim’s database with a
size of 10,000 and a range of 12 with an error rate of up to
0.07% at most. To mitigate the attack, a small dummy data is
added to the result volumes of range queries, which makes the
approximation more confused. Experimental results show that
by adding about 1% of dummy data, an attack success rate (in
terms of the number of reconstructed volumes in the database)
is reduced to 60% from 100% and an error rate increases to
15% from 0.07%. It is also observed that by adding about 2%
of dummy data, the reconstruction is completely failed.
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I. INTRODUCTION

Data processing continues to become more common in the
cloud, and cloud computing is embedded in the business model
of popular services such as Google’s G Suite, Microsoft’s
Office 365, Adobe Creative Cloud [1]. In addition to cloud use
by industry, federal agencies are also now leveraging cloud
services, even for the storage and analysis of sensitive data.
Microsoft, for example, won a $10 billion contract from US
government that creates a secured cloud for the Pentagon.

One of the most significant security challenges in the cloud
is on processing sensitive information. In extreme cases, cloud
servers that handle sensitive information may not be trusted
because they are presumed to be malicious. In this case, since
the data must be encrypted, additional time is required to
calculate the encrypted data [2], [3]. In this paper, it is assumed
that a trusted server handles sensitive data, but a spying process
is also running on the same public server. When the spy
process is located in the same physical space as the victim,
it shares hardware such as cache, which may act as a side
channel. Our assumption is quite reasonable in a realworld
setting because leading companies in the cloud service spend
great amount of money to show that their servers are trusted.

The goal of this paper is to investigate the impact of
side-channels on open-source database engines, to address the
risks, and to present a method for defense. The model of the
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paper assumes that an external user requests a query a private
database stored in the victim Virtual Machine (VM), and that
the victim VM uses SQLite to process the query and returns
the result to the external user. An attacker cannot make a query
request directly to the database or observe the results of the
query. The attacker is running a spy VM in the cloud with the
victim VM, so it can monitor the shared cache to bring in side
channel leaks. The attacker’s goal is to reconstruct the volume
of the victim’s database. Reconstruction of the database here
refers to recovering the volume rather than finding out all the
information correctly. Suppose that a school’s student database
stores data from <Alice, Bob, Charlie> for grade A, <Dave,
Eve> for grade B, <Frank, George, Henry, Ivan> for grade
C, for example. The reconstruction is to restore the volume of
three rows for grade A, two rows for grade B, and four rows
for grade C.

This paper introduces a conventional side-channel attack
that captures information leakage in the cache shared by victim
VMs and a spy VM using SQLite. This recovers approximate
volumes of database including some noise values. We also
introduce a database reconstruction attack that uses a clique
finding algorithm. It recovers database volumes by construct-
ing a graph based on correct and noiseless volumes of the
range queries. In order to make it deal with the approximate,
noisy volumes, this paper shows its extension. The extended
algorithm includes two sub algorithms. In a modified clique
finding algorithm, a concept of noise budget is introduced and
utilized in a edge creation step of the clique finding algorithm.
A match-extension algorithm handles such a case that the
modified algorithm sometimes fails to find a maximum clique
in a given graph. Experimental results show that our database
reconstruction can recover almost 100% volumes of database
with low error rate (0.2-0.7%).

To mitigate the database reconstruction attack, this paper
introduces a stratey to add noise to data. The intution behind
the strategy is that the clique finding algorithm is an NP-
Hard problem. The complexity of the algorithm grows quickly
with the size of the range. Thus, adding a small number of
nodes to a graph can significantly increase the time required
to reconfigure the database; it can even cause the algorithm
to fail completely. Technically, a small dummy data is added
to the results of range queries. This approach is reasonable in
that approximate volume data obtained from the side-channel
attack is only exposed to attackers and they are not aware of
the existence of dummy data. Regular users (in victim VMs) is
able to access raw data and easily seperate the dummies before
processing further. Experiments were conducted to investigate
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the impact of the noise (dummy data) on performance of
database reconstruction. With 1% of dummy data, only 60% of
database were recovered with up to 15% of error rate. When
adding 2% of dummy data, no databased was constructed at
all; the database construction attack was completely failed.

The rest of the paper is organized as follows. Section
II reviews previous research outcomes in cache attacks and
database construction attacks. Section III describes a threat
model, a cache side-channel attack, that this paper addresses.
In Section IV, we introduce a database construction attack
that aims to recover the volume of orginal database given
noisy data obtained from the cache side-channel attack. Section
V introduces a mitigations strategy, which is followed by
experiments and results in Section VI. Finally, Section VII
concludes the paper.

II. RELATED WORKS

Cache attack is performed based on attacker’s ability to
monitor cache accesses made by the victim in a shared physical
system as in virtualized environment or a type of cloud service
[4]. Tsunoo et al. [5] introduced it first by showing a timing
attack caused by collisions in the memory lookups on a block
cipher. Osvik et al. [6] revealed an inter-process leakage via
cache’s state and showed key extraction of AES. Acıiçmez [7]
showed that instruction cache could be a target for attacks.
Ristenpart et al. [8] explored the feasibility of side channel
attacks on cloud; they demonstrated that an attacker could
penetrate VM isoloation and harm confidentiality of victim
VMs. In [9], authors introduced a cache side-channel attack
technique, Flush+Reload, that exploited weakness of memory
pages shared among processes. Cache behaves in a way to leak
information on a victim’s access to memory lines in shared
pages; so that an attack can determine what victim does and
infer the data the victim operates on. They also showed that
the technique could be used to extract cryptographic keys for
RSA. By using the Flush+Reload, Yarom and Benger [10]
demonstrated that the ECDSA leaked the nonce and the secret
key of the signer, allowing unlimited forgeries. Moghimi et al.
[11] introduced an attack tool, CacheZoom, that could allow
an attacker to monitor all memory accesses of SGX enclaves
with high resolution. They demonstrated the feasibility of AES
key recovery. Authors in [12], [13], [14] showed possibility of
cache side-channel attacks by monitoring critical operations
in AES T-table entry and other operations such as modular
exponentiation, multiplication, or memory accesses. Yan et
al. [15] used Prime+Probe and Flush+Reload for the cache
side channel and successfully obtained a DNN’s architecture
that was considered a major commercial asset in a business.
Hong et al. [16] showed a DNN fingerprinting attack where an
attacker followed function invocations corresponding to archi-
tecture attributes of the victim network and thus fingerprinted
the entire network.

In database reconstruction, Kellaris et al. [17] demonstrated
reconstruction attacks on securely outsourcing database storage
systems implementing searchable symmetric encryption or
order-preserving encryption. Their attacks were developed for
a weak adversarial model where underlying query distribution
was only known to an attacker. He does not directly query a
database and not need to know any of queries nor answers; he
may observe encrypted resonses of queries. They identified that

either access pattern or communication volume was leaked for
range queries. A reconstruction attack run with the auxiliary
information in N4 queries, where N is a domain size, which
recovered the number of records having each specific value
in a database, i.e., database counts. Lacharité et al. [18]
considered a setting where access pattern (a set of records
matched by each query) and rank information (the position of
a record in a sorted list of records) were leaked. They presented
three attacks, full reconstruction, approximate reconstruction,
and reconstruction using auxiliary information, that recovered
values in different levels of accuracy. Grubbs et al. [19]
presented a database reconstruction attack given the volume
leakage of the response of range queries. Their attack used a
graph-theoretic approach; they reduced database reconstruction
to finding a clique in a graph constructed from the volume
information. In the graph, volumes were represented as nodes,
and an edge connected two nodes when their absolute dif-
ference was represented as a node. After multiple iterations
of adding and deleting nodes, their algorithm returned the
counts of all values in the database. Shahverdi et al. [20],
unlike prior a threat model, considered an honest cloud server
on which an adversary virtual machine and a victim one co-
located. The adversary could not issue queries to the victim’s
database but obtain information leaked via a shared cache. This
implies that he could not obtain response volumes of range
queries accurately; instead, obtaining noisy volumes. In this
scenario, authors presented a database reconstruction attack
by extending the Grubbs’s algorithm [19] and by developing
a noise reduction algorithm.

Naveed et al. [21] showed attacks on database systems
capturing property-preserving encryption. Using encrypted
database columns and publicly known auxiliary informtion,
they could recover certain encrypted attributes by up to
80%. Kornaropoulos et al. [22] considers an encrypted spatial
database that handles data in a geometric space and k-nearest
neighbor (kNN) queries that return the nearest k points in the
database for a given query point based on distances between
points. Authors exploited a query leakage profile and used a
convex polytope to characterize a set of reconstructions. The
attack could recover values of the database with approximation
error of 2.9% to 0.003%. The same authors in [23] developed a
reconstruction attack without assumptions about the knowledge
of query distribution and the data. The attack exploited search-
pattern leakage, computed distances between encrypted values,
and eventually recovered plaintext values.

III. THREAT MODEL: CACHE SIDE-CHANNEL ATTACK

A threat model in this paper assumes multiple users in a
cloud server, each of which has access to its own database.
For instance, it is assumed that user 1 can access database 1,
user 2 can access database 2, and server is a trusted server.
Once one of the users becomes an attacker with a malicious
intend, he can abuse physical properties of the model; his VM
is in the same cloud server and shares the cache with victim
VMs. Although an attacker cannot directly query the database
of a victim, he can interact with the server to obtain some
information about the inaccessible database.

The attacker does not know what range of queries were
requested and what rows were returned exactly. This means
that only an approximate volume with noise can be obtained.
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Fig. 1. A general cache architecture.

It is noted that the side-channel attack proceeds regardless
of whether the victim’s database is encrypted or not, as it
proceeds by approximating the volume of range queries. An
attack is possible as long as the spy VM can see the code line
that the database engine executes for each record returned in
the range query.

A. Cache Architecture

Cache is a memory located at the top of the memory
hierarchy. It is much smaller in size than the main memory and
is very expensive, but it is characterized by a very fast speed.
The cache is placed between the CPU and the main memory
as shown in Fig.??. Data in the main memory is loaded into
the cache memory, and performance can be expected to be
improved by allowing the CPU to access the cache memory
first instead of the main memory with relatively slow access
time. The cache serves as a buffer to reduce the speed gap
between the CPU and the main memory.

Typical modern CPUs have multiple levels of cache to
reduce access time to the main memory. Level 1 cache is the
smallest and fastest, while Level 3 cache forms the slowest and
largest hierarchical structure. Level 1 cache is divided into two
caches, one to store data and the other to hold instructions. In
higher-level caches, data and instructions are kept in the same
cache. Level 3 cache is a shared memory space where data and
instructions are kept in the same cache and is the Last Level
Cache (LLC). The LLC includes all lower level architectures,
which means that all data present in Level 1 and Level 2 also
exists in the LLC. Each cache consists of multiple sets, each set
containing multiple cache lines. Each line in the main memory
is mapped to a unique set of caches. However, within this set,
memory lines can be mapped to cache lines. Typically, each
cache line stores 64 bytes of data. If it’s already full, we have
to decide which memory lines to be removed when writing
new lines. This decision is called the Replacement Policy and
depends on a cache structure. The most popular replacement
policy is the Least-Recently Used (LRU), which replaces the
least recently used items with new ones.

B. Flush + Reload Attack

Cache is vulnerable to information leakage because an
attacker that is with the victim on the same process can

access meaningful information about activities of the victim. In
particular, an attacker can monitor and use his own access time
to the cache to guess whether the victim has accessed specific
memory lines. The reason why such an attack is possible
is that the attacker and the victim share the same resource,
that is, the cache. Moreover, in a setting where the attacker
and victim share the library, both will have access to the
physical memory location where a single copy of the library is
stored. An attacker can explicitly remove lines corresponding
to shared physical memory from the cache. In order to exploit
the shared physical memory in a useful way, this paper uses a
Flush+Reload attack introduced by Yarom and Falkner [9].

This attack method takes advantage of the fact that the
access time to cache memory is shorter than that to main
memory, and targets the L3 cache line shared by a victim
and an attacker. An attacker uses a special command called
clflush to remove a monitored line from the cache. This
command removes the monitored line from the L1, L2, and
L3 caches. As mentioned earlier, L3 includes L1 and L2.
Thus, if L3 is removed, the lines that are removed are removed
from all other caches. The attacker then allows the victim to
continue running a program. After a certain period of time, the
attacker regains control and measures the memory access time
to determine whether the monitored line still remains in the
cache. If the reload runs quickly, the monitored line is still in
the cache. Then, an attacker deduces that the victim accessed
the same line during execution. If the reload runs slowly, the
monitored line is not in the cache. Then, the attacker infers
that the victim did not access the line while running. Thus, an
attacker can know whether the victim has accessed a particular
line. To perform the Flush+Reload attack, this paper used a
package provided in the Mastik framework [24]. Mastik is a
toolkit for experimenting with micro-architectural side-channel
attacks and provides implementations of published attack and
analysis techniques.

C. Detecting Two Lines to Monitor

This paper uses SQLite [25], a popular open-source
database engine that uses the BTree data structure to store
columns. We looked into the SQLite program and used a
gcov command to detect a line being called once in each
iteration of the range query. It is possible to determine query
response volume by monitoring the number of times these
rows are called. It should be noted that the duration of each
query can also be measured and used as an indicator of the
volume. However, there is no reliable way to convert time to
volume, resulting in introducing big noise. So we decided to
count the numbers explicitly. The library was compiled using
the -fprofile-arcs and -ftest-coverage flags to
obtain the number of times each line runs. We, then, ran the
range query command and used the gcov command to count
the number of times each line was executed in the main.c
and sqlite3.c files. After finding more lines in the SQLite
program, two lines are monitored simultaneously to improve
measurement accuracy. The advantage of monitoring two lines
is as follow. Even if an attack code may fail to detect activity
on one of the lines due to overlap between the attacker reload
and victim access, it is still likely to see activity on the second
line. There may be some false positives due to the mismatch
of hits on the two lines, which is mitigated by considering the
number of proximity hits to be from the same activity.
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Fig. 2. We launched the Flush+Reload attack on SQLite and showed one
sample measurement; the two monitored lines are shown in blue and red.

D. Using Mastik Toolkit

After detecting a line leaking query volume, we, by using
the Mastik Toolkit, monitor the lines while SQLite processes
range queries. Fig. ?? draws results of one sample measure-
ment. The two lines being monitored are colored blue and
red. The x-axis represents the sample point at which the
reload occurs, and the y-axis represents the time required to
reload the monitored line from memory on that time instance.
Because two lines are being monitored, there are two sets of
measurements for each time instance.

A FR-trace utility in Mastik automatically starts mea-
suring when it detects a hit on one of the lines monitored by the
SQLite program. When Mastik does not detect more activities
for a while, the measurement automatically end. There are
samples with reload time of less than 100 cycles during the
interval in which the range query runs. These sample points
are recorded when SQLite accesses the line the attacker is
monitoring, so the attacker sees a small reload time. Then the
number of hits in blue or red measurements are calculated.
The number of hits corresponds to the inquiry volume. It is
also important to monitor the associated cache lines in order
to detect when/whether the range query is executed. Because
the measurement is not a noise-free environment, the number
of hits counted may differ from the actual value of the volume.
Some of the sources of noise are explained below.

False Positive (FP). Instruction to be executed are brought
into the cache before memory lines are executed. In the case of
the Flus+Reload attack, it still looks that this instruction was
executed because of the fast access. In general, true hit counts
occur at fixed time intervals. If observing a hit that occurred
much earlier than the expected hit time, it is likely a FP. It is
presumed to have occurred by speculative execution, and it is
not considered to be hit.

False Negative (FN). A FN occurs when the victim ac-
cesses the monitored code line after the spy process reloads
the line and before the spy process flushes the line. This paper
attempts to detect FNs only algorithmically; an asymmetric
window around each observed volume is used to compensate
for the fact that the actual volume is usually larger than the

observed volume. In our experiments, we assign 90% of the
window width to a value larger than the observed volume.

E. Approximate Noisy Volumes

A single trace is collected by randomly selecting and
executing a range query [a, b] while simultaneously monitoring
the line using Mastik FR-trace. This experiment is repeated
several times to collect enough traces. We count, for each trace,
the number of times that one of the two lines represents a hit,
mitigate the FP problem, and then report the number of hits
as a range query volume for that trace. Some volumes are
observed much more frequently than others, and their values
are stored as approximations to the expected volumes. It is
expected to see

(
N
2

)
+N values at most in a noiseless setting.

There are some traces noted good enough but with incorrect
volume. By putting all traces together, the effect of such
instances would be minimal and the exact approximation of the
volume would be distinguishable. It is noted that the volume
being recovered is an approximate volume of the database, not
a correct volume.

IV. DATABASE RECONSTRUCTION

Given a set of volume of database recovered from the
cache side-channel attack, the attacker aims at reconstructing
the database. This section explains our database reconstruction
based on a clique finding algorithm. It shows, first, the Grubbs’
work [19] that constructs a graph based on the observed correct
and noiseless volumes of the range queries. Note that each
volume is represented by a node in a graph. Then, an extention
of the clique finding algorithm to handle noisy volumes [20]
is introduced.

A. Clique Finding without Noise

The clique finding algorithm has two main parts for graph
construction: node creation and edge creation.

1) Creating Nodes: Given a set of recovered volumes V,
this part creates a node representing each volume and labels
the node with that volume. This means that node vi has volume
vi.

A recovered volume refers to a volume that has been
reconstructed through an attack. Suppose that we have a
<5,10,15,20> database of size 4. A query request with a range
of 1 will return 5 rows, and a query request with a range of 1
to 2 will return 5 + 10 = 15 rows. It returns 10 + 15 + 20 = 45
rows if a user asks for a query of 2 to 4. From the attacker’s
point of view, it is not possible to know exactly what range the
query request is, but it can be seen that the volume returned is
{5,10,15,20,25,30,35}. These volume sets are called recovered
volumes.

2) Creating Edges: This part creates an undirected edge
between two nodes vi, vj ∈ V if there exists a node vi ∈ V ,
where vi = vj + vk.

A volume can be recovered by running a clique finding
algorithm on the constructed graph. Assuming the value ranges
from 1 to N, there are

(
N
2

)
+N = N(N+1)

2 possible ranges, so
the graph shows N(N+1)

2 nodes. Each range [i, j] for 1 ≤ i ≤
j ≤ N is denoted by a node. In other words, node [i, j] means
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Fig. 3. A graph constructed with nodes of ranges.

that the range of the query is i to j. Nodes corresponding to
ranges of of the form [1, i] for 1 ≤ i ≤ N , i.e., base volumes,
forms a clique for pairs of ranges of [1, i] and [1, j] (1 ≤ i ≤
j ≤ N ). There is a range of [i + 1, j]. This means that there
exists an edge between [1, i] and [1, j] due to the way the graph
is constructed. The clique finding algorithm finds nodes [1, i],
1 ≤ i ≤ N . In order to recover the original range of form [i, i],
we simply sort the nodes based on labels and subtract them
sequentially because |[i, i]| = |[1, i]| − |[1, i− 1]|, 1 < i ≤ N .

TABLE I. A SAMPLE DATABASE OF STUDENTS AND GRADES. IT
INCLUDES STUDENTS’ NAMES AND THEIR GRADES IN A MATH CLASS

Student name Alice Bob Charlie Dave Eve Frank George
Grade 1 2 2 2 2 3 3

For instance, suppose a student database shown in Table I.
A set of known ranges and corresponding observed volumes
are [1, 1] = 1, [2, 2] = 4, [3, 3] = 2, [1, 2] = 5, [2, 3] = 6, [1, 3] =
7. Fig.?? shows that a graph is constructed based these data,
where each node represents a range. The edge creation part
created lines connecting two nodes. Since |[1, 2]| = |[1, 1]| +
|[2, 2]| and there exists a node [2, 2] connecting [1, 1] and [1, 2],
the two nodes are connected via a line. Similarly, |[1, 3]| =
|[1, 2]| + |[3, 3]|, so there is a connection between [1, 3] and
[3, 3].

It is observed that three nodes [1, 1], [1, 2], and [1, 3] in the
graph are connected each other and form a complete graph.
A subset of nodes in which every two different nodes in an
undirected graph are connected is called a clique. Among the
cliques that can be found, the largest clique becomes the clique
of the graph. Upon finding the clique, [2, 2] can be obtained
by subtracting [1, 1] from [1, 2], and [3, 3] by subtracting [1, 2]
from [1, 3]. This allows us to reconstruct the database easily.
Although the exact range is unknown, if the {1, 4, 2, 5, 6, 7}
volume set is recovered through an attack, it is possible to find
1, 5, 7 cliques as shown in Fig. ?? and reconstruct the database
in the same way.

B. Modified Clique Finding with Noise

From the cache side-channel attack in Section III, correct
volumes may not be recovered; that is, recovered ones are ap-
proximate and noisy volumes. Therefore, a conventional clique
finding algorithm that assumes noiseless volumes (described in

Fig. 4. A graph constructed with nodes of volumes corresponding to Fig. ??.

Section IV-A) does not find cliques of sufficiently large size.
This happens because the condition for connecting nodes vi
and vj almost always fails since it is not possible to find the
third volume vk, where the equation vi = vj + vk is satisfied.
This implies that too many edges are missing in the constructed
graph to form large cliques.

To mitigate the effect of noise, our method modifies the
second parts (Creating Edges) in the clique finding algorithm,
a Modified Clique-Finding algorithm. Because traces are noisy,
it may not possible to obtain the correct volume. The recovered
volume is close to the correct volume, and error ranges can
be calculated. Here, we define a noise ratio as (the recov-
ered volume / the correct volume). An attacker, at the first
step, performs a preprocessing by launching an attack on a
database known to the attacker. The attacker then examines
the recovered volume, selects a noise ratio, and compares it
with the actual volume, from which he evaluates the accuracy
of the traces to find an approximate value for the noise ratio.
Based on all the noise ratios, the attacker then sets a value
for noise budget - the average of the noise ratios observed
across all volumes. The attacker, once the noise budget is
fixed, then creates a window of acceptable values around it for
each recovered volume. The window is created around vi using
lower bound of vi× (1−0.1 ·noise budget) and upper bound
of vi × (1 + 0.9 · noise budget). The window is asymmetric
with 90% of the width on the right side because the noisy
volume is usually smaller than the actual volume. For volume
vi, the window is denoted as w(vi). The modified part in the
clique finding algorithm that enables to construct a graph from
nosiy volumes is as follow.

• Creating Edges (Modified): This part creates an undi-
rected edge between two nodes vi, vj ∈ V if there exists a
node vk ∈ V , where |vi − vj | ∈ w(vk).

C. Match-Extension

Although the noise budget is appropriately adjusted, the
Modified Clique-Finding algorithm sometimes fails to find
the maximum clique of size N . This section decribes an
improvement of the algorithm to handle such a case. First, note
that in the clique finding algorithm, a graph corresponding to
the volume in the range [1, i] for 1 ≤ i ≤ N should have a
clique if there is a full range of volumes present in the data.
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Fig. 5. A graph constructed from noiseless volumes in the database <30,
100, 80, 30, 60>. The maximum cliques corresponds to N , 5. The

maximum cliques found are shown in bold connections.

Fig. 6. A graph constructed from noisy volumes in the database <30, 100,
80, 30, 60>. A missing edge in the maximum clique is represented in the

dotted line.

Now suppose we are given an approximate, noisy volume
corresponding to the range [i, j]. |[1, i]| ≈ |[1, i− 1]|+ |[i, j]|
should have a connection, but the connection from node [1,j]
to node [1,i-1] is missing. A maximum clique of size N is not
formed as a result of missing connections. Executing the clique
finding algorithm on data with missing volumes returns cliques
of size smaller than N and recovers the candidate database for
each clique. The algorithm then merges information from these
small databases to create a larger database.

1) Observation: This subsection explains the idea of this
improvement with an example. Consider a database with a
range of 5 possible values (i.e., N = 5), <30, 100, 80, 30,
60>. This means |[1, 1]| = 30, |[2, 2]| = 100, |[3, 3]| = 80,
|[4, 4]| = 30, |[5, 5]| = 60. A set of possible values for the
volume of range queries V is, then, {30, 60, 80, 90, 100, 110,
130, 170, 180, 210, 240, 270, 300}. For instance, |[1, 2]| = 130.
A graph constructed for these volumes is shown in Fig. 5. The
maximum cliques found by the algorithm are shown in bold
connections. The nodes {30, 130, 210, 240, 300} are returned,
and a database <30, 100, 80, 30, 60> is reconstructed.

Fig. 7. Given a graph missing edges, the Modified Clique-Finding algorithm
returns a clique of size 4 (less than N = 5) with values {29, 128, 209, 239}.

Now, assume that the recovered volume has noise and that
a set of possible values for the volume of range queries V is
{29, 58, 79, 89, 98, 108, 128, 160, 209, 239, 268, 299} as
shown in Fig. 6. Almost all the noisy volumes are close to the
true values; exceptionally volume 160 is far from the correct
volume 170. In this setting, our method uses the Modified
Clique-Finding algorithm to construct a graph. It first uses a
window around a volume vi allowing to have lower and upper
bounds of vi − 1 and vi + 3, respectively. Some connections
will be missing due to measurement errors. For example, a
connection from node 299 to node 128 will not be formed
because there is no window containing 171 anymore. If our
method runs the algorithm on the new graph, the result will
be a smaller clique (less than N = 5). As shown in Fig. 7,
the algorithm returns cliques whose size is 4 with values {29,
128, 209, 239}, which creates a database < 29, 99, 81, 30 >.
In the next, we describe main steps in the Match-Extension
algorithm to reconstruct a database from noisy volumes.

2) Finding cliques: This step aims at finding all the cliques
in the constructed graph.

Maximum Clique. The first stage is to find the maximum
clique in the graph. Let K be the size of the maximum clique
recovered in this stage. If multiple cliques with the same max-
imum size are found, one of them is chosen randomly. Once
a clique is found, a corresponding database is reconstructed.
We call this database an initialized solution, initSolution.
If the size of the maximum clique found in this stage is N , it
is done; the database is successfully reconstructed. Otherwise,
the rest parts of the algorithm extend this initSolution.

All Other Cliques. The next stage recovers all cliques
of sizes K,K − 1,K − 2, . . . , and K − l, and sorts them
from the largest size to the smallest size. For each clique,
a corresponding database is reconstructed and referred to as
a candidate solution candSolution. It is in the form of a
sorted list of volumes corresponding to contiguous ranges in
the database. The cliques found in this stage are not limited
to ranges of the form [1, 1], [1, 2], . . . , [1,K] for some K.
Note that this holds true even in the noiseless setting. Any
set of volumes in the range of [i, i1], [i, i2], . . . , [i, ik], where
i ≤ i1 < i2 < · · · < ik, forms a clique of size k if all
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Fig. 8. The Modified Clique-Finding algorithm returns a clique with values
{29, 209, 239, 299} (size = 4), which creates a database ⟨29, 180, 30, 60⟩

.

differences in volumes corresponding to the ranges exist in
the data. This fact allows this algorithm to recover the original
database by discovering the volumes of different parts of the
actual database and combining those parts.

3) Combining solutions: Given the initSolution and a
candSolution in the form of lists of volumes, in this step,
the Match-Extension algoriithm combines the information in
them into one large solution.

Longest Common Substring The first stage is to find
the longest common substring of the two solutions; it is the
longest contiguous list of volumes where the two solutions
match. We call this substring lcList. To find it, our method
uses a modified standard longest common substring algo-
rithm where the elements of the substring are approximately
equal to the corresponding elements of initSolution and
candSolution. This stage returns the lcList and the start-
ing and ending indices (locations) of lcList in two given
solutions. However, even after the first stage, there may be
volumes where initSolution and candSolution match,
which are not recognized in the first stage. In order to show
an example, we take the previous sample from Fig. 7 and
let the initSolution ⟨29, 99, 81, 30⟩. candSolution is
⟨29, 180, 30, 60⟩ (see Fig.8 for its construction). In this case,
lcList can be found as ⟨29⟩, but it is observed that the two
solutions match at ⟨99, 81⟩. This information is presented as
a volume of a range ⟨180⟩ that is the union of two adjacent
ranges in initSolution.

Extension Our combine algorithm identifies such a case
and extends lcList accordingly in the next stage. It searches
for cases where a particular volume vi next to the end of
lcList in one solution (say initSolution) is approxi-
mately equal to the sum of the volumes uj , uj+1, . . . , uj+r

if r ≥ 0 next to the end of lcList of the other solution (e.g.
candSolution). The algorithm, then, extends the lcList
by adding ⟨uj , uj+1, . . . , uj+r⟩ and changing the endpoints
of the lcList in initSolution and candSolution. In
the database example above, the combine algorithm examines
the neighbors of ⟨29⟩ and finds that 180 ≈ 99 + 81, and
extends the lcList to ⟨29, 99, 81⟩. It again examines the

neighbors of ⟨29, 99, 81⟩ and finds 30 ≈ 30, extending the
lcList to ⟨29, 99, 81, 30⟩. It is noted that while the values
in the example are exactly the same (e.g., 180 = 99 + 81) by
chance, the algorithm also accepts the case where values are
approximately equal.

initSolution = ⟨prefix1, lcList, suffix1⟩
candSolution = ⟨prefix2, lcList, suffix2⟩

After the lcList is maximally extended, the two solutions
have the form above. Any of prefixes and/or suffixes can be
empty. The algorithm then performs one of four options:

(a) If prefix1 and/or suffix1 is empty, then it extends
the lcList to lcList = prefix2||lcList and/or
to lcList||suffix2.

(b) If prefix2 and/or suffix2 is empty, then it extends
the lcList to lcList = prefix1||lcList and/or
to lcList||suffix1.

(c) If the lengths of both prefix1 and prefix2 are 1
(say, their volumes are a and b, with a < b), and if
the absolute value of difference appears in the volume
measurement, then lcList = ⟨b−a, a⟩||lcList. This
option also applies to the case when the lengths of both
suffix1 and suffix2 are 1.

(d) Otherwise, the algorithm stops combining and repeats
stages for another candSolution.

Back to our example, we found the lcList to be
⟨29, 99, 81, 30⟩. The last stage has initSolution =
⟨lcList⟩ and candSolution = ⟨lcList, 60⟩. This is
the case of option (a) where suffix1 is empty. Thus, the
algorithm adds suffix2 = ⟨60⟩ to lcList and returns
initSolution = ⟨29, 99, 81, 30, 60⟩ as a solution.

4) Finding best solution: Once a combine is successful,
two solutions are merged and one larger solution is created.
The clique finding algorithm may not discover this large
solution in the first place because some volumes or connec-
tions in the graph were missing, preventing potential cliques
corresponding to this solution from being formed. Whenever
two solutions are combined, it identifies the number of missing
volumes that prevented finding the combined solution. In fact,
if the missing volumes could be added to the graph and starts
the algorithm, we could get the combined solution in all listed
solutions. Therefore, the number of missing volumes is used
as a metric to evaluate how good a candidate solution is. On
one hand, showing few missing volumes indicates that the
initSolution and candSolution match on many volumes
in the database and therefore are compatible. On the other
hand, a large number of missing volumes suggests that two
solutions may have different information about the volumes.
At this, last step finds a candidate solution among all cliques
having the lowest number of missing volumes with respect to
being combined with the initSolution.

V. MITIGATION STRATEGY

Given noisy volumes, the Modified Clique-Finding algo-
rithm described in the previous section shows a high attack
success rate (as will be shown in Section VI); that is, it finds
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Fig. 9. A graph constructed from noisy volumes in the database
⟨30, 100, 80, 30, 60⟩ when 6 dummy elements are added to the query

responses.

the maximum clique, finds the longest common substring to
combine subsolutions, and eventually reconstructs the victim’s
database correctly with high probability. However, it is noted
that the clique finding algorithm is an NP-Hard problem that
can be only solved by checking the numbers of all cases one
by one, not by polynomial solutions. The complexity of the
algorithm grows quickly with the size of the range. We figure
out that it works well for the ranges up to size 15 in practice.
Adding a small number of nodes to a graph can significantly
increase the time required to reconfigure the database; it can
even cause the algorithm to fail completely. It is also important
to remind that the goal of the attack is to reconstruct the
volume, the size of columns on which a victim is making
range queries, not exact records.

Based on the observation, this paper proposes to add
noise to mitigate the reconstruction attack. Technically, dummy
elements are added to results of range queries, which makes
it more difficult for an attack to recover approximate volumes
in the side-channel attack. The increased size of volume may
create edges that should not exist or not create edges that is
essential to recover a database. This directly causes the first
step to find incorrect cliques; say, the size of the maximum
clique found may be greater than N . The next step is also
affected; it may fail to find the longest common substring
or result in reconstructing a wrong database eventually. This
approach works because the attacker is concerned only about
the volume where the elements are not exposed obviously.
However, regular users (i.e., victims) are not confused with
the additional elements because they can access exact records
in query responses and discern such elements immediately.

Back to our example of database, ⟨30, 100, 80, 30, 60⟩ in
Fig.5. Remind that |[1, 1]| = 30, |[2, 2]| = 100, |[3, 3]| = 80,
|[4, 4]| = 30, |[5, 5]| = 60, and a set of possible values for
the volume of range queries V is {30, 60, 80, 90, 100, 110,
130, 170, 180, 210, 240, 270, 300}. Now, suppose that 6
dummy elements are added to the response of each range
query. Then, |[1, 1]| = 36, |[2, 2]| = 106, |[3, 3]| = 86, |[4, 4]|
= 36, |[5, 5]| = 66, and V = {36, 66, 86, 96, 106, 116, 136,

176, 186, 216, 246, 276, 306}. It is noted that |[1, 2]| = 136
(= 130 + 6), not |[1, 2]| + [2, 2]| = 36 + 106 = 142, because
6 dummy rows are being added to the result. Fig. ?? shows
a graph constructed from the given volumes when 6 dummy
elements are added. Comparing the edges in black to Fig. 6,
it is observed that new connections are formed (solid bold
lines) and some connections are missing (dotted bold lines).
The edges in red correspond to the clique found in Fig. 7. It
is observed that a connection between node 35 and node 114
(a dotted red line) is not formed and thus the clique is not
found in the algorithm. Missing one clique implies that we
lose a string information (a contiguous list of volumes) in it,
which hiders from finding lcList and eventually leads to the
failure of the combining step. The algorithm may find another
clique and successfully reconstruct a database, but it must be
far from the original database.

VI. EXPERIMENTS AND RESULTS

This section performs experiments for four sets in total
and shows their results. The first two sets (I and II) are the
cases where an attacker launches a cache side-channel attack
to measure approximate noisy volumes and then performs
database reconstruction to recover a victim’s database. In
experiment I, distribution over all the possible queries are
uniform; that is, each range are queried with equal probability.
Experiment II performs non-uniform range queries. Although
each range must be queried at minimum number of times,
the query distribution do not need to be uniform. For this,
rand() function is used in our system. The rest of settings
are the same for I and II. In the rest two sets (III and
IV), our countermeasure strategy is applied with different
percentages of additional dummy elements and with different
query distributions. With results, we assess their effects on the
database reconstruction attack.

A. Preliminary

For experiments, this paper uses the Nationwide Inpatient
Sample (NIS) 2008 dataset [26]. The NIS is part of the Health-
care Cost and Utilization Project (HCUP) used to analyze
national trends in healthcare. This data is collected annually
and it has approximately 5 to 8 million hospitalization records.
Since data is in an SPSS file format, we use IBM SPSS
Statistics [27] to read it. Then, 10 SQLite database is created
by selecting 10,000 records randomly out of 8 million ones. We
perform range queries on the AMONTH element, an “admis-
sion month coded from (1) January to (12) December” (refer
to [26] for the full description of elements). The list of ranges
are [1, 1], [1, 2], . . . [1, 12], [2, 1], [2, 2], . . . [12, 11], [12, 12] and
possible values in the range are N = 12. For the non-uniform
range queries, ranges [i, j] are set by randomly selecting i and
j in 1 ≤ i, j ≤ 12. For each set, experiments are repeated 10
times and average values are returned.

We run experiments on a desktop computer with Intel
Core i5-9400F CPU @ 2.90 GHz running Ubuntu 16.04. The
capacities of the L1, L2, and L3 caches are 384 KB, 1.5
MB, and 9 MB, respectively. For a database engine, we use
the SQLite Amalgamation version 3.20.1 with a single large
file of C-code named sqlite3.c [28]. Table II summarizes
information of our setup. We found in a heuristic manner
that when approximately 120 measurements are collected for
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TABLE II. SETUP INFORMATION FOR EXPERIMENTS

Dataset NIS 2008 database [26]
Noise budget 0.002

Possible values in the range 12
Total number of records 10,000
Capacities (L1, L2, L3) 384KB, 1.5MB, 9MB

a range query, the aggregated measurements in the cache
side-channel show a peak regarding the approximate volume.
Because there are 78 different range queries for our data,
around 10,000 traces are collected first to see if the traces
for each range are sufficient so that we can check a peak for
each approximate volume.

B. Database Reconstruction from Noisy Volumes

For Experiments I and II, this paper collects 10,000 traces
corresponding to 10,000 range queries; that is, 1 trace for each
query. It then processes all of those traces to get a set of
approximate, noisy volumes, with which the Modified Clique-
Finding algorithm and the Match-Extension algorithm are
performed. This returns an output of reconstructed database.
The former algorithm runs with different values for the noise
budget, whereas the latter algorithm is with a fixed value 0.002
of noise budget. For each value in 1, 2, . . . , 12, it is expected
to recover a candidate volume that corresponds to the number
of records in the database using that value.

For a database of size N , a success rate is defined as
the number of candidate volumes recovered out of N . For
instance, if our method recovers 10 candidate values in our
experiments with the range of size N = 12, the success rate
is ( 1012 )× 100 [%]. It is noted that an attacker can distinguish
between successful and unsuccessful attacks because he knows
N , the size of the database that needs to be recovered. We also
define an error rate of a recovered volume. For each candidate
volume ṽ recovered, we compare it to the corresponding
value v in the actual database and report the error rate of
( |ṽ−v|

v )× 100 [%]. For example, if the actual volume is 1,000
and the recovered volume is 980, then the error rate is reported
as 0.2%. If our database reconstruction recovers 10 values out
of 12, error rates only for the recovered 10 values are reported.

From experiments, it is observed that increasing a noise
budget increases the average error rate and the confidence
interval for the Modified Clique-Finding algorithm. For noise
budgets of 0.005, some of the databases recovered in Ex-
periment I were very far from the true database, resulting
in much larger error intervals. In short, increasing the noise
budget seems to have helped increase the success rate, but as
the error rate increases, the quality of the recovered database
decreases. It is also noted that its average running time
increases with the size of the noise budget. In the case of the
Match-Extension algorithm, the average error and the width
of the error interval are similar to those in the Modified
Clique-Finding algorithm. But, it achieves much higher success
rate with a small noise budget. Experiments in this paper
fix the noise budget of 0.002 and thus the average running
time remains low. The Modified Clique-Finding algorithm
with a noise budget of 0.006 shows better success rate than
with a smaller noise budget, and is selected as an algorithm

TABLE III. RESULTS (SUCCESS RATE AND ERROR RATE) FROM
EXPERIMENTS I AND II

Exp. I Exp. II
Success rate [%] 100 % 100 %

Error rate [%] 0.4-0.7 % 0.2-0.7 %

comparable to the Match-Extension algorithm. For Experiment
II, this paper performed non-uniform range queries and used
the same sets of database as in Experiment I. As mentioned
earlier, we need approximately 120 measurements for a range
query to detect approximate, noisy volumes from the cache
side-channel. This do not require that the query distribution be
uniform. Technically, this experiment tests an hypothesis that
the success of a database reconstruction attack relies on the
capability of identifying peaks corresponding to the volumes
of range queries. In this sense, a query distribution in which
a peak disappears as its neighboring peaks dominate it could
be challenging to attackers. One setting for the challenging
distribution, for instance, is that a range [a, b] is queried
more often than a range [c, d] when two ranges have close
volumes (i.e., close peaks). Our random setting generate this
distribution with probability, given requirement that each query
be observed at least 120 times.

Table III shows our results from Experiments I and II. For
Experimental I with uniform distribution for all queries, it was
possible to reconstruct all 10 databases with the error rate of
up to 0.7%, which is considerable in accuracy. Even in the case
of Experiment II, where the query range was not uniform, we
succeeded in reconstructing 10 databases correctly. The error
rate was also within 0.7%. It can be seen that our database
reconstruction attack has 100% success rate with low error.

C. Database Reconstruction with Dummy Data

For Experiments III and IV, our method adds dummy data
to response volumes returned by range queries. The rest of
settings are same to those in Experiments I and II. Experiment
III and IV perform uniform and non-uniform range queries,
respectively and use approximate, noisy volumes. The database
used in the experiment has 10,000 rows, and the range of
the AMONTH attribute is 1 to 12. Thus, there are about 800
rows in each range. In the first setting, our method adds 8
dummies (rows) to the response of each range query. That is,
it corresponds to 1% of total volumes.

Table IV shows our results from Experiments III and IV.
In both experiments, 6 out of 10 databases (60%) were suc-
cessfully reconstructed, and the error rate in the reconstructed
databases was 9%-15%. They are comparable to results, 100%
and 0.7%, in previous experiments in Table III. It is reminded
that the success criterion for reconstruction is that all 12
candidate values is recovered. 60% of recovery, therefore, is far
from the success of an attack. In order to investigate the impact
of dummy data further, we add 2% of dummy data out of total
volumes in the second setting. Table V shows its results. In
both experiments, no database was reconstructed at all. This
is mainly attributed to the fact that the database construction
attack primarily relies on the volume size of query responses.
It is so sensitive to the size that small inclusion of dummy can
even weaken its success rate.
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TABLE IV. RESULTS (SUCCESS RATE AND ERROR RATE) FROM
EXPERIMENTS III AND IV (1% OF DUMMY)

Exp. III Exp. IV
Success rate [%] 60% 60%

Error rate [%] 10-14% 9-15%

TABLE V. RESULTS (SUCCESS RATE AND ERROR RATE) FROM
EXPERIMENTS III AND IV (2% OF DUMMY)

Exp. III Exp. IV
Success rate [%] 0% 0%

Error rate [%] - -

VII. CONCLUSION AND DISCUSSION

This paper investigated the impact of side-channels on
open-source database engines. We triggered a side-channel
attack on a cache shared by victim VMs and a spy VM using
SQLite to obtain approximate, noisy volumes of the database.
Two algorithms that extended a clique finding algorithm were
introduced in order to perform a database reconstruction attack.
This paper also introduced a mitigation method that added
additional dummy data to results of range queries. Experi-
ments were conducted with a database of 10,000 records and
with 12 ranges for queries. Results showed that the database
reconstruction attack could recover almost 100% volumes of
the database with maximum error rate of 0.7%. With 1% of
additional dummy data, however, only 60% of database were
recovered with up to 15% of error rate. When adding 2% of
dummy data, no database was constructed at all; the database
construction attack was completely failed.

As a future work, it would be interesting to investigate
the impact of the volume of dummy data further. Given the
number of records (10,000) used in our experiment, the size of
the volume for each range query is about 800. 1% of additional
data represents 8 records only, which does not seem to be a
problem. But, as the size of the database increases, this volume
also increases. This will naturally increase the processing time
of query requests and use a lot of memory. It is necessary to
find solutions to defend against attacks without performance
degradation in large scale database settings. It would be also
interested to examine our models on a scenario where victim
VMs and a spy VM do not share a library with a more generic
form of cache side-channel attack [6].
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