
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

662 | P a g e

www.ijacsa.thesai.org

Enhanced Multi-Verse Optimizer (TMVO) and

Applying it in Test Data Generation for Path Testing

Mohammad Hashem Ryalat1*, Hussam N. Fakhouri2, Jamal Zraqou3, Faten Hamad4, Mamon S. Alzboun5,

Ahmad K. Al hwaitat6

Department of Computer Science, Al-Balqa Applied University, Salt, Jordan*1
,

Department of Data Science & Artificial Intelligence, University of Petra, Amman, Jordan2,

 Department of Virtual and Augmented Reality, University of Petra, Amman, Jordan3

Department of Information Studies, Sultan Qaboos University, Muscat, Oman4

Educational Sciences School, Jordan University, Amman, Jordan4

Department of Curricula and Instruction, Al al-Bayt University, Mafraq, Jordan5

Department of Computer Science, University of Jordan, Amman, Jordan6

Abstract—Data testing is a vital part of the software

development process, and there are various approaches available

to improve the exploration of all possible software code paths.

This study introduces two contributions. Firstly, an improved

version of the Multi-verse Optimizer called Testing Multi-Verse

Optimizer (TMVO) is proposed, which takes into account the

movement of the swarm and the mean of the two best solutions in

the universe. The particles move towards the optimal solution by

using a mean-based algorithm model, which guarantees efficient

exploration and exploitation. Secondly, TMVO is applied to

automatically develop test cases for structural data testing,

particularly path testing. Instead of automating the entire testing

process, the focus is on centralizing automated procedures for

collecting testing data. Automation for generating testing data is

becoming increasingly popular due to the high cost of manual

data generation. To evaluate the effectiveness of TMVO, it was

tested on various well-known functions as well as five programs

that presented unique challenges in testing. The test results

indicated that TMVO performed better than the original MVO

algorithm on the majority of the tested functions.

Keywords—MVO; optimization; testing; swarm intelligence;

multi-verse optimizer

I. INTRODUCTION

The term "optimization" describes the process of
identifying the most optimal search solutions that are likely to
resolve a particular issue. There is more than one conventional
and meta-heuristic optimization strategy available. The
standard techniques are gradient-based and have a faster
execution time than convergence. On the other hand, these
methods are not applicable to multimodal functions that are
neither differentiable nor predictable. Thus, this technique does
not allow for the discovery of the global optimal solution. Due
to the fact that they start with only one point, it gets trapped at
the local optimal value. There are many other search strategies
that can be used to solve this problem; however, most of them
require additional assistance that is based on exponential time,
which makes them more time-consuming [1]. As a result,
meta-heuristic optimization approaches have become the most
widely used approach. Meanwhile, intelligent algorithms are

increasingly used in the development of applications, testing,
and the making of business decisions in today's world [2][3].

The use of meta-heuristics has been increasingly
widespread over the past two decades. Computer researchers in
a wide variety of domains are familiar with meta-heuristic
techniques such as the Genetic Algorithm, multi-verse, and
Particle Swarm Optimization, amongst others. Because of its
ease of use, adaptability, and absence of approaches requiring
derivation, meta-heuristic has garnered a lot of attention in
recent years [4] [5]. Techniques for testing software include
both black-box and white box testing. In the black-box method
of software testing, the tester is only privy to the system's
architecture. He or she is not privy to any information
regarding the program's internal design and does not have
access to the source code. Its purpose is to guarantee that the
system accepts all of the necessary inputs in the way that was
described and produces results that are accurate. White box
testing, also known as structural testing, focuses on
investigating the internal logic and structure of the source code
being tested. During the structural test, each possible code path
will be checked for a predetermined set of test information
inputs. It is very important to select a diverse control flow way
to test since there are a large number of paths for test
succession, and performing the tests in succession can be
difficult. Finding connections between system components,
choosing those paths, creating test data for every path, and
assessing test results are only a few examples of the many
problem viewing paths involved in software testing [6].

The white box test criteria for software testing, such as
branch coverage, focus on the process of locating a group of
test cases that increases the likelihood of error discovery.
Within the context of this approach, an experiment will serve
as the indication that triggers the calling of the test routines
with specific input group values. After that, those drivers will
make a comparison between the output and the one that was
relied upon. Utilizing known inputs that can be put to use but
will ultimately prove to be impossible, allowing for an infinite
supply of them. As a result, the primary focus of automated
software testing is on the process of naturally locating the
smallest set of inputs in order to broaden the scope of the test

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

663 | P a g e

www.ijacsa.thesai.org

criteria [7]. When it comes to the process of developing test
cases for critical path coverage testing, the concept of linear
coded sequence is absolutely necessary. It is possible that the
productivity of the development of all of these important paths
can be increased, and at the same time, it will be appropriate to
create test cases with the assistance of a variety of testing tools
so that those tested programs can be investigated. This can be
done through all of the important paths [8].

It has been shown by the "No Free Lunch" theorem [9] that
metaheuristics do not always succeed in solving optimization
issues. Results show that metaheuristic optimization works
well for one type of optimization issue but not another. For the
aforementioned causes, it is important to create a more efficient
optimization metaheuristic algorithm [10], [11].

The primary contribution of this study is the introduction of
an improved version of the Multi-verse Optimizer, named the
Testing Multi-Verse Optimizer (TMVO). Instead of focusing
on a specific region, TMVO takes into account the mobility of
the swarm and the average of the two best solutions across the
universe. A mean-based algorithm model is employed to guide
particle movement towards the optimal solution. TMVO's
proposed movement equations enable effective space
exploration and utilization, and also address the issue of poor
convergence, providing an additional benefit by escaping local
minima.

The second contribution of this study involves the
application of TMVO algorithm, an enhanced swarm
intelligence metaheuristic, to address the issue of single
objective optimization in the automated generation of test cases
for structural data testing, particularly path testing. Rather than
automating the entire testing process, TMVO focuses on
centralizing automated procedures for collecting testing data.
The proposed TMVO achieves this goal by directing the
swarm based on the past performance of the top three solutions
discovered by the swarm. The population search history is also
utilized to provide an alternative answer, which is the mean of
the three best spots identified so far, thus improving the
particles' ability to explore the space. This results in more
opportunities for the swarm particles to be discovered and
utilized, thereby increasing the likelihood of achieving a global
optimum while avoiding a local minimum challenge. To
overcome these challenges, the direction of particle flow is
switched with each cycle.

Due to the absence of a universally applicable
metaheuristic that can be used to address all optimization
issues, and the fact that no metaheuristic has proven to be
effective for solving all identified optimization problems, many
swarm intelligence studies have focused on optimizing specific
systems.

Route testing is a methodology for testing software that
involves a search of the program domain for test cases that,
when combined with the code, will cause the program to
follow a specified path. Path testing is an optimization issue
with no unique solution due to the unlimited number of
possible pathways in a program. Consequently, it is only
realistic to pick a fraction of these paths for testing. If the
pathways to be tested have been clearly described and an
adequate fitness function has been constructed, then TMVO

might be used for this purpose. In this work, a test case is
treated as a representative of a generation, with the chosen
target route serving as the endpoint toward which the algorithm
is directed.

This study aimed to address one of the most well-known
problems in software testing by proposing an improved swarm
intelligence metaheuristic method, called TMVO, to resolve
the route testing problem. The TMVO method was created to
address the aforementioned issues and proposed a better route
for the swarm particles to follow, improving the movement
strategy of a swarm of particles. To evaluate the algorithm's
efficacy, a battery of benchmark functions was used, and its
exploitation, exploration, global optimal solution, and best
path-finding abilities were tested across these three domains.
The results were compared to those of a popular metaheuristic
technique, and several indicators, both visual and statistical,
were used to assess the quality of the output. The proposed
enhanced technique successfully solved the single-objective
optimization issue in software testing.

The following goals have been set for this research; the first
goal is to propose an improved MVO optimization method by
averaging the best places in the search space, which is
informed by the past motion of the particles. The second goal
is to use the superior movement approach to increase the
efficacy of swarm movement in path testing and test data
collection. The third goal is to use the created metaheuristic to
address the MVO premature, to converge problem and the
local optima entrapment problem. The fourth goal is to
compare the proposed enhanced method to existing
optimization algorithms through empirical testing using
standard benchmark functions and testing software.

In this work, the Testing Multi-Verse Optimizer (TMVO)
is presented as an improved Multi-verse Optimizer. Instead
than focusing on a single place, TMVO considers the swarm's
mobility and the mean of the two best options in the universe.
Using a mean-based algorithm model that has been suggested,
particles will migrate toward the ideal solution. The
recommended movement equations of TMVO ensure the
effectiveness of space exploration and utilization. In addition to
resolving the issue of poor convergence, it also escapes the
local minimum.

This study makes a contribution through enhancing MVO
in solving the problem of path testing by enhancing the test
data generation. It also provides a comprehensive analysis of
the algorithm's movement strategy, equations, pseudo-code,
and parameters. When it comes to solving software testing
issues, the algorithm offers a more effective path testing
method for getting to best tested path. TMVO has been
evaluated and validated in comparison to a number of well-
established functions. In addition to this, it provides a solution
for a problem involving a single optimization problem in
software testing.

The remaining part of this study is organized as follows.
The related works are reviewed in more detail in Section II.
The methodology including different types of software testing,
and the path coverage test is described in Section III. In Section
IV, the experimental results and discussion are presented where
Section V concludes this study.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

664 | P a g e

www.ijacsa.thesai.org

II. RELATED WORK

The Multi-Verse optimizer, often known as the MVO, was
first suggested to be developed by Mirjalili and colleagues
[12]. They came up with an original algorithm that was
inspired by nature and gave it the name Multi-Verse Optimizer
(MVO). The white hole, the black hole, and the wormhole are
the three natural phenomena that serve as the inspiration for
this algorithm's design. The demand for these models arises
from the requirement to independently carry out exploration,
exploitation, and vicinity search. Biswas [13] presented an ant
colony optimization (ACO)-based method that produces
groups of ideal pathways and ranks them in order of
preference. In addition, using these methodologies leads in the
grouping of test data inside the area so that similarity may be
used as input for the paths that are constructed. The proposed
methods ensure comprehensive software coverage with little
duplication of effort. In [14], the authors employed an
approach dubbed "propagation error" to analyze the growth of
defects. Through the development of test cases, we are able to
activate seed faults and provoke associated potential issues.
The testing procedure involves triggering and correlating these
flaws. Clever algorithms are used in this method, with the aim
of permanently designing test cases to disperse data about seed
flaws. All faults and related defects that were before invisible
are now easily discernible thanks to propagation routes.

Aspect oriented programming (AOP) is recommended by
Jain et al. [15], [16] as a method for crawling into program
modules without modifying their source code and component
in order to investigate regions where faults are suspected to
exist. AOP execution places an emphasis on making use of
system cut points. In addition to this, it includes crucial code at
each execution point for the purpose of testing. To improve the
effectiveness of conventional random testing and random
partition testing approaches, some researches suggested using
Dynamic Random Testing, also known as DRT. The DRT is
presented as a potential further improvement to the testing's
viability. In order to decide on those upgrades for a testing
profile that is more reasonable, it is necessary to have access to
additional historical testing data along with an estimation of the
rate at which defects are identified for each subdomain in real
time, for example. This exemplifies one instance of the
symbolization that the Java-based DSU system provides. In
this approach, system tests that were developed for both older
and newer versions of the program can be updated, and it
purposefully tests whether or not an incremental upgrade can
result in a failed test.

Testing software is widely regarded as an effective strategy
for ensuring the quality of software in both the academic and
commercial settings. The quality of the test data has an effect
on the testing process and is also an essential component in
determining how well software is tested. As a natural part of
the software development life cycle, software testing may be
carried out either automatically or manually as a matter of
course. Both approaches have their advantages and
disadvantages. The creation of test data is the initial step in the
software testing process. In the testing process, there are a few
various procedures that need to be carried out. These
procedures include the development of test data, the
prioritizing of test cases, and the reduction of test cases. The

initialization of the test data is the method that is the most
difficult aspect of testing in these methods. According to [17],
there would be a variety of sub-tasks amongst test cases, test
appropriateness, and test data [18].

Test cases are the conditions that are going to be set, and
the analyzer is going to use those to determine whether or not
the specified function fits in suitably. The gathering of test
cases will ensure that the test is suitable. Test data are a special
sort of data that is used for evaluating different software
applications. They can be easily recognized from other types of
data. In addition, it will serve as the feed for the system's input.
It is possible that this will serve as the principal test for the data
or the field validations for any software applications. Creating
test data for very simple programs is not a tough undertaking.
On the other hand, producing the data for extensive initiatives
might be challenging [19]. There is a wide variety of software
available that can be used to generate test data [20], including
intelligent test data generators, test data generators that use
path oriented principles, and test data generators that use goal
oriented. Creating test data would involve the use of several
methodologies, such as UML diagrams; nevertheless, the
development of test data would be dependent on graphical user
interfaces. The coverage-based testing methodology, which
consists of a collection of conditions that absolutely need to
fulfill all of the prerequisites, could be used to generate test
data [21]. A wide variety of coverage strategies, including
branch coverage, function coverage, and statement coverage,
are all viable options.

However, there is no assurance that the flaws in the test
data will be uncovered by every converge method. The offered
strategies leverage objective function for test data creation. The
test data that are generated as a result of the objective function
give the best possible possibility for defect detection. The
space and path disparity functions are the goal functions. In
order to get the space disparity, we need to first measure the
distance that separates each of the test suites. Next, we need to
calculate the path disparity by working backwards from the
branch condition through the control flow graph [22], [23].
Because product testing must take into account both the long
term and the cost-benefit analysis, extensive testing may not be
carried out. Since a wide variety of methods and resources are
used to automate the processes [24], it's possible that the use of
such mechanizations for testing has become essential as of late.
Successful testing requires the identification of code routes, the
creation of a test data suit for those paths, a testing procedure
on the Software Under Test (SUT) using the data, an
evaluation of the results, and the production of quality models.

Successful testing would examine as many test cases as
possible that are similar to those already performed. As an
added cost-cutting measure, it is important to prioritize paths
with the expectation that the majority of errors will be found in
the preliminary phases of the process, and to identify
appropriate paths and test data from among the many possible
options. Path testing is a very useful technique for finding bugs
in software components [25], [26].

III. METHODOLOGY

In this section, we describe the procedures and techniques
employed to carry out the study, including data analysis, and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

665 | P a g e

www.ijacsa.thesai.org

statistical methods. The research design and settings are also
discussed in detail. This section provides a detailed account of
the methods used to answer the research questions and
provides a clear understanding of how the research was
conducted.

A. Types of Testing

It is of vital importance to clarify here the main types of
testing since testing is used in this study to test the research
hypothesis. The testing of software can be divided into two
categories: static testing and dynamic testing.

In static software testing, the reviewer completes code
reviews by walking through hypothetical inputs to the SUT
while outwardly accompanying the real program flow. Static
testing is a type of software testing. This method requires the
reviewer to invest their time, and the reviewer themselves need
to be an expert as well as possess the necessary skills to
evaluate the code. It is possible to specify from these variables
the paths that might not be executable. This is made possible
by the enhancements to static testing that let the code be
symbolically evaluated. This is done by gathering distinct paths
and variables regarding code execution. This methodology
could be used to aggregate these variables in order to provide a
demand solver with the information it needs to decide which
routes and paths were previously infeasible.

When performing dynamic testing, the SUT code may
actually be executed using the test inputs that have been
provided. The observed behaviors of the SUT are compared to
its typical behaviors, and the test is either successful or
unsuccessful depending on whether the observed behaviors
match the technique that is relied upon to conduct the test.
There are two different kinds of testing that may be done on
dynamic systems: black-box testing and white box testing. The
outcome of an output defect is what is understood to be a
software defect [27].

In black-box testing, the system is evaluated without the
tester having any prior knowledge of the system's underlying
architecture. In black-box testing, the individual performing the
testing does not have access to the program's source code. He
or she needs knowledge regarding the modeling of the
framework. In this section, the tester generally connects with
the software through the user interface by providing inputs and
testing outputs. However, the tester is not expected to have any
prior knowledge regarding how to operate input. The accuracy
of software objectives is checked for throughout the black-box
testing process. These objectives can be tested using the inputs
and outputs domain. This demonstrates that the program in
question has both an input and an output; results from output
failures are regarded to be software flaws [28].

Testing with a black-box can be used to identify problems
with data structures, error functions, and interfaces. Black-box
eliminates system techniques. It detects errors that are caused
by faults in the software in order to find out what the problem
is with the output. It is possible to use it to identify incorrect
functions, which produced undesirable output at executed,
inaccurate conditions. This is due to the fact that incorrect
functions generate inaccurate outputs anytime they are put into
action.

Testing procedures that provide information regarding the
internal specification and design of the system are referred to
as white-box testing. It is not unusual for this to be referred to
as structural testing. It includes testing for anything to do with
program logic, including testing for loops, testing conditions,
and testing based on data flow. Even if there is only an
incomplete software definition, this will assist in the discovery
of flaws. The goal of white box testing is to ensure that each
possible path in software has been explored by the test cases.

White box testers have access to the system's source code
and are therefore familiar with its architecture. The tester
begins by analyzing the source code, then uses the knowledge
from the source code to generate a variety of test cases, and
finally, particular code routes are utilized in order to achieve a
desired amount of code coverage [29]. It is guaranteed by the
test cases that each of the program's independent pathways has
been followed at least once. Each internal data structure would
be tested to ensure the system's dependability. Each loop is run
until it reaches its boundaries while staying within its
operational constraints. White-box testing is a technique that
can be utilized by software engineers in the process of
designing test cases. This technique involves practicing distinct
paths within a module, practicing legitimate true and false
decisions, executing loops at their limits and inside their
operational limits, and practicing inner data structures to
guarantee that they are correct. It would appear that test cases
need to be modified whenever implementation is altered. In
this article, we have simply utilized the black-box testing
approach to evaluate the functionality of two separate lines
based on different test cases utilizing BVA and Robustness
testing. White box testing, on the other hand, covers testing the
majority of the program's code. Changing the requirements
under test conditions will help identify typographical problems
[30].

B. Path Coverage Test

The testing technique known as "coverage basic path
testing" refers to testing strategies that are designed to cover
the fundamental path of the software. The test target is the
fundamental flow of the program when it is executed using this
method. After gathering test information for the program input
space, taking those test data into consideration as input, and
then eventually running the program, it carries out the
fundamental path by running the program and executing it. The
participation of the fundamental routes group is required in
order to carry out the genuine testing technique. The following
is a list of features that are shared by all fundamental paths: 1)
Each and every path in the program is completely autonomous;
2) Each and every edge in the program is accessible; and 3)
Any paths in the program that do not have a position with the
path set can potentially be achieved through the use of paths
linear operation in the fundamental path set. The fault
propagation path is a way that will show the advancement of
defects where mistakes originate in software nodes; they may
gradually propagate on different nodes. This method will be
referred to as the fault propagation path. During the procedure
that is used to repair errors that have already been created, past
errors will be used to determine which paths have the greatest
potential for error propagation. This will help correct errors
that have already been made. Inaccurate historical data will be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

666 | P a g e

www.ijacsa.thesai.org

used as a source of this knowledge, and it will be used to define
these routes.

The MVO algorithm uses the expansion rate as the
determining factor for the value of the function for each and
every search. In addition, every particle in the search zone has
a similar appearance to an elected solution as well as a variable
in an elected solution. Greater expansion rates result in greater
and lower possibilities of the existence of those hypothesized
white holes and black holes, respectively. These higher
expansion rates also bring search agents or universes with
higher rates to transfer items through those white gaps. White
holes are recommended as a result of reduced inflation rates,
which also reduce the expansion rates that should be used to
transport items into black holes. As a result, the probability of
black holes is increased, and white holes are offered as a result.
Wormholes, disregard the flatland rates; they would be the
explanation for the arbitrary sending of the object to the best
universes. The MVO algorithm contains a wheel choice
component that can be used for scientific demonstrations of
white holes and black holes, as well as the return of objects to
the search area. The search agents are arranged in each
iteration according to their expansion rates, and once a search
agent is chosen, it must be assigned a white hole. These various
characteristics of the universes are supported by MVO. It
makes use of wormholes in order to transport irregular things
through the search region, and it does so by exploiting those
wormholes. These wormholes randomly switch the positions of
those objects in the search region, preventing them from
claiming their expansion rates in any scenario. Wormhole
connections have to be helped along between our reality and
the finest possible universe.

C. The proposed Multi-Verse Optimizer (TMVO)

This sub-section introduces the proposed TMVO, including
the algorithm steps, pseudo-code, the strategy, TMVO’s
operations, and its parameters, and theoretical conclusion.

TMVO is a stochastic swarm optimization algorithm with a
revolutionary exploration and exploitation movement approach
for locating optimum solutions to optimization problems.
TMVO is based on enhancing MVO movement strategy by
taking the top three solutions in the swarm for the automatic
development of test cases for structural data testing,
particularly path testing. Since the original MVO algorithm
lacked the ability to effectively cover both the exploration and
exploitation stages of the search process, the TMVO algorithm
was developed to solve this problem. In addition, TMVO
addresses the premature convergence issue that arises with
certain implementations of the MVO algorithm. TMVO
algorithm advises focusing exploration and exploitation efforts
on the following points: White holes would be a higher amount
of time on make in the universes for secondary expansion rates,
which they transmit items on distant universes. This is because
white holes consume an inordinate quantity of matter and
energy. In addition to this, assist them in improving their rates
of expansion. Black holes would appear in universes with low
expansion rates, and as a result, they provide a higher
probability of items being accepted from other universes. This
is because low expansion rates result in more compact
universes. This adds another layer to the possibility of claiming
an increasing inflation rate for universes that have a lower

expansion rate. White and black hole tunnels have a tendency
to transport from worlds the objects with rising expansion rates
to the folks with low expansion rates; in this method, the
general inflation rate concerning known universes will be
moved forward across the span from those repetitions.
Wormholes have a propensity to appear in any universe at
random, regardless of the expansion pace, or something along
those lines due to the many properties of. Through all of the
repetitions, the universe remains preserved. If there is a sudden
shift, white/black hole tunnels need universes, which will lead
to an inquiry of the search space. Unanticipated progressions
are also helpful in determining the ideal local solidity. Random
wormholes re-expansion of the variables from variables of the
universes around the finest result gained in this way in those
course about iterations, thus ensuring that exploitation is
performed around those the overwhelming majority
guaranteeing area of the search region. WEP Adaptive values
expansion will concentrate exploitation by using an
optimization procedure. This is because the occurrence of
wormholes in universes is a likelihood. TDR Adaptive values
reduce the journey variable distance near the best universe.
This is a method that expands the precision of a local search
through iterations. The joining of those indicated by the
algorithm is ensured by checking the exploitation of local
search comparative of the amount derived from the number of
iterations.

The following are the main steps involved in TMVO:

The first step, which is named initialization, involves
initially populating the algorithm's parameters with random
values. Second, the suggested motion equations will be used to
iteratively improve upon these initial best guess answers.

The second step: the algorithm's designated equations are
utilized to progressively enhance the outcomes until a stopping
criterion is met.

The third step: The algorithm's optimal solution is
determined by balancing the values of the goal function and
comparing the resultant comparisons. The pseudo-code for the
TMVO algorithm is displayed in Fig. 1.

1. Define the set of all universes, U.

2. Define the set of all portfolio weights, w.

3. Define the set of all groups, G.

4. Initialize the current universe, u, and the current portfolio weights, w.

5. Evaluate the performance of the current portfolio, P, in the current
universe, u.

6. For each group, g, in G:

a. Select a subset of universes, U', from U that belong to group g.

b. For each universe, u', in U':

i. Calculate the portfolio weights, w', that maximize the expected return
in universe u'.

ii. Evaluate the performance of the portfolio, P', in universe u' using
weights w'.

c. Select the universe, u*, and the corresponding portfolio weights, w*,
that result in the highest performance in the subset of universes.

7. Select the group, g*, and the corresponding universe, u**, and portfolio
weights, w**, that result in the highest overall performance.

8. Update the current universe and portfolio weights to u** and w**,
respectively.

9. Go to step 5 and repeat the process.

Fig. 1. TMVO pseudocode.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

667 | P a g e

www.ijacsa.thesai.org

An exploration phase and an exploitation phase are
separated by a population-based method, as we saw in the
previous section. For MVO space exploration, it has employ
white hole and black hole ideas. On the other hand, the
wormholes help MVO make better use of the search spaces.
We treat every possible answer as if it were its own world, with
each variable representing a different type of thing that may be
found in that universe. The value of the fitness function is used
to determine the inflation rate that is applied to each solution.
As time is a standard concept in both cosmology and multi-
verse theory, we employ it throughout this study rather than
iteration.

However as in MVO, the TMVO universes are optimized
using the following criteria: If inflation rates are high enough,
white holes are almost guaranteed to form. Black holes are less
likely to form with greater inflation rates. Third, items in
universes with a higher inflation rate are more likely to be
sucked into white holes.

The number of items that enter the universe via black holes
is larger in universes with a lower inflation rate. No matter the
pace of inflation, things in all worlds may eventually make
their way through wormholes to the best universe at random.

TMVO Pseudocode show that the normalized inflation rate
serves as a roulette wheel for selecting and determining white
holes. The likelihood of sending things through white hole or
black hole tunnels increases as the inflation rate decreases.
When solving the maximizing problems, -NI must be replaced
with NI. Since the universes must swap things and experience
sudden changes in order to traverse the search space, the
exploration can be ensured using this approach.

The previously mentioned method allows for unabated
object exchange across worlds. We assume that each universe
is equipped with wormholes that allow its things to randomly
travel through space, allowing for the preservation of
cosmological variety while also allowing for the possibility of
exploitation. Wormholes are capable of altering the objects of
universes at random, regardless of their inflation rates. We
assume that wormhole tunnels are constantly built between a
universe and the best universe generated so far in order to
supply local modifications for each universe and have a high
likelihood of enhancing the inflation rate utilizing wormholes.

The suggested methods have varying degrees of computing
complexity, which are determined by the number of iterations,
the number of universes, the roulette wheel mechanism, and
the universe sorting mechanism. Every iteration includes the
process of sorting the universe, and we use the Quicksort
algorithm, which, in the best case scenario, has a complexity of
O(n log n), and in the worst case scenario, has a complexity of
O(n2). The selection from the roulette wheel is carried out for
each variable in each universe throughout the iterations, and its
complexity ranges from O(n) to O(log n), depending on the
implementation.

The followings are some observations that are concluded in
order to gain an understanding of how the suggested algorithm
could, in theory, have the ability to solve optimization
problems:

 White holes are more likely to form in universes that
have high inflation rates since this increases the
likelihood that they will be able to transmit things to
other universes and help those universes increase their
inflation rates.

 Black holes are more likely to emerge in worlds with
low inflation rates because these holes have a larger
likelihood of receiving things from other universes
since inflation rates are lower. This once more raises the
possibility of increasing inflation rates for those
universes that now have low inflation rates.

 The general or average inflation rate of all universes
steadily improves over the course of the iteration
process, as white and black hole tunnels tend to carry
objects from universes with high inflation rates to those
with low inflation rates.

 Because wormholes tend to form at random in any
world, independent of the inflation rate, the variety of
universes may be kept intact throughout the course of
several iterations of the simulation.

 Wormhole and black hole tunnels need the sudden
transformation of universes, which ensures the thorough
investigation of the search space.

 Sudden shifts are helpful in resolving local optimalities
that have stagnated.

 During the iterative process, wormholes randomly
reposition some of the variables in the universes
surrounding the best solution gained thus far. This
facilitates exploitation all over the most promising area
of the search space.

 The existence probability of wormholes in universes is
gradually increased when adaptive WEP settings are
used. As a result, the process of optimization places a
strong emphasis on exploitation.

 To enhance the precision of local search during
iterations, adaptive TDR values are used to decrease the
variable's traveling distance around the best universe.

 By placing a greater emphasis on exploitation and local
search in relation to the number of iterations, the
suggested algorithm's convergence is ensured.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Evaluation of TMVO over the Benchmark Functions

To test the performance of TMVO, experiments had been
run over well-known benchmark functions that represent
unimodal and multi-modal functions that have been used by
many researchers [31][32][33].

The cost functions of the benchmark unimodal function
(F1-F7) are displayed in Table I, and those for the multimodal
functions (F8-F14) are displayed in Table II. In order to get
reliable statistical findings, the experiment needs to be carried
out n times before any meaningful conclusions can be drawn
about the performance of meta-heuristic algorithms. Each run
needs to be carried out until m numbers of iterations have been

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

668 | P a g e

www.ijacsa.thesai.org

completed, and this is for the purpose of verifying if the
algorithm is stable. In most cases, the statistical and output
metrics, such as the average, the standard deviation, as well as
the minimum and maximum values, of the best solution in the
most recent iteration are measured and registered for
comparison studies of the algorithms. For the purposes of
acquiring, recording, and verifying the outcomes of the TMVO
algorithm, the exact same process and experimental approach
have been adhered to throughout. In addition to computing the
error, it is important to determine how much the findings
deviate from the ideal value.

TABLE I. UNIMODAL FUNCTIONS MATHEMATICAL FORMULATION (F1-
F7)

No. Formula

F1 𝑓1(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

F2 𝑓2(𝑥) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|
𝑛

𝑖=1

𝑛

𝑖=1

F3 𝑓3(𝑥) = ∑ (∑ 𝑥𝑗

𝑛

𝑗=1

)

2

𝑛

𝑖=1

F4 𝑓4(𝑥) = max 𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛}

F5 𝑓5(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑛=1

𝑖=1

F6 f6(x) = ∑ (xi + 0.5)2
n

i=1

F7 f7(x) = ∑ ixi
4 + random(0,1)

n

i=1

TABLE II. MULTIMODAL BASIC FUNCTIONS (F8-F14)

No. Formula

F8 f8(x) = ∑ −xi sin √|xi|
n
i=1 * ∑ ixi

4 ∗ random(0,1)i=1 *

F9 f9(x) = ∑ [xi
2 − 10 cos(2πxi) + 10]

n

i=1

F10
f10(x) = −20 exp (−0.2√

1

n
∑ xi

2
n

x=i
) − exp (

1

n
∑ cos(2πxi)

n

i=1

)

+ 20 + e

F11
f11(x) =

1

4000
∑ xi

2 − ∏ cos (
xi

√i
) + 1

n

i=1

n

i=1

12

𝑓12(𝑥) =
𝜋

𝑛
{10 sin(𝜋𝑦1) + ∑(𝑦𝑖 − 1)2[1 + 10 sin2(𝜋𝑦𝑖+1)]

𝑛=1

𝑖=1

+ (𝑦𝑛 − 1)2} + ∑ 𝑢(𝑥𝑖 , 10,100,4)

𝑛

𝑖=1

𝑦𝑖 = 1 +
𝑥𝑖 + 1

4
𝑢(𝑥𝑖, 𝑎, 𝑘, 𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 > 𝑎
0 − 𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 < 𝑎
}

F13

𝑓13(𝑥) = 0.1 {sin2 + ∑(𝑥𝑖 − 1)2[1 + sin2(3𝜋𝑥𝑖 + 1)]

𝑛

𝑖=1

+ (𝑥𝑛 − 1)2[1 + sin2(2𝜋𝑥𝑛)]}

+ ∑ 𝑢(𝑥𝑖 , 5,100,4)

𝑛

𝑖=1

F14 𝑓14(𝑥) = − ∑ sin(𝑥𝑖). (sin (
𝑖𝑥𝑖

2

𝜋
))

2𝑚
𝑛
𝑖=1 , m=10

The average, on the other hand, compare the overall
performance of the method. All of the statistical analyses that
were carried out allow us to establish beyond a reasonable
doubt that the results were not the product of random chance.
In each of the algorithms, the population size was set at fifty,
and the maximum number of iterations was set at one
thousand. It is important to keep in mind, however, that the
maximum number of iterations and the number of particles
(possible solutions, for example) should be determined by
experimentation when dealing with situations that occur in real
life.

It is necessary to conduct tests a total of n times if one
wishes to achieve reliable statistical findings from meta-
heuristic algorithms. In addition, for the purpose of validating
the consistency of the method, each iteration must be carried
out until the mth time. In order to create TMVO, report on its
performance, and then validate its efficacy, the identical
experimental process was carried out.

The effectiveness of the TMVO algorithm that was
proposed has been assessed. It has been proved that there is a
set of statistical measurements that includes the average, the
standard deviation, the minimum, the maximum, and the error
measurement. These measurements have been determined
through the process of experimentation throughout the course
of the twenty-three benchmark functions shown in the Tables
(1-2).

The primary regulating parameters of these algorithms, the
number of search particles and the maximum iteration, have
been set to the values of 50 and 1000 respectively so that a fair
comparison can be made between them. To achieve the highest
possible level of performance, the settings for the various
governing parameters of each algorithm are taken from the
most recent version of the source code. Each of the algorithms
is executed fifty times on each of the test functions, and the
outcomes of these simulations are presented later in this study.
It is important to note that the results of the algorithms are
standardized in the range [0, 1] by employing the min-max
normalization so that their performances may be compared
across a variety of test functions.

We have evaluated the performance of TMVO on a set of
well-known benchmark functions utilized by many researchers
to measure the performance of optimization algorithms.

The benchmark sets for multimodal hybrid functions are
categorized from function 15 to function 23 and the
mathematical formulations for hybrid composition functions
are shown in Table III.

The Lower Bound (LB), Upper Bound (UB), dimension
(Dim), and Fmin of the benchmark-evaluated functions are
displayed in Table IV.

TABLE III. MULTIMODAL HYBRID FUNCTIONS (F8-F14)

Multimodal Functions Formula (F15- F23)

𝑓15(𝑥) = ∑ [𝑎𝑖 −
𝑥1(𝑏𝑖

2+𝑏𝑖𝑥2)

𝑏𝑖
2+𝑏𝑖𝑥3𝑥4

]

11

𝑖=1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

669 | P a g e

www.ijacsa.thesai.org

𝑓16(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4

𝐹17(𝑋) = (𝑥2 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) cos 𝑋1 + 10

𝑓18(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2

+ 3𝑥2
2)] 𝑥 [30 + (2𝑥1 − 3𝑥2)2𝑥 (18 − 32𝑥1 + 12𝑥1

2

+ 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2]

𝑓19(𝑥) = − ∑ 𝐶𝑖 exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1

)

4

𝑖=1

𝑓20(𝑥) = − ∑ 𝐶𝑖 exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

6

𝑗=1

)

4

𝑖=1

𝑓21(𝑥) = − ∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝐶𝑖]−1

5

𝑖=1

𝑓22(𝑥) = − ∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝐶𝑖]−1

7

𝑖=1

𝑓23(𝑥) = − ∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝐶𝑖]−1

10

𝑖=1

TABLE IV. PARAMETERS OF THE EVALUATED FUNCTIONS F1-F23

Function Dim LB UB Fmin

F1 30 -100.00 100.00 Zero

F2 30 -10.00 10.00 Zero

F3 30 -100.00 100.00 Zero

F4 30 -100.00 100.00 Zero

F5 30 -30.00 30.00 Zero

F6 30 -2400.00 2400.00 Zero

F7 30 -1.28 1.28 Zero

F8 30 -500.00 100.00 418.9829x5

F9 30 -5.12 5.12 Zero

F10 30 -32.00 32.00 Zero

F11 30 -600.00 600.00 Zero

F12 30 -2400.00 2400.00 Zero

F13 30 -2400.00 2400.00 Zero

F14 2 -5.00 5.00 1

F15 4 -5.00 5.00 0.00030

F16 2 -5.00 5.00 1.0316

F17 2 [-5,0] [10,15] 0.398

F18 2 -2.00 2.00 3.00

F19 3 0.00 1.00 -3.86

F20 6 -5.00 5.00 -3.32

F21 4 0.00 10.00 -10.1532

F22 4 0.00 10.00 -10.4028

F23 4 0.00 10.00 -10.5363

TABLE V. COMPARISON BETWEEN THE TMVO AND MVO IN TERMS OF

MEAN FITNESS VALUE

F# Mean of TMVO Mean of MVO TMVO vs MVO

F 1 1.89618 20.8066 Better

F 2 1.482 5.2544 Better

F 3 8.9748 234.41 Better

F 4 1.4287 3.9419 Better

F 5 67.3715 843.6999 Better

F 6 6.5543 22.9003 Better

F 7 0.070841 0.86756 Better

F 8 -4864.7373 -7388.2747 No

F 9 25.6411 163.2599 Better

F 10 2.8175 4.5803 Better

F 11 0.91005 1.6356 Better

F 12 2.5573 2.4075 No

F 13 0.077985 0. 2351 Better

F 14 0.998 0.998 Equal

F 15 0.00044931 0.00058644 Better

F 16 -1.0316 -1.0316 Equal

F 17 0.3978 0.3978 Equal

F 18 3 3 Equal

F 19 -3.8628 -3.8627 Better

F20 -3.3214 -3.201 Better

F21 -10.0464 -2.6068 Better

F22 -10.3418 -9.8605 Better

F23 -5.1928 -5.1885 Better

The comparison between the proposed TMVO algorithm
and the MVO algorithm in terms of mean fitness value is
tabulated in Table V. Comparing TMVO algorithm with MVO
over the tested functions F1-F23 showed that TMVO has very
competitive results. In the unimodal functions (F1-F7) the
TMVO has shown better results and outperformed MVO over
all the seven functions. Regarding the multi-modal functions
(F8-F12), TMVO was also achieved better mean fitness values
than MVO except F8. Moreover, the proposed algorithm is
competitive over the expanded multi-modal functions (F13,
F14). The results have shown that when testing the algorithm
TMVO over the multi-modal hybrid functions (F15-F23), the
TMVO outperformed MVO in most cases and achieved the
same fitness value in three cases.

The proposed TMVO achieved better fitness values in most
cases due to the fact that TMVO offers additional exploration
points inside the search space. TMVO takes the two best
possible solutions and utilizes them to find a new solution at
each iteration. It drives closer and closer to the global optimum
by updating the current particle location to the position that is
optimal between these two points.

B. Evaluation of TMVO in Test Data Generation for Path

Testing

The experimental results testing is carried out on five
benchmark programs, which are presented in Table VI. The
fitness value is a numerical number that represents individual

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

670 | P a g e

www.ijacsa.thesai.org

quality in comparison with the existing local solution in order
to seek for the optimum local solution that has the least amount
of fitness value possible. The option that results in the lowest
overall fitness value will be the one that we consider to be the
most viable solution. The fitness value is computed by
applying Korel's route distance relation to each variable. The
fitness path distance is calculated by adding up each variable's
fitness value at each point along the path. To start, a series of
random test instances are generated so that the process can
begin. Utilizing points that were picked at random allows for
the improvement of the existing solution. Perform a calculation
to determine the fitness value of each potential solution. Each
swarm is assigned a fitness value, and then each swarm
searches for the local minimum value within the search zone to
see whether a higher value can be found.. If we can, the new
value is saved, and the old value is replaced with it. Arrange
candidate solutions in order of increasing fitness, beginning
with the best. The onlooker phase begins with the most optimal
solution to fitness. If the termination requirements are deemed
to be complete, an onlooker local search will be issued;
otherwise, it will be used to improve candidate solution fitness.
In case that the phase is completed without satisfying the
finishing conditions, the phase to replace sources that have
reached the maximum number of tries will be initiated.

We utilized the five variables in Program1, which are (x, y,
z, j, k). First, if j - 80 >= 0, the distance at variable j will be
zero; if variable k - 70 >= 0, the distance at variable k will be
zero; if variable x - 60 >= 0, the distance at variable y - 50 = 0;
this is the Korel branch distance relation. Specific details and
results including the fitness value are tabulated in Table VII. It
is of vital importance to correctly interpret the values in Table
VII. The letters A, B, C, D, and E represent the Korel's route
branch distance of the variables j, k, c, y, and z respectively.

TABLE VI. BENCHMARK PROGRAMS USED AS CASE STUDIES

Program1 Program2 Program3

If (j >=80)

{….. }

Else if (k >= 70)

{….. }

Else If (x >=60)

{….. }

Else If (y>=50)

{….. }

Else If (z>=25)

{….. }

while (j >=75)

{….. }

while (k >= 65)

{….. }

while (x >=55)

{….. }

while (y>=45)

{….. }

while (z>=35)

{….. }

If (j >=60)

{….. }

Else If (k >= 80)

{….. }

Else If (x >=55)

{….. }

if (y>=25)

{….. }

while (z>=45)

{….. }

Program4 Program5

If (j >=57)

{….. }

If (k >= 68)

{….. }

if (x >=34)

{….. }

If (j >=45)

{….. }

Else If (k >= 30)

{….. }

while (x >=40)

{….. }

Else If (y>=35)

{….. }

TABLE VII. KOREL'S ROUTE BRANCH DISTANCES OF THE VARIABLES J, K,
C, Y, AND Z ALONG WITH THE FITNESS VALUES (PROGRAM 1)

j k x y z A B C D E Fit.

1 91 50 75 100 54 11 0 15 50 29 105

2 89 64 84 68 66 9 0 24 18 41 92

3 81 87 71 82 87 1 17 11 32 62 123

4 62 72 89 52 99 0 2 29 2 74 107

5 84 56 72 86 79 4 0 12 36 54 106

6 70 91 84 92 59 0 21 24 42 34 121

7 77 67 71 72 88 0 0 11 22 63 96

8 76 97 61 84 65 0 27 1 34 40 102

9 53 65 72 79 85 0 0 12 29 60 101

10 90 56 80 80 70 10 0 20 30 45 105

11 96 66 62 53 75 16 0 2 3 50 71

12 99 63 61 88 85 19 0 1 38 60 118

13 55 87 90 55 85 0 17 30 5 60 112

14 78 95 60 72 93 0 25 0 22 68 115

15 68 98 63 93 93 0 28 3 43 68 142

16 76 97 85 69 51 0 27 25 19 26 97

17 99 57 79 84 68 19 0 19 34 43 115

18 59 92 85 75 84 0 22 25 25 59 131

19 100 93 100 59 82 20 23 40 9 57 149

20 59 67 72 94 76 0 0 12 44 51 107

21 67 87 62 58 59 0 17 2 8 34 61

22 100 80 76 90 69 20 10 16 40 44 130

23 66 78 95 58 82 0 8 35 8 57 108

24 50 54 54 66 86 0 0 0 16 61 77

25 63 78 89 98 51 0 8 29 48 26 111

The following equation is utilized to determine the fitness
value that is used for the path of Program1. This value, which
is the sum of the distances that were indicated before, is
computed as follows:

𝐹 = (𝐽 − 80) + (𝐾 − 70) + (𝑋 − 60) + (𝑌 − 50) +
 (𝑍 − 25) (1)

In Program2, we utilized the five variables (x, y, z, j, k). If
the first variable (j) has a distance of zero, then the second
variable (k) also has a distance of zero. (if (k) - 65>= 0), the
third variable (x) has a distance of zero. if (x) - 55 >= 0, the
fourth variable (y) has a distance of zero if (y) - 45 = 0, and the
fifth variable (z) has a distance of zero if (z) - 35. The Korel's
route branch distances of the variables in Program2 and the
fitness values are displayed in Table VIII.

Eq. (2) has been used to get the fitness value that should be
utilized for the path of program 2, which is 54. This value
represents the sum of the distances that were indicated earlier.

F = (J − 75) + (K − 65) + (X − 55) + (Y − 45) +
 (Z − 35) (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

671 | P a g e

www.ijacsa.thesai.org

TABLE VIII. KOREL'S ROUTE BRANCH DISTANCES OF THE VARIABLES J, K,
X, Y, AND Z ALONG WITH THE FITNESS VALUES (PROGRAM 2)

j k x y z A B C D E Fit.

1 86 84 52 94 78 11 19 0 49 43 122

2 92 57 59 86 100 17 0 4 41 65 127

3 74 54 62 63 83 0 0 7 18 48 73

4 86 57 94 75 71 11 0 39 30 36 116

5 66 96 83 52 81 0 31 28 7 46 112

6 70 98 69 58 95 0 33 14 13 60 120

7 81 88 92 92 80 6 23 37 47 45 158

8 53 69 86 91 100 0 4 31 46 65 146

9 53 81 64 74 68 0 16 9 29 33 87

10 89 79 53 82 94 14 14 0 37 59 124

11 51 58 88 97 84 0 0 33 52 49 134

12 78 66 99 54 84 3 1 44 9 49 106

13 86 61 66 73 89 11 0 11 28 54 104

14 100 57 98 51 57 25 0 43 6 22 96

15 77 68 78 63 100 2 3 23 18 65 111

16 91 80 92 68 57 16 15 37 23 22 113

17 78 76 82 62 68 3 11 27 17 33 91

18 86 65 60 67 56 11 0 5 22 21 59

19 72 73 72 67 72 0 8 17 22 37 84

20 87 73 100 84 67 12 8 45 39 32 136

21 61 64 92 61 50 0 0 37 16 15 68

22 95 50 69 78 68 20 0 14 33 33 100

23 62 53 52 51 83 0 0 0 6 48 54

24 52 91 54 60 73 0 26 0 15 38 79

25 94 96 83 80 100 19 31 28 35 65 178

In Program3, the five variables (x,y,z,j,k) are also
employed to evaluate the proposed algorithm. The Korel
branch distance relation states that if the value of the first
variable, j, is greater than or equal to 60, then the value of the
second variable, k, is greater than or equal to 80. If the value of
the third variable, x, is greater than or equal to 45, the value of
the fourth variable, y, is less than or equal to 75, and the value
of the fifth variable, z, is 45. Table IX tabulates the outcomes
when applying the TMVO over Program3. The symbols (A, B,
C, D, E) represent Korel's Route Branch Distances of the
variables (j, k, x, y, z) respectively.

TABLE IX. KOREL'S ROUTE BRANCH DISTANCES OF THE VARIABLES J, K,
X, Y, AND Z ALONG WITH THE FITNESS VALUES (PROGRAM 3)

j k x y z A B C D E Fit.

1 58 85 77 72 75 0 5 22 47 30 104

2 94 70 83 83 91 34 0 28 58 46 166

3 83 90 88 76 93 23 10 33 51 48 165

4 70 55 87 96 100 10 0 32 71 55 168

5 86 94 64 60 93 26 14 9 35 48 132

6 77 90 60 79 72 17 10 5 54 27 113

7 73 51 64 73 68 13 0 9 48 23 93

8 66 50 86 83 64 6 0 31 58 19 114

9 79 75 53 61 76 19 0 0 36 31 86

10 97 63 76 54 91 37 0 21 29 46 133

11 87 86 67 84 93 27 6 12 59 48 152

12 75 83 65 71 53 15 3 10 46 8 82

13 80 91 97 64 95 20 11 42 39 50 162

14 90 72 81 62 63 30 0 26 37 18 111

15 71 100 54 81 64 11 20 0 56 19 106

16 79 81 84 66 61 19 1 29 41 16 106

17 71 55 71 64 93 11 0 16 39 48 114

18 66 88 78 75 71 6 8 23 50 26 113

19 52 88 80 63 82 0 8 25 38 37 108

20 79 76 69 71 68 19 0 14 46 23 102

21 75 84 61 88 50 15 4 6 63 5 93

22 56 67 83 95 72 0 0 28 70 27 125

23 79 98 69 61 60 19 18 14 36 15 102

24 53 100 53 84 57 0 20 0 59 12 91

25 58 80 75 65 95 0 0 20 40 50 110

The fitness value that was used for the path of program3
was 82, which is the sum of the distances that were indicated
earlier and is computed using Equation 3 as follows

𝐹 = (𝐽 − 60) + (𝐾 − 80) + (𝑋 − 55) + (𝑌 − 45) +
 (𝑍 − 25) (3)

TABLE X. KOREL'S ROUTE BRANCH DISTANCES OF THE VARIABLES X, Y,
AND Z ALONG WITH THE FITNESS VALUES (PROGRAM4)

x y z C D E Fit.

1 100 52 61 43 0 27 70

2 64 97 77 7 29 43 79

3 66 99 66 9 31 32 72

4 92 85 80 35 17 46 98

5 89 91 62 32 23 28 83

6 67 88 65 10 20 31 61

7 80 50 71 23 0 37 60

8 93 63 65 36 0 31 67

9 86 72 53 29 4 19 52

10 99 98 80 42 30 46 118

11 56 56 72 0 0 38 38

12 53 82 54 0 14 20 34

13 95 82 55 38 14 21 73

14 56 70 96 0 2 62 64

15 93 55 76 36 0 42 78

16 56 80 78 0 12 44 56

17 55 56 60 0 0 26 26

18 100 95 51 43 27 17 87

19 52 80 55 0 12 21 33

20 53 100 94 0 32 60 92

21 93 61 64 36 0 30 66

22 96 58 82 39 0 48 87

23 90 77 60 33 9 26 68

24 70 64 75 13 0 41 54

25 88 84 97 31 16 63 110

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

672 | P a g e

www.ijacsa.thesai.org

In Program4, we employed three variables (x, y, z). If j - 60
>= 0, k - 80 >= 0, and x - 45 >= 0, then the distance between
the first and third variables is zero, as predicted by the Korel
branch distance relation. Refer to Table X. The symbols (C, D,
E) represent Korel's Route Branch Distances of the variables
(x, y, z) respectively.

Using Equation 4, we can determine that the fitness value
for path of program4 is 33, which is the total of the distances
we determined before.

F = (J − 57) + (K − 68) + (X − 34) (4)

Four variables were employed which are j, k, x, and y in
Program5. In the Korel branch distance relation, if the value of
the first variable, j, is zero, then the value of the second, k, is
also zero, and so on. If the value of the third variable, x, is also
zero, then the value of the fourth one, y, is also zero. Table XI
tabulates 25 different cases along with their fitness values.

Path 5 of Program5 uses a fitness value of 39, which is the
total of the distances discussed before. The fitness value is
calculated according to Equation5.

F = (J − 45) + (K − 30) + (X − 40) + (Y − 35) (5)

TABLE XI. KOREL'S ROUTE BRANCH DISTANCES OF THE VARIABLES J,
K,X, AND Y ALONG WITH THE FITNESS VALUES (PROGRAM5)

j k x y A B C D Fit.

1 93 95 73 52 36 27 39 0 102

2 64 64 93 64 7 0 59 0 66

3 89 50 90 68 32 0 56 0 88

4 74 73 96 79 17 5 62 10 94

5 89 53 70 50 32 0 36 0 68

6 54 76 98 88 0 8 64 19 91

7 55 97 73 76 0 29 39 7 75

8 98 61 81 91 41 0 47 22 110

9 99 84 88 52 42 16 54 0 112

10 80 73 62 77 23 5 28 8 64

11 54 64 89 82 0 0 55 13 68

12 55 69 59 98 0 1 25 29 55

13 88 52 61 92 31 0 27 23 81

14 50 59 99 64 0 0 65 0 65

15 71 58 55 83 14 0 21 14 49

16 64 100 89 92 7 32 55 23 117

17 98 56 84 57 41 0 50 0 91

18 91 74 97 52 34 6 63 0 103

19 64 75 55 73 7 7 21 4 39

20 89 83 56 95 32 15 22 26 95

21 75 85 64 56 18 17 30 0 65

22 66 75 51 89 9 7 17 20 53

23 80 52 79 94 23 0 45 25 93

24 99 70 90 89 42 2 56 20 120

25 70 86 66 52 13 18 32 0 63

V. CONCLUSION

In this study, Testing Multi-Verse Optimizer (TMVO), an
improved Multi-Verse Optimizer, is presented. However,
rather than focusing on a single place, TMVO considers the
swarm's mobility and the mean of the two best solutions in the
universe. Using a recently suggested mean-based algorithm
model, particles will progress toward the ideal solution.
TMVO's recommended movement equations ensure efficient
space exploration and utilization. In addition, it eliminates the
problem of low convergence and escapes the local minimum.
TMVO has been applied for the generation of test data for
software structural testing, specifically route testing, that takes
use of the Multi-Verse optimization algorithm. The proposed
algorithm has been exhaustively tested through the creation of
test data for the path coverage criteria and its subsequent
application to a set of test programs. Additionally, five distinct
programs and codes have been utilized in order to complete
this evaluation. The results showed that the algorithm was
successful in finding the best tested path for the test data,
which led to an improvement in performance. The performance
of TMVO is tested over several well-known functions. The
results have shown that TMVO outperform original MVO
algorithm over most of the tested functions.

However, this study presented two contributions. Firstly, an
improved version of the Multi-verse Optimizer called Testing
Multi-Verse Optimizer (TMVO) was proposed, which
considered the movement of the swarm and the mean of the
two best solutions in the universe. The particles moved towards
the optimal solution by using a mean-based algorithm model,
which guaranteed efficient exploration and exploitation.
Secondly, TMVO was applied to develop test cases for
structural data testing, specifically path testing, in an automated
manner. Instead of automating the entire testing process, the
focus was on centralizing automated procedures for collecting
testing data. Automation for generating testing data was
becoming increasingly popular due to the high cost of manual
data generation. To evaluate the effectiveness of TMVO, it was
tested on various well-known functions as well as five
programs that presented unique challenges in testing. The test
results indicated that TMVO outperformed the original MVO
algorithm on the majority of the tested functions.

Despite the success of TMVO, there are still several areas
where the algorithm can be further developed and tested. This
includes algorithmic parameter tuning where most optimization
algorithms have several tuning parameters that need to be set
for optimal performance. Future research can explore
automated parameter tuning techniques such as machine
learning algorithms to improve the performance of TMVO. In
addition to that, testing TMVO on large-scale problems where
researchers can focus on testing TMVO on large-scale
optimization problems and analyzing its scalability and
efficiency.

REFERENCES

[1] Shukri, S. E., Al-Sayyed, R., Hudaib, A., & Mirjalili, S. (2021).
Enhanced multi-verse optimizer for task scheduling in cloud computing
environments. Expert Systems with Applications, 168, 114230.

[2] Jamunaa, D., Mahanti, G. K., & Hasoon, F. N. (2022). Multi-verse
optimization algorithm for optimal synthesis of phase-only
reconfigurable linear array of mutually coupled parallel half-wavelength

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 2, 2023

673 | P a g e

www.ijacsa.thesai.org

dipole antennas placed at finite distances from the ground plane. Scientia
Iranica. Transaction D, Computer Science & Engineering, Electrical,
29(4), 1915-1924.

[3] Hamad, F., Al-Aamr, R., Jabbar, S. A., & Fakhuri, H. (2021). Business
intelligence in academic libraries in Jordan: Opportunities and
challenges. IFLA journal, 47(1), 37-50.

[4] Yadav, M., & Mishra, A. (2023). An enhanced ordinal optimization with
lower scheduling overhead based novel approach for task scheduling in
cloud computing environment. Journal of Cloud Computing, 12(1), 1-
14.

[5] Ryalat, M. H., Dorgham, O., Tedmori, S., Al-Rahamneh, Z., Al-
Najdawi, N., & Mirjalili, S. (2022). Harris hawks optimization for
COVID-19 diagnosis based on multi-threshold image segmentation.
Neural Computing and Applications, 1-19.

[6] Song, R., Zeng, X., & Han, R. (2020). An improved multi-verse
optimizer algorithm for multi-source allocation problem. International
Journal of Innovative Computing, Information and Control, 16(6), 1845-
1862.

[7] Aljarah, I., Mafarja, M., Heidari, A. A., Faris, H., & Mirjalili, S. (2020).
Multi-verse optimizer: theory, literature review, and application in data
clustering. Nature-inspired optimizers: theories, literature reviews and
applications, 123-141.

[8] Pan, R., Bagherzadeh, M., Ghaleb, T. A., & Briand, L. (2022). Test case
selection and prioritization using machine learning: a systematic
literature review. Empirical Software Engineering, 27(2), 29.

[9] Schaeffer, R., Khona, M., & Fiete, I. (2022). No free lunch from deep
learning in neuroscience: A case study through models of the entorhinal-
hippocampal circuit. bioRxiv, 2022-08.

[10] Fakhouri, H. N., Hamad, F., & Alawamrah, A. (2022). Success history
intelligent optimizer. The Journal of Supercomputing, 1-42.

[11] Aldabbas, H., Asad, M., Ryalat, M. H., Malik, K. R., & Qureshi, M. Z.
A. (2019). Data augmentation to stabilize image caption generation
models in deep learning. Int J Adv Comput Sci Appl, 10(10), 571-9.

[12] Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse
optimizer: a nature-inspired algorithm for global optimization. Neural
Computing and Applications, 27, 495-513.

[13] Biswas, S., Kaiser, M. S., & Mamun, S. A. (2015, May). Applying ant
colony optimization in software testing to generate prioritized optimal
path and test data. In 2015 International Conference on Electrical
Engineering and Information Communication Technology (ICEEICT)
(pp. 1-6). IEEE.

[14] Kun, W., & Yichen, W. (2016, January). Software test case generation
based on the fault propagation path coverage. In 2016 Annual Reliability
and Maintainability Symposium (RAMS) (pp. 1-4). IEEE.

[15] Jain, M., & Gopalani, D. (2016, February). Aspect oriented
programming and types of software testing. In 2016 Second
International Conference on Computational Intelligence &
Communication Technology (CICT) (pp. 64-69). IEEE.

[16] Ryalat, M. H. (2022, January). A New Algorithm to Find The K th
Smallest Element in an Unordered List (Efficient for Big Data). In 2022
2nd International Conference on Computing and Information
Technology (ICCIT) (pp. 51-56). IEEE.

[17] Fakhouri, S. N., Hudaib, A., & Fakhouri, H. N. (2020). Enhanced
optimizer algorithm and its application to software testing. Journal of
Experimental & Theoretical Artificial Intelligence, 32(6), 885-907.

[18] Hamad, F., Fakhuri, H., & Abdel Jabbar, S. (2022). Big data
opportunities and challenges for analytics strategies in Jordanian
Academic Libraries. New Review of Academic Librarianship, 28(1), 37-
60.

[19] Martínez-Fernández, S., Bogner, J., Franch, X., Oriol, M., Siebert, J.,
Trendowicz, A., ... & Wagner, S. (2022). Software engineering for AI-
based systems: a survey. ACM Transactions on Software Engineering
and Methodology (TOSEM), 31(2), 1-59.

[20] Li, Z., Li, T., Wu, Y., Yang, L., Miao, H., & Wang, D. (2021). Software
defect prediction based on hybrid swarm intelligence and deep learning.
Computational Intelligence and Neuroscience, 2021.

[21] Dorgham, O., Naser, M. A., Ryalat, M. H., Hyari, A., Al-Najdawi, N., &
Mirjalili, S. (2022). U-NetCTS: U-Net deep neural network for fully
automatic segmentation of 3D CT DICOM volume. Smart Health, 26,
100304.

[22] Rosales Muñoz, A. A., Grisales-Noreña, L. F., Montano, J., Montoya, O.
D., & Perea-Moreno, A. J. (2022). Application of the Multiverse
Optimization Method to Solve the Optimal Power Flow Problem in
Alternating Current Networks. Electronics, 11(8), 1287.

[23] Pandya, S., & Jariwala, H. R. (2022). Single-and multiobjective optimal
power flow with stochastic wind and solar power plants using moth
flame optimization algorithm. Smart Science, 10(2), 77-117.

[24] Abualigah, L. (2020). Multi-verse optimizer algorithm: a comprehensive
survey of its results, variants, and applications. Neural Computing and
Applications, 32(16), 12381-12401.

[25] Pachouly, J., Ahirrao, S., Kotecha, K., Selvachandran, G., & Abraham,
A. (2022). A systematic literature review on software defect prediction
using artificial intelligence: Datasets, Data Validation Methods,
Approaches, and Tools. Engineering Applications of Artificial
Intelligence, 111, 104773.

[26] Hejderup, J., & Gousios, G. (2022). Can we trust tests to automate
dependency updates? a case study of java projects. Journal of Systems
and Software, 183, 111097.

[27] Zheng, W., Shen, T., Chen, X., & Deng, P. (2022). Interpretability
application of the Just-in-Time software defect prediction model. Journal
of Systems and Software, 188, 111245.

[28] Rath, S. K., Sahu, M., Das, S. P., & Pradhan, J. (2022). Survey on
Machine Learning Techniques for Software Reliability Accuracy
Prediction. In Meta Heuristic Techniques in Software Engineering and
Its Applications: METASOFT 2022 (pp. 43-55). Cham: Springer
International Publishing.

[29] Rubert, M., & Farias, K. (2022). On the effects of continuous delivery
on code quality: A case study in industry. Computer Standards &
Interfaces, 81, 103588.

[30] Battina, D. S. (2019). Artificial intelligence in software test automation:
a systematic literature review. International Journal of Emerging
Technologies and Innovative Research (www. jetir. org| UGC and issn
Approved), ISSN, 2349-5162.

[31] Rahkar Farshi, T., & Orujpour, M. (2021). A multi-modal bacterial
foraging optimization algorithm. Journal of Ambient Intelligence and
Humanized Computing, 1-15.

[32] Ahmed, R., Mahadzir, S., & Mohammad Rozali, N. E. (2022,
November). A Meta Model Based Particle Swarm Optimization for
Enhanced Global Search. In International Conference on Artificial
Intelligence for Smart Community: AISC 2020, 17–18 December,
Universiti Teknologi Petronas, Malaysia (pp. 935-944). Singapore:
Springer Nature Singapore.

[33] Marco, R., Ahmad, S. S. S., & Ahmad, S. (2022). Bayesian
hyperparameter optimization and Ensemble Learning for Machine
Learning Models on software effort estimation. International Journal of
Advanced Computer Science and Applications, 13(3).

