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Abstract—Data testing is a vital part of the software 

development process, and there are various approaches available 

to improve the exploration of all possible software code paths. 

This study introduces two contributions. Firstly, an improved 

version of the Multi-verse Optimizer called Testing Multi-Verse 

Optimizer (TMVO) is proposed, which takes into account the 

movement of the swarm and the mean of the two best solutions in 

the universe. The particles move towards the optimal solution by 

using a mean-based algorithm model, which guarantees efficient 

exploration and exploitation. Secondly, TMVO is applied to 

automatically develop test cases for structural data testing, 

particularly path testing. Instead of automating the entire testing 

process, the focus is on centralizing automated procedures for 

collecting testing data. Automation for generating testing data is 

becoming increasingly popular due to the high cost of manual 

data generation. To evaluate the effectiveness of TMVO, it was 

tested on various well-known functions as well as five programs 

that presented unique challenges in testing. The test results 

indicated that TMVO performed better than the original MVO 

algorithm on the majority of the tested functions. 

Keywords—MVO; optimization; testing; swarm intelligence; 

multi-verse optimizer 

I. INTRODUCTION 

The term "optimization" describes the process of 
identifying the most optimal search solutions that are likely to 
resolve a particular issue. There is more than one conventional 
and meta-heuristic optimization strategy available. The 
standard techniques are gradient-based and have a faster 
execution time than convergence. On the other hand, these 
methods are not applicable to multimodal functions that are 
neither differentiable nor predictable. Thus, this technique does 
not allow for the discovery of the global optimal solution. Due 
to the fact that they start with only one point, it gets trapped at 
the local optimal value. There are many other search strategies 
that can be used to solve this problem; however, most of them 
require additional assistance that is based on exponential time, 
which makes them more time-consuming [1]. As a result, 
meta-heuristic optimization approaches have become the most 
widely used approach. Meanwhile, intelligent algorithms are 

increasingly used in the development of applications, testing, 
and the making of business decisions in today's world [2][3]. 

The use of meta-heuristics has been increasingly 
widespread over the past two decades. Computer researchers in 
a wide variety of domains are familiar with meta-heuristic 
techniques such as the Genetic Algorithm, multi-verse, and 
Particle Swarm Optimization, amongst others. Because of its 
ease of use, adaptability, and absence of approaches requiring 
derivation, meta-heuristic has garnered a lot of attention in 
recent years [4] [5]. Techniques for testing software include 
both black-box and white box testing. In the black-box method 
of software testing, the tester is only privy to the system's 
architecture. He or she is not privy to any information 
regarding the program's internal design and does not have 
access to the source code. Its purpose is to guarantee that the 
system accepts all of the necessary inputs in the way that was 
described and produces results that are accurate. White box 
testing, also known as structural testing, focuses on 
investigating the internal logic and structure of the source code 
being tested. During the structural test, each possible code path 
will be checked for a predetermined set of test information 
inputs. It is very important to select a diverse control flow way 
to test since there are a large number of paths for test 
succession, and performing the tests in succession can be 
difficult. Finding connections between system components, 
choosing those paths, creating test data for every path, and 
assessing test results are only a few examples of the many 
problem viewing paths involved in software testing [6]. 

The white box test criteria for software testing, such as 
branch coverage, focus on the process of locating a group of 
test cases that increases the likelihood of error discovery. 
Within the context of this approach, an experiment will serve 
as the indication that triggers the calling of the test routines 
with specific input group values. After that, those drivers will 
make a comparison between the output and the one that was 
relied upon. Utilizing known inputs that can be put to use but 
will ultimately prove to be impossible, allowing for an infinite 
supply of them. As a result, the primary focus of automated 
software testing is on the process of naturally locating the 
smallest set of inputs in order to broaden the scope of the test 
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criteria [7]. When it comes to the process of developing test 
cases for critical path coverage testing, the concept of linear 
coded sequence is absolutely necessary. It is possible that the 
productivity of the development of all of these important paths 
can be increased, and at the same time, it will be appropriate to 
create test cases with the assistance of a variety of testing tools 
so that those tested programs can be investigated. This can be 
done through all of the important paths [8]. 

It has been shown by the "No Free Lunch" theorem [9] that 
metaheuristics do not always succeed in solving optimization 
issues. Results show that metaheuristic optimization works 
well for one type of optimization issue but not another. For the 
aforementioned causes, it is important to create a more efficient 
optimization metaheuristic algorithm [10], [11]. 

The primary contribution of this study is the introduction of 
an improved version of the Multi-verse Optimizer, named the 
Testing Multi-Verse Optimizer (TMVO). Instead of focusing 
on a specific region, TMVO takes into account the mobility of 
the swarm and the average of the two best solutions across the 
universe. A mean-based algorithm model is employed to guide 
particle movement towards the optimal solution. TMVO's 
proposed movement equations enable effective space 
exploration and utilization, and also address the issue of poor 
convergence, providing an additional benefit by escaping local 
minima. 

The second contribution of this study involves the 
application of TMVO algorithm, an enhanced swarm 
intelligence metaheuristic, to address the issue of single 
objective optimization in the automated generation of test cases 
for structural data testing, particularly path testing. Rather than 
automating the entire testing process, TMVO focuses on 
centralizing automated procedures for collecting testing data. 
The proposed TMVO achieves this goal by directing the 
swarm based on the past performance of the top three solutions 
discovered by the swarm. The population search history is also 
utilized to provide an alternative answer, which is the mean of 
the three best spots identified so far, thus improving the 
particles' ability to explore the space. This results in more 
opportunities for the swarm particles to be discovered and 
utilized, thereby increasing the likelihood of achieving a global 
optimum while avoiding a local minimum challenge. To 
overcome these challenges, the direction of particle flow is 
switched with each cycle. 

Due to the absence of a universally applicable 
metaheuristic that can be used to address all optimization 
issues, and the fact that no metaheuristic has proven to be 
effective for solving all identified optimization problems, many 
swarm intelligence studies have focused on optimizing specific 
systems. 

Route testing is a methodology for testing software that 
involves a search of the program domain for test cases that, 
when combined with the code, will cause the program to 
follow a specified path. Path testing is an optimization issue 
with no unique solution due to the unlimited number of 
possible pathways in a program. Consequently, it is only 
realistic to pick a fraction of these paths for testing. If the 
pathways to be tested have been clearly described and an 
adequate fitness function has been constructed, then TMVO 

might be used for this purpose. In this work, a test case is 
treated as a representative of a generation, with the chosen 
target route serving as the endpoint toward which the algorithm 
is directed. 

This study aimed to address one of the most well-known 
problems in software testing by proposing an improved swarm 
intelligence metaheuristic method, called TMVO, to resolve 
the route testing problem. The TMVO method was created to 
address the aforementioned issues and proposed a better route 
for the swarm particles to follow, improving the movement 
strategy of a swarm of particles. To evaluate the algorithm's 
efficacy, a battery of benchmark functions was used, and its 
exploitation, exploration, global optimal solution, and best 
path-finding abilities were tested across these three domains. 
The results were compared to those of a popular metaheuristic 
technique, and several indicators, both visual and statistical, 
were used to assess the quality of the output. The proposed 
enhanced technique successfully solved the single-objective 
optimization issue in software testing. 

The following goals have been set for this research; the first 
goal is to propose an improved MVO optimization method by 
averaging the best places in the search space, which is 
informed by the past motion of the particles. The second goal 
is to use the superior movement approach to increase the 
efficacy of swarm movement in path testing and test data 
collection. The third goal is to use the created metaheuristic to 
address the MVO premature, to converge problem and the 
local optima entrapment problem. The fourth goal is to 
compare the proposed enhanced method to existing 
optimization algorithms through empirical testing using 
standard benchmark functions and testing software. 

In this work, the Testing Multi-Verse Optimizer (TMVO) 
is presented as an improved Multi-verse Optimizer. Instead 
than focusing on a single place, TMVO considers the swarm's 
mobility and the mean of the two best options in the universe. 
Using a mean-based algorithm model that has been suggested, 
particles will migrate toward the ideal solution. The 
recommended movement equations of TMVO ensure the 
effectiveness of space exploration and utilization. In addition to 
resolving the issue of poor convergence, it also escapes the 
local minimum. 

This study makes a contribution through enhancing MVO 
in solving the problem of path testing by enhancing the test 
data generation. It also provides a comprehensive analysis of 
the algorithm's movement strategy, equations, pseudo-code, 
and parameters. When it comes to solving software testing 
issues, the algorithm offers a more effective path testing 
method for getting to best tested path. TMVO has been 
evaluated and validated in comparison to a number of well-
established functions. In addition to this, it provides a solution 
for a problem involving a single optimization problem in 
software testing. 

The remaining part of this study is organized as follows. 
The related works are reviewed in more detail in Section II. 
The methodology including different types of software testing, 
and the path coverage test is described in Section III. In Section 
IV, the experimental results and discussion are presented where 
Section V concludes this study. 
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II. RELATED WORK 

The Multi-Verse optimizer, often known as the MVO, was 
first suggested to be developed by Mirjalili and colleagues 
[12]. They came up with an original algorithm that was 
inspired by nature and gave it the name Multi-Verse Optimizer 
(MVO). The white hole, the black hole, and the wormhole are 
the three natural phenomena that serve as the inspiration for 
this algorithm's design. The demand for these models arises 
from the requirement to independently carry out exploration, 
exploitation, and vicinity search. Biswas [13] presented an ant 
colony optimization (ACO)-based method that produces 
groups of ideal pathways and ranks them in order of 
preference. In addition, using these methodologies leads in the 
grouping of test data inside the area so that similarity may be 
used as input for the paths that are constructed. The proposed 
methods ensure comprehensive software coverage with little 
duplication of effort. In [14], the authors employed an 
approach dubbed "propagation error" to analyze the growth of 
defects. Through the development of test cases, we are able to 
activate seed faults and provoke associated potential issues. 
The testing procedure involves triggering and correlating these 
flaws. Clever algorithms are used in this method, with the aim 
of permanently designing test cases to disperse data about seed 
flaws. All faults and related defects that were before invisible 
are now easily discernible thanks to propagation routes. 

Aspect oriented programming (AOP) is recommended by 
Jain et al. [15], [16] as a method for crawling into program 
modules without modifying their source code and component 
in order to investigate regions where faults are suspected to 
exist. AOP execution places an emphasis on making use of 
system cut points. In addition to this, it includes crucial code at 
each execution point for the purpose of testing. To improve the 
effectiveness of conventional random testing and random 
partition testing approaches, some researches suggested using 
Dynamic Random Testing, also known as DRT. The DRT is 
presented as a potential further improvement to the testing's 
viability. In order to decide on those upgrades for a testing 
profile that is more reasonable, it is necessary to have access to 
additional historical testing data along with an estimation of the 
rate at which defects are identified for each subdomain in real 
time, for example. This exemplifies one instance of the 
symbolization that the Java-based DSU system provides. In 
this approach, system tests that were developed for both older 
and newer versions of the program can be updated, and it 
purposefully tests whether or not an incremental upgrade can 
result in a failed test. 

Testing software is widely regarded as an effective strategy 
for ensuring the quality of software in both the academic and 
commercial settings. The quality of the test data has an effect 
on the testing process and is also an essential component in 
determining how well software is tested. As a natural part of 
the software development life cycle, software testing may be 
carried out either automatically or manually as a matter of 
course. Both approaches have their advantages and 
disadvantages. The creation of test data is the initial step in the 
software testing process. In the testing process, there are a few 
various procedures that need to be carried out. These 
procedures include the development of test data, the 
prioritizing of test cases, and the reduction of test cases. The 

initialization of the test data is the method that is the most 
difficult aspect of testing in these methods. According to [17], 
there would be a variety of sub-tasks amongst test cases, test 
appropriateness, and test data [18]. 

Test cases are the conditions that are going to be set, and 
the analyzer is going to use those to determine whether or not 
the specified function fits in suitably. The gathering of test 
cases will ensure that the test is suitable. Test data are a special 
sort of data that is used for evaluating different software 
applications. They can be easily recognized from other types of 
data. In addition, it will serve as the feed for the system's input. 
It is possible that this will serve as the principal test for the data 
or the field validations for any software applications. Creating 
test data for very simple programs is not a tough undertaking. 
On the other hand, producing the data for extensive initiatives 
might be challenging [19]. There is a wide variety of software 
available that can be used to generate test data [20], including 
intelligent test data generators, test data generators that use 
path oriented principles, and test data generators that use goal 
oriented. Creating test data would involve the use of several 
methodologies, such as UML diagrams; nevertheless, the 
development of test data would be dependent on graphical user 
interfaces. The coverage-based testing methodology, which 
consists of a collection of conditions that absolutely need to 
fulfill all of the prerequisites, could be used to generate test 
data [21]. A wide variety of coverage strategies, including 
branch coverage, function coverage, and statement coverage, 
are all viable options. 

However, there is no assurance that the flaws in the test 
data will be uncovered by every converge method. The offered 
strategies leverage objective function for test data creation. The 
test data that are generated as a result of the objective function 
give the best possible possibility for defect detection. The 
space and path disparity functions are the goal functions. In 
order to get the space disparity, we need to first measure the 
distance that separates each of the test suites. Next, we need to 
calculate the path disparity by working backwards from the 
branch condition through the control flow graph [22], [23]. 
Because product testing must take into account both the long 
term and the cost-benefit analysis, extensive testing may not be 
carried out. Since a wide variety of methods and resources are 
used to automate the processes [24], it's possible that the use of 
such mechanizations for testing has become essential as of late. 
Successful testing requires the identification of code routes, the 
creation of a test data suit for those paths, a testing procedure 
on the Software Under Test (SUT) using the data, an 
evaluation of the results, and the production of quality models. 

Successful testing would examine as many test cases as 
possible that are similar to those already performed. As an 
added cost-cutting measure, it is important to prioritize paths 
with the expectation that the majority of errors will be found in 
the preliminary phases of the process, and to identify 
appropriate paths and test data from among the many possible 
options. Path testing is a very useful technique for finding bugs 
in software components [25], [26]. 

III. METHODOLOGY 

In this section, we describe the procedures and techniques 
employed to carry out the study, including data analysis, and 
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statistical methods. The research design and settings are also 
discussed in detail. This section provides a detailed account of 
the methods used to answer the research questions and 
provides a clear understanding of how the research was 
conducted. 

A. Types of Testing 

It is of vital importance to clarify here the main types of 
testing since testing is used in this study to test the research 
hypothesis. The testing of software can be divided into two 
categories: static testing and dynamic testing. 

In static software testing, the reviewer completes code 
reviews by walking through hypothetical inputs to the SUT 
while outwardly accompanying the real program flow. Static 
testing is a type of software testing. This method requires the 
reviewer to invest their time, and the reviewer themselves need 
to be an expert as well as possess the necessary skills to 
evaluate the code. It is possible to specify from these variables 
the paths that might not be executable. This is made possible 
by the enhancements to static testing that let the code be 
symbolically evaluated. This is done by gathering distinct paths 
and variables regarding code execution. This methodology 
could be used to aggregate these variables in order to provide a 
demand solver with the information it needs to decide which 
routes and paths were previously infeasible. 

When performing dynamic testing, the SUT code may 
actually be executed using the test inputs that have been 
provided. The observed behaviors of the SUT are compared to 
its typical behaviors, and the test is either successful or 
unsuccessful depending on whether the observed behaviors 
match the technique that is relied upon to conduct the test. 
There are two different kinds of testing that may be done on 
dynamic systems: black-box testing and white box testing. The 
outcome of an output defect is what is understood to be a 
software defect [27]. 

In black-box testing, the system is evaluated without the 
tester having any prior knowledge of the system's underlying 
architecture. In black-box testing, the individual performing the 
testing does not have access to the program's source code. He 
or she needs knowledge regarding the modeling of the 
framework. In this section, the tester generally connects with 
the software through the user interface by providing inputs and 
testing outputs. However, the tester is not expected to have any 
prior knowledge regarding how to operate input. The accuracy 
of software objectives is checked for throughout the black-box 
testing process. These objectives can be tested using the inputs 
and outputs domain. This demonstrates that the program in 
question has both an input and an output; results from output 
failures are regarded to be software flaws [28]. 

Testing with a black-box can be used to identify problems 
with data structures, error functions, and interfaces. Black-box 
eliminates system techniques. It detects errors that are caused 
by faults in the software in order to find out what the problem 
is with the output. It is possible to use it to identify incorrect 
functions, which produced undesirable output at executed, 
inaccurate conditions. This is due to the fact that incorrect 
functions generate inaccurate outputs anytime they are put into 
action. 

Testing procedures that provide information regarding the 
internal specification and design of the system are referred to 
as white-box testing. It is not unusual for this to be referred to 
as structural testing. It includes testing for anything to do with 
program logic, including testing for loops, testing conditions, 
and testing based on data flow. Even if there is only an 
incomplete software definition, this will assist in the discovery 
of flaws. The goal of white box testing is to ensure that each 
possible path in software has been explored by the test cases. 

White box testers have access to the system's source code 
and are therefore familiar with its architecture. The tester 
begins by analyzing the source code, then uses the knowledge 
from the source code to generate a variety of test cases, and 
finally, particular code routes are utilized in order to achieve a 
desired amount of code coverage [29]. It is guaranteed by the 
test cases that each of the program's independent pathways has 
been followed at least once. Each internal data structure would 
be tested to ensure the system's dependability. Each loop is run 
until it reaches its boundaries while staying within its 
operational constraints. White-box testing is a technique that 
can be utilized by software engineers in the process of 
designing test cases. This technique involves practicing distinct 
paths within a module, practicing legitimate true and false 
decisions, executing loops at their limits and inside their 
operational limits, and practicing inner data structures to 
guarantee that they are correct. It would appear that test cases 
need to be modified whenever implementation is altered. In 
this article, we have simply utilized the black-box testing 
approach to evaluate the functionality of two separate lines 
based on different test cases utilizing BVA and Robustness 
testing. White box testing, on the other hand, covers testing the 
majority of the program's code. Changing the requirements 
under test conditions will help identify typographical problems 
[30]. 

B. Path Coverage Test 

The testing technique known as "coverage basic path 
testing" refers to testing strategies that are designed to cover 
the fundamental path of the software. The test target is the 
fundamental flow of the program when it is executed using this 
method. After gathering test information for the program input 
space, taking those test data into consideration as input, and 
then eventually running the program, it carries out the 
fundamental path by running the program and executing it. The 
participation of the fundamental routes group is required in 
order to carry out the genuine testing technique. The following 
is a list of features that are shared by all fundamental paths: 1) 
Each and every path in the program is completely autonomous; 
2) Each and every edge in the program is accessible; and 3) 
Any paths in the program that do not have a position with the 
path set can potentially be achieved through the use of paths 
linear operation in the fundamental path set. The fault 
propagation path is a way that will show the advancement of 
defects where mistakes originate in software nodes; they may 
gradually propagate on different nodes. This method will be 
referred to as the fault propagation path. During the procedure 
that is used to repair errors that have already been created, past 
errors will be used to determine which paths have the greatest 
potential for error propagation. This will help correct errors 
that have already been made. Inaccurate historical data will be 
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used as a source of this knowledge, and it will be used to define 
these routes. 

The MVO algorithm uses the expansion rate as the 
determining factor for the value of the function for each and 
every search. In addition, every particle in the search zone has 
a similar appearance to an elected solution as well as a variable 
in an elected solution. Greater expansion rates result in greater 
and lower possibilities of the existence of those hypothesized 
white holes and black holes, respectively. These higher 
expansion rates also bring search agents or universes with 
higher rates to transfer items through those white gaps. White 
holes are recommended as a result of reduced inflation rates, 
which also reduce the expansion rates that should be used to 
transport items into black holes. As a result, the probability of 
black holes is increased, and white holes are offered as a result. 
Wormholes, disregard the flatland rates; they would be the 
explanation for the arbitrary sending of the object to the best 
universes. The MVO algorithm contains a wheel choice 
component that can be used for scientific demonstrations of 
white holes and black holes, as well as the return of objects to 
the search area. The search agents are arranged in each 
iteration according to their expansion rates, and once a search 
agent is chosen, it must be assigned a white hole. These various 
characteristics of the universes are supported by MVO. It 
makes use of wormholes in order to transport irregular things 
through the search region, and it does so by exploiting those 
wormholes. These wormholes randomly switch the positions of 
those objects in the search region, preventing them from 
claiming their expansion rates in any scenario. Wormhole 
connections have to be helped along between our reality and 
the finest possible universe. 

C. The proposed Multi-Verse Optimizer (TMVO) 

This sub-section introduces the proposed TMVO, including 
the algorithm steps, pseudo-code, the strategy, TMVO’s 
operations, and its parameters, and theoretical conclusion. 

TMVO is a stochastic swarm optimization algorithm with a 
revolutionary exploration and exploitation movement approach 
for locating optimum solutions to optimization problems. 
TMVO is based on enhancing MVO movement strategy by 
taking the top three solutions in the swarm for the automatic 
development of test cases for structural data testing, 
particularly path testing. Since the original MVO algorithm 
lacked the ability to effectively cover both the exploration and 
exploitation stages of the search process, the TMVO algorithm 
was developed to solve this problem. In addition, TMVO 
addresses the premature convergence issue that arises with 
certain implementations of the MVO algorithm. TMVO 
algorithm advises focusing exploration and exploitation efforts 
on the following points: White holes would be a higher amount 
of time on make in the universes for secondary expansion rates, 
which they transmit items on distant universes. This is because 
white holes consume an inordinate quantity of matter and 
energy. In addition to this, assist them in improving their rates 
of expansion. Black holes would appear in universes with low 
expansion rates, and as a result, they provide a higher 
probability of items being accepted from other universes. This 
is because low expansion rates result in more compact 
universes. This adds another layer to the possibility of claiming 
an increasing inflation rate for universes that have a lower 

expansion rate. White and black hole tunnels have a tendency 
to transport from worlds the objects with rising expansion rates 
to the folks with low expansion rates; in this method, the 
general inflation rate concerning known universes will be 
moved forward across the span from those repetitions. 
Wormholes have a propensity to appear in any universe at 
random, regardless of the expansion pace, or something along 
those lines due to the many properties of. Through all of the 
repetitions, the universe remains preserved. If there is a sudden 
shift, white/black hole tunnels need universes, which will lead 
to an inquiry of the search space. Unanticipated progressions 
are also helpful in determining the ideal local solidity. Random 
wormholes re-expansion of the variables from variables of the 
universes around the finest result gained in this way in those 
course about iterations, thus ensuring that exploitation is 
performed around those the overwhelming majority 
guaranteeing area of the search region. WEP Adaptive values 
expansion will concentrate exploitation by using an 
optimization procedure. This is because the occurrence of 
wormholes in universes is a likelihood. TDR Adaptive values 
reduce the journey variable distance near the best universe. 
This is a method that expands the precision of a local search 
through iterations. The joining of those indicated by the 
algorithm is ensured by checking the exploitation of local 
search comparative of the amount derived from the number of 
iterations. 

The following are the main steps involved in TMVO: 

The first step, which is named initialization, involves 
initially populating the algorithm's parameters with random 
values. Second, the suggested motion equations will be used to 
iteratively improve upon these initial best guess answers. 

The second step: the algorithm's designated equations are 
utilized to progressively enhance the outcomes until a stopping 
criterion is met. 

The third step: The algorithm's optimal solution is 
determined by balancing the values of the goal function and 
comparing the resultant comparisons. The pseudo-code for the 
TMVO algorithm is displayed in Fig. 1. 

1. Define the set of all universes, U. 

2. Define the set of all portfolio weights, w. 

3. Define the set of all groups, G. 

4. Initialize the current universe, u, and the current portfolio weights, w. 

5. Evaluate the performance of the current portfolio, P, in the current 
universe, u. 

6. For each group, g, in G:  

a. Select a subset of universes, U', from U that belong to group g.  

b. For each universe, u', in U':  

i. Calculate the portfolio weights, w', that maximize the expected return 
in universe u'.  

ii. Evaluate the performance of the portfolio, P', in universe u' using 
weights w'.  

c. Select the universe, u*, and the corresponding portfolio weights, w*, 
that result in the highest performance in the subset of universes. 

7. Select the group, g*, and the corresponding universe, u**, and portfolio 
weights, w**, that result in the highest overall performance. 

8. Update the current universe and portfolio weights to u** and w**, 
respectively. 

9. Go to step 5 and repeat the process. 

Fig. 1. TMVO pseudocode. 
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An exploration phase and an exploitation phase are 
separated by a population-based method, as we saw in the 
previous section. For MVO space exploration, it has employ 
white hole and black hole ideas. On the other hand, the 
wormholes help MVO make better use of the search spaces. 
We treat every possible answer as if it were its own world, with 
each variable representing a different type of thing that may be 
found in that universe. The value of the fitness function is used 
to determine the inflation rate that is applied to each solution. 
As time is a standard concept in both cosmology and multi-
verse theory, we employ it throughout this study rather than 
iteration. 

However as in MVO, the TMVO universes are optimized 
using the following criteria: If inflation rates are high enough, 
white holes are almost guaranteed to form. Black holes are less 
likely to form with greater inflation rates. Third, items in 
universes with a higher inflation rate are more likely to be 
sucked into white holes. 

The number of items that enter the universe via black holes 
is larger in universes with a lower inflation rate. No matter the 
pace of inflation, things in all worlds may eventually make 
their way through wormholes to the best universe at random. 

TMVO Pseudocode show that the normalized inflation rate 
serves as a roulette wheel for selecting and determining white 
holes. The likelihood of sending things through white hole or 
black hole tunnels increases as the inflation rate decreases. 
When solving the maximizing problems, -NI must be replaced 
with NI. Since the universes must swap things and experience 
sudden changes in order to traverse the search space, the 
exploration can be ensured using this approach. 

The previously mentioned method allows for unabated 
object exchange across worlds. We assume that each universe 
is equipped with wormholes that allow its things to randomly 
travel through space, allowing for the preservation of 
cosmological variety while also allowing for the possibility of 
exploitation. Wormholes are capable of altering the objects of 
universes at random, regardless of their inflation rates. We 
assume that wormhole tunnels are constantly built between a 
universe and the best universe generated so far in order to 
supply local modifications for each universe and have a high 
likelihood of enhancing the inflation rate utilizing wormholes. 

The suggested methods have varying degrees of computing 
complexity, which are determined by the number of iterations, 
the number of universes, the roulette wheel mechanism, and 
the universe sorting mechanism. Every iteration includes the 
process of sorting the universe, and we use the Quicksort 
algorithm, which, in the best case scenario, has a complexity of 
O(n log n), and in the worst case scenario, has a complexity of 
O(n2). The selection from the roulette wheel is carried out for 
each variable in each universe throughout the iterations, and its 
complexity ranges from O(n) to O(log n), depending on the 
implementation. 

The followings are some observations that are concluded in 
order to gain an understanding of how the suggested algorithm 
could, in theory, have the ability to solve optimization 
problems: 

 White holes are more likely to form in universes that 
have high inflation rates since this increases the 
likelihood that they will be able to transmit things to 
other universes and help those universes increase their 
inflation rates. 

 Black holes are more likely to emerge in worlds with 
low inflation rates because these holes have a larger 
likelihood of receiving things from other universes 
since inflation rates are lower. This once more raises the 
possibility of increasing inflation rates for those 
universes that now have low inflation rates. 

 The general or average inflation rate of all universes 
steadily improves over the course of the iteration 
process, as white and black hole tunnels tend to carry 
objects from universes with high inflation rates to those 
with low inflation rates. 

 Because wormholes tend to form at random in any 
world, independent of the inflation rate, the variety of 
universes may be kept intact throughout the course of 
several iterations of the simulation. 

 Wormhole and black hole tunnels need the sudden 
transformation of universes, which ensures the thorough 
investigation of the search space. 

 Sudden shifts are helpful in resolving local optimalities 
that have stagnated. 

 During the iterative process, wormholes randomly 
reposition some of the variables in the universes 
surrounding the best solution gained thus far. This 
facilitates exploitation all over the most promising area 
of the search space. 

 The existence probability of wormholes in universes is 
gradually increased when adaptive WEP settings are 
used. As a result, the process of optimization places a 
strong emphasis on exploitation. 

 To enhance the precision of local search during 
iterations, adaptive TDR values are used to decrease the 
variable's traveling distance around the best universe. 

 By placing a greater emphasis on exploitation and local 
search in relation to the number of iterations, the 
suggested algorithm's convergence is ensured. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Evaluation of TMVO over the Benchmark Functions 

To test the performance of TMVO, experiments had been 
run over well-known benchmark functions that represent 
unimodal and multi-modal functions that have been used by 
many researchers [31][32][33]. 

The cost functions of the benchmark unimodal function 
(F1-F7) are displayed in Table I, and those for the multimodal 
functions (F8-F14) are displayed in Table II. In order to get 
reliable statistical findings, the experiment needs to be carried 
out n times before any meaningful conclusions can be drawn 
about the performance of meta-heuristic algorithms. Each run 
needs to be carried out until m numbers of iterations have been 
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completed, and this is for the purpose of verifying if the 
algorithm is stable. In most cases, the statistical and output 
metrics, such as the average, the standard deviation, as well as 
the minimum and maximum values, of the best solution in the 
most recent iteration are measured and registered for 
comparison studies of the algorithms. For the purposes of 
acquiring, recording, and verifying the outcomes of the TMVO 
algorithm, the exact same process and experimental approach 
have been adhered to throughout. In addition to computing the 
error, it is important to determine how much the findings 
deviate from the ideal value. 

TABLE I. UNIMODAL FUNCTIONS MATHEMATICAL FORMULATION (F1-
F7) 

No. Formula 

F1 𝑓1(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 

F2 𝑓2(𝑥) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|
𝑛

𝑖=1

𝑛

𝑖=1
 

F3 𝑓3(𝑥) = ∑ (∑ 𝑥𝑗

𝑛

𝑗=1

)

2

𝑛

𝑖=1
 

F4 𝑓4(𝑥) = max 𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 

F5 𝑓5(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑛=1

𝑖=1
 

F6 f6(x) = ∑ (xi + 0.5)2
n

i=1
 

F7 f7(x) = ∑ ixi
4 + random(0,1)

n

i=1
 

TABLE II. MULTIMODAL BASIC FUNCTIONS (F8-F14) 

No. Formula 

F8 f8(x) = ∑ −xi sin √|xi|
n
i=1  * ∑ ixi

4 ∗ random(0,1)i=1  * 

F9 f9(x) = ∑ [xi
2 − 10 cos(2πxi) + 10]

n

i=1
 

F10 
f10(x) = −20 exp (−0.2√

1

n
∑ xi

2
n

x=i
) − exp (

1

n
∑ cos(2πxi)

n

i=1

)

+ 20 + e 

F11 
f11(x) =

1

4000
∑ xi

2 − ∏ cos (
xi

√i
) + 1

n

i=1

n

i=1
 

 

12 

𝑓12(𝑥) =
𝜋

𝑛
{10 sin(𝜋𝑦1) + ∑(𝑦𝑖 − 1)2[1 + 10 sin2(𝜋𝑦𝑖+1)]

𝑛=1

𝑖=1

+ (𝑦𝑛 − 1)2} + ∑ 𝑢(𝑥𝑖 , 10,100,4)

𝑛

𝑖=1

 

 

𝑦𝑖 = 1 +
𝑥𝑖 + 1

4
𝑢(𝑥𝑖, 𝑎, 𝑘, 𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚   𝑥𝑖 > 𝑎
0      − 𝑎 <  𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚   𝑥𝑖 < 𝑎
} 

F13 

𝑓13(𝑥) = 0.1 {sin2 + ∑(𝑥𝑖 − 1)2[1 + sin2(3𝜋𝑥𝑖 + 1)]

𝑛

𝑖=1

+ (𝑥𝑛 − 1)2[1 + sin2(2𝜋𝑥𝑛)]}  

+ ∑ 𝑢(𝑥𝑖 , 5,100,4)

𝑛

𝑖=1

 

F14 𝑓14(𝑥) = − ∑ sin(𝑥𝑖). (sin (
𝑖𝑥𝑖

2

𝜋
))

2𝑚
𝑛
𝑖=1 , m=10 

The average, on the other hand, compare the overall 
performance of the method. All of the statistical analyses that 
were carried out allow us to establish beyond a reasonable 
doubt that the results were not the product of random chance. 
In each of the algorithms, the population size was set at fifty, 
and the maximum number of iterations was set at one 
thousand. It is important to keep in mind, however, that the 
maximum number of iterations and the number of particles 
(possible solutions, for example) should be determined by 
experimentation when dealing with situations that occur in real 
life. 

It is necessary to conduct tests a total of n times if one 
wishes to achieve reliable statistical findings from meta-
heuristic algorithms. In addition, for the purpose of validating 
the consistency of the method, each iteration must be carried 
out until the mth time. In order to create TMVO, report on its 
performance, and then validate its efficacy, the identical 
experimental process was carried out. 

The effectiveness of the TMVO algorithm that was 
proposed has been assessed. It has been proved that there is a 
set of statistical measurements that includes the average, the 
standard deviation, the minimum, the maximum, and the error 
measurement. These measurements have been determined 
through the process of experimentation throughout the course 
of the twenty-three benchmark functions shown in the Tables 
(1-2). 

The primary regulating parameters of these algorithms, the 
number of search particles and the maximum iteration, have 
been set to the values of 50 and 1000 respectively so that a fair 
comparison can be made between them. To achieve the highest 
possible level of performance, the settings for the various 
governing parameters of each algorithm are taken from the 
most recent version of the source code. Each of the algorithms 
is executed fifty times on each of the test functions, and the 
outcomes of these simulations are presented later in this study. 
It is important to note that the results of the algorithms are 
standardized in the range [0, 1] by employing the min-max 
normalization so that their performances may be compared 
across a variety of test functions. 

We have evaluated the performance of TMVO on a set of 
well-known benchmark functions utilized by many researchers 
to measure the performance of optimization algorithms. 

The benchmark sets for multimodal hybrid functions are 
categorized from function 15 to function 23 and the 
mathematical formulations for hybrid composition functions 
are shown in Table III. 

The Lower Bound (LB), Upper Bound (UB), dimension 
(Dim), and Fmin of the benchmark-evaluated functions are 
displayed in Table IV. 

TABLE III. MULTIMODAL HYBRID FUNCTIONS (F8-F14) 

Multimodal Functions Formula (F15- F23) 

𝑓15(𝑥) = ∑ [𝑎𝑖 −
𝑥1(𝑏𝑖

2+𝑏𝑖𝑥2)

𝑏𝑖
2+𝑏𝑖𝑥3𝑥4

]

11

𝑖=1
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𝑓16(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4 

𝐹17(𝑋) = (𝑥2 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) cos 𝑋1 + 10 

𝑓18(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2

+ 3𝑥2
2)] 𝑥 [30 + (2𝑥1 − 3𝑥2)2𝑥 (18 − 32𝑥1 + 12𝑥1

2

+ 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2] 

𝑓19(𝑥) = − ∑ 𝐶𝑖 exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1

)

4

𝑖=1

 

𝑓20(𝑥) = − ∑ 𝐶𝑖 exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

6

𝑗=1

)

4

𝑖=1

 

𝑓21(𝑥) = − ∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝐶𝑖]−1

5

𝑖=1

 

𝑓22(𝑥) = − ∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝐶𝑖]−1

7

𝑖=1

 

𝑓23(𝑥) = − ∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝐶𝑖]−1

10

𝑖=1

 

TABLE IV. PARAMETERS OF THE EVALUATED FUNCTIONS F1-F23 

Function Dim LB UB Fmin 

F1 30 -100.00 100.00 Zero 

F2 30 -10.00 10.00 Zero 

F3 30 -100.00 100.00 Zero 

F4 30 -100.00 100.00 Zero 

F5 30 -30.00 30.00 Zero 

F6 30 -2400.00 2400.00 Zero 

F7 30 -1.28 1.28 Zero 

F8 30 -500.00 100.00 418.9829x5 

F9 30 -5.12 5.12 Zero 

F10 30 -32.00 32.00 Zero 

F11 30 -600.00 600.00 Zero 

F12 30 -2400.00 2400.00 Zero 

F13 30 -2400.00 2400.00 Zero 

F14 2 -5.00 5.00 1 

F15 4 -5.00 5.00 0.00030 

F16 2 -5.00 5.00 1.0316 

F17 2 [-5,0] [10,15] 0.398 

F18 2 -2.00 2.00 3.00 

F19 3 0.00 1.00 -3.86 

F20 6 -5.00 5.00 -3.32 

F21 4 0.00 10.00 -10.1532 

F22 4 0.00 10.00 -10.4028 

F23 4 0.00 10.00 -10.5363 

TABLE V. COMPARISON BETWEEN THE TMVO AND MVO IN TERMS OF 

MEAN FITNESS VALUE 

F# Mean of TMVO Mean of MVO TMVO vs MVO 

F 1 1.89618 20.8066 Better 

F 2 1.482 5.2544 Better 

F 3 8.9748 234.41 Better 

F 4 1.4287 3.9419 Better 

F 5 67.3715 843.6999 Better 

F 6 6.5543 22.9003 Better 

F 7 0.070841 0.86756 Better 

F 8 -4864.7373 -7388.2747 No 

F 9 25.6411 163.2599 Better 

F 10 2.8175 4.5803 Better 

F 11 0.91005 1.6356 Better 

F 12 2.5573 2.4075 No 

F 13 0.077985 0. 2351 Better 

F 14 0.998 0.998 Equal 

F 15 0.00044931 0.00058644 Better 

F 16 -1.0316 -1.0316 Equal 

F 17 0.3978 0.3978 Equal 

F 18 3 3 Equal 

F 19 -3.8628 -3.8627 Better 

F20 -3.3214 -3.201 Better 

F21 -10.0464 -2.6068 Better 

F22 -10.3418 -9.8605 Better 

F23 -5.1928 -5.1885 Better 

The comparison between the proposed TMVO algorithm 
and the MVO algorithm in terms of mean fitness value is 
tabulated in Table V. Comparing TMVO algorithm with MVO 
over the tested functions F1-F23 showed that TMVO has very 
competitive results. In the unimodal functions (F1-F7) the 
TMVO has shown better results and outperformed MVO over 
all the seven functions. Regarding the multi-modal functions 
(F8-F12), TMVO was also achieved better mean fitness values 
than MVO except F8. Moreover, the proposed algorithm is 
competitive over the expanded multi-modal functions (F13, 
F14). The results have shown that when testing the algorithm 
TMVO over the multi-modal hybrid functions (F15-F23), the 
TMVO outperformed MVO in most cases and achieved the 
same fitness value in three cases. 

The proposed TMVO achieved better fitness values in most 
cases due to the fact that TMVO offers additional exploration 
points inside the search space. TMVO takes the two best 
possible solutions and utilizes them to find a new solution at 
each iteration. It drives closer and closer to the global optimum 
by updating the current particle location to the position that is 
optimal between these two points. 

B. Evaluation of TMVO in Test Data Generation for Path 

Testing 

The experimental results testing is carried out on five 
benchmark programs, which are presented in Table VI. The 
fitness value is a numerical number that represents individual 
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quality in comparison with the existing local solution in order 
to seek for the optimum local solution that has the least amount 
of fitness value possible. The option that results in the lowest 
overall fitness value will be the one that we consider to be the 
most viable solution. The fitness value is computed by 
applying Korel's route distance relation to each variable. The 
fitness path distance is calculated by adding up each variable's 
fitness value at each point along the path. To start, a series of 
random test instances are generated so that the process can 
begin. Utilizing points that were picked at random allows for 
the improvement of the existing solution. Perform a calculation 
to determine the fitness value of each potential solution. Each 
swarm is assigned a fitness value, and then each swarm 
searches for the local minimum value within the search zone to 
see whether a higher value can be found.. If we can, the new 
value is saved, and the old value is replaced with it. Arrange 
candidate solutions in order of increasing fitness, beginning 
with the best. The onlooker phase begins with the most optimal 
solution to fitness. If the termination requirements are deemed 
to be complete, an onlooker local search will be issued; 
otherwise, it will be used to improve candidate solution fitness. 
In case that the phase is completed without satisfying the 
finishing conditions, the phase to replace sources that have 
reached the maximum number of tries will be initiated. 

We utilized the five variables in Program1, which are (x, y, 
z, j, k). First, if j - 80 >= 0, the distance at variable j will be 
zero; if variable k - 70 >= 0, the distance at variable k will be 
zero; if variable x - 60 >= 0, the distance at variable y - 50 = 0; 
this is the Korel branch distance relation. Specific details and 
results including the fitness value are tabulated in Table VII. It 
is of vital importance to correctly interpret the values in Table 
VII.  The letters A, B, C, D, and E represent the Korel's route 
branch distance of the variables j, k, c, y, and z respectively. 

TABLE VI. BENCHMARK PROGRAMS USED AS CASE STUDIES 

Program1 Program2 Program3 

If (j >=80) 

{….. } 

Else if (k >= 70) 

{….. } 

Else If (x >=60) 

{….. } 

Else If (y>=50) 

{….. } 

Else If (z>=25) 

{….. } 

while (j >=75) 

{….. } 

while (k >= 65) 

{….. } 

while (x >=55) 

{….. } 

while (y>=45) 

{….. } 

while (z>=35) 

{….. } 

If (j >=60) 

{….. } 

Else If (k >= 80) 

{….. } 

Else If (x >=55) 

{….. } 

if (y>=25) 

{….. } 

while (z>=45) 

{….. } 

Program4 Program5  

If (j >=57) 

{….. } 

If (k >= 68) 

{….. } 

if (x >=34) 

{….. } 

 

If (j >=45) 

{….. } 

Else If (k >= 30) 

{….. } 

while (x >=40) 

{….. } 

Else If (y>=35) 

{….. } 

 

TABLE VII. KOREL'S ROUTE BRANCH DISTANCES OF THE VARIABLES J, K, 
C, Y, AND Z ALONG WITH THE FITNESS VALUES (PROGRAM 1) 

# j k x y z A B C D E Fit. 

1 91 50 75 100 54 11 0 15 50 29 105 

2 89 64 84 68 66 9 0 24 18 41 92 

3 81 87 71 82 87 1 17 11 32 62 123 

4 62 72 89 52 99 0 2 29 2 74 107 

5 84 56 72 86 79 4 0 12 36 54 106 

6 70 91 84 92 59 0 21 24 42 34 121 

7 77 67 71 72 88 0 0 11 22 63 96 

8 76 97 61 84 65 0 27 1 34 40 102 

9 53 65 72 79 85 0 0 12 29 60 101 

10 90 56 80 80 70 10 0 20 30 45 105 

11 96 66 62 53 75 16 0 2 3 50 71 

12 99 63 61 88 85 19 0 1 38 60 118 

13 55 87 90 55 85 0 17 30 5 60 112 

14 78 95 60 72 93 0 25 0 22 68 115 

15 68 98 63 93 93 0 28 3 43 68 142 

16 76 97 85 69 51 0 27 25 19 26 97 

17 99 57 79 84 68 19 0 19 34 43 115 

18 59 92 85 75 84 0 22 25 25 59 131 

19 100 93 100 59 82 20 23 40 9 57 149 

20 59 67 72 94 76 0 0 12 44 51 107 

21 67 87 62 58 59 0 17 2 8 34 61 

22 100 80 76 90 69 20 10 16 40 44 130 

23 66 78 95 58 82 0 8 35 8 57 108 

24 50 54 54 66 86 0 0 0 16 61 77 

25 63 78 89 98 51 0 8 29 48 26 111 

The following equation is utilized to determine the fitness 
value that is used for the path of Program1. This value, which 
is the sum of the distances that were indicated before, is 
computed as follows: 

𝐹 =  (𝐽 − 80) + (𝐾 − 70) + (𝑋 − 60) + (𝑌 − 50) +
 (𝑍 − 25)   (1) 

In Program2, we utilized the five variables (x, y, z, j, k). If 
the first variable (j) has a distance of zero, then the second 
variable (k) also has a distance of zero. (if (k) - 65>= 0), the 
third variable (x) has a distance of zero. if (x) - 55 >= 0, the 
fourth variable (y) has a distance of zero if (y) - 45 = 0, and the 
fifth variable (z) has a distance of zero if (z) - 35. The Korel's 
route branch distances of the variables in Program2 and the 
fitness values are displayed in Table VIII. 

Eq. (2) has been used to get the fitness value that should be 
utilized for the path of program 2, which is 54. This value 
represents the sum of the distances that were indicated earlier. 

F =  (J − 75) +  (K − 65) + (X − 55) + (Y − 45) +
 (Z − 35)  (2) 
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TABLE VIII. KOREL'S ROUTE BRANCH DISTANCES OF THE VARIABLES J, K, 
X, Y, AND Z ALONG WITH THE FITNESS VALUES (PROGRAM 2) 

# j k x y z A B C D E Fit. 

1 86 84 52 94 78 11 19 0 49 43 122 

2 92 57 59 86 100 17 0 4 41 65 127 

3 74 54 62 63 83 0 0 7 18 48 73 

4 86 57 94 75 71 11 0 39 30 36 116 

5 66 96 83 52 81 0 31 28 7 46 112 

6 70 98 69 58 95 0 33 14 13 60 120 

7 81 88 92 92 80 6 23 37 47 45 158 

8 53 69 86 91 100 0 4 31 46 65 146 

9 53 81 64 74 68 0 16 9 29 33 87 

10 89 79 53 82 94 14 14 0 37 59 124 

11 51 58 88 97 84 0 0 33 52 49 134 

12 78 66 99 54 84 3 1 44 9 49 106 

13 86 61 66 73 89 11 0 11 28 54 104 

14 100 57 98 51 57 25 0 43 6 22 96 

15 77 68 78 63 100 2 3 23 18 65 111 

16 91 80 92 68 57 16 15 37 23 22 113 

17 78 76 82 62 68 3 11 27 17 33 91 

18 86 65 60 67 56 11 0 5 22 21 59 

19 72 73 72 67 72 0 8 17 22 37 84 

20 87 73 100 84 67 12 8 45 39 32 136 

21 61 64 92 61 50 0 0 37 16 15 68 

22 95 50 69 78 68 20 0 14 33 33 100 

23 62 53 52 51 83 0 0 0 6 48 54 

24 52 91 54 60 73 0 26 0 15 38 79 

25 94 96 83 80 100 19 31 28 35 65 178 

In Program3, the five variables (x,y,z,j,k) are also 
employed to evaluate the proposed algorithm. The Korel 
branch distance relation states that if the value of the first 
variable, j, is greater than or equal to 60, then the value of the 
second variable, k, is greater than or equal to 80. If the value of 
the third variable, x, is greater than or equal to 45, the value of 
the fourth variable, y, is less than or equal to 75, and the value 
of the fifth variable, z, is 45. Table IX tabulates the outcomes 
when applying the TMVO over Program3. The symbols (A, B, 
C, D, E) represent Korel's Route Branch Distances of the 
variables (j, k, x, y, z) respectively. 

TABLE IX. KOREL'S ROUTE BRANCH DISTANCES OF THE VARIABLES J, K, 
X, Y, AND Z ALONG WITH THE FITNESS VALUES (PROGRAM 3) 

# j k x y z A B C D E Fit. 

1 58 85 77 72 75 0 5 22 47 30 104 

2 94 70 83 83 91 34 0 28 58 46 166 

3 83 90 88 76 93 23 10 33 51 48 165 

4 70 55 87 96 100 10 0 32 71 55 168 

5 86 94 64 60 93 26 14 9 35 48 132 

6 77 90 60 79 72 17 10 5 54 27 113 

7 73 51 64 73 68 13 0 9 48 23 93 

8 66 50 86 83 64 6 0 31 58 19 114 

9 79 75 53 61 76 19 0 0 36 31 86 

10 97 63 76 54 91 37 0 21 29 46 133 

11 87 86 67 84 93 27 6 12 59 48 152 

12 75 83 65 71 53 15 3 10 46 8 82 

13 80 91 97 64 95 20 11 42 39 50 162 

14 90 72 81 62 63 30 0 26 37 18 111 

15 71 100 54 81 64 11 20 0 56 19 106 

16 79 81 84 66 61 19 1 29 41 16 106 

17 71 55 71 64 93 11 0 16 39 48 114 

18 66 88 78 75 71 6 8 23 50 26 113 

19 52 88 80 63 82 0 8 25 38 37 108 

20 79 76 69 71 68 19 0 14 46 23 102 

21 75 84 61 88 50 15 4 6 63 5 93 

22 56 67 83 95 72 0 0 28 70 27 125 

23 79 98 69 61 60 19 18 14 36 15 102 

24 53 100 53 84 57 0 20 0 59 12 91 

25 58 80 75 65 95 0 0 20 40 50 110 

The fitness value that was used for the path of program3 
was 82, which is the sum of the distances that were indicated 
earlier and is computed using Equation 3 as follows 

𝐹 =  (𝐽 − 60)  +  (𝐾 − 80)  + (𝑋 − 55)  + (𝑌 − 45)  +
 (𝑍 − 25) (3) 

TABLE X. KOREL'S ROUTE BRANCH DISTANCES OF THE VARIABLES X, Y, 
AND Z ALONG WITH THE FITNESS VALUES (PROGRAM4) 

# x y z C D E Fit. 

1 100 52 61 43 0 27 70 

2 64 97 77 7 29 43 79 

3 66 99 66 9 31 32 72 

4 92 85 80 35 17 46 98 

5 89 91 62 32 23 28 83 

6 67 88 65 10 20 31 61 

7 80 50 71 23 0 37 60 

8 93 63 65 36 0 31 67 

9 86 72 53 29 4 19 52 

10 99 98 80 42 30 46 118 

11 56 56 72 0 0 38 38 

12 53 82 54 0 14 20 34 

13 95 82 55 38 14 21 73 

14 56 70 96 0 2 62 64 

15 93 55 76 36 0 42 78 

16 56 80 78 0 12 44 56 

17 55 56 60 0 0 26 26 

18 100 95 51 43 27 17 87 

19 52 80 55 0 12 21 33 

20 53 100 94 0 32 60 92 

21 93 61 64 36 0 30 66 

22 96 58 82 39 0 48 87 

23 90 77 60 33 9 26 68 

24 70 64 75 13 0 41 54 

25 88 84 97 31 16 63 110 
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In Program4, we employed three variables (x, y, z). If j - 60 
>= 0, k - 80 >= 0, and x - 45 >= 0, then the distance between 
the first and third variables is zero, as predicted by the Korel 
branch distance relation. Refer to Table X. The symbols (C, D, 
E) represent Korel's Route Branch Distances of the variables 
(x, y, z) respectively. 

Using Equation 4, we can determine that the fitness value 
for path of program4 is 33, which is the total of the distances 
we determined before. 

F =  (J − 57) +  (K − 68) + (X − 34)    (4) 

Four variables were employed which are j, k, x, and y in 
Program5. In the Korel branch distance relation, if the value of 
the first variable, j, is zero, then the value of the second, k, is 
also zero, and so on. If the value of the third variable, x, is also 
zero, then the value of the fourth one, y, is also zero. Table XI 
tabulates 25 different cases along with their fitness values. 

Path 5 of Program5 uses a fitness value of 39, which is the 
total of the distances discussed before. The fitness value is 
calculated according to Equation5.  

F =  (J − 45)  + (K − 30) + (X − 40) + (Y − 35)   (5) 

TABLE XI. KOREL'S ROUTE BRANCH DISTANCES OF THE VARIABLES J, 
K,X, AND Y ALONG WITH THE FITNESS VALUES (PROGRAM5) 

# j k x y A B C D Fit. 

1 93 95 73 52 36 27 39 0 102 

2 64 64 93 64 7 0 59 0 66 

3 89 50 90 68 32 0 56 0 88 

4 74 73 96 79 17 5 62 10 94 

5 89 53 70 50 32 0 36 0 68 

6 54 76 98 88 0 8 64 19 91 

7 55 97 73 76 0 29 39 7 75 

8 98 61 81 91 41 0 47 22 110 

9 99 84 88 52 42 16 54 0 112 

10 80 73 62 77 23 5 28 8 64 

11 54 64 89 82 0 0 55 13 68 

12 55 69 59 98 0 1 25 29 55 

13 88 52 61 92 31 0 27 23 81 

14 50 59 99 64 0 0 65 0 65 

15 71 58 55 83 14 0 21 14 49 

16 64 100 89 92 7 32 55 23 117 

17 98 56 84 57 41 0 50 0 91 

18 91 74 97 52 34 6 63 0 103 

19 64 75 55 73 7 7 21 4 39 

20 89 83 56 95 32 15 22 26 95 

21 75 85 64 56 18 17 30 0 65 

22 66 75 51 89 9 7 17 20 53 

23 80 52 79 94 23 0 45 25 93 

24 99 70 90 89 42 2 56 20 120 

25 70 86 66 52 13 18 32 0 63 

V. CONCLUSION 

In this study, Testing Multi-Verse Optimizer (TMVO), an 
improved Multi-Verse Optimizer, is presented. However, 
rather than focusing on a single place, TMVO considers the 
swarm's mobility and the mean of the two best solutions in the 
universe. Using a recently suggested mean-based algorithm 
model, particles will progress toward the ideal solution. 
TMVO's recommended movement equations ensure efficient 
space exploration and utilization. In addition, it eliminates the 
problem of low convergence and escapes the local minimum. 
TMVO has been applied for the generation of test data for 
software structural testing, specifically route testing, that takes 
use of the Multi-Verse optimization algorithm. The proposed 
algorithm has been exhaustively tested through the creation of 
test data for the path coverage criteria and its subsequent 
application to a set of test programs. Additionally, five distinct 
programs and codes have been utilized in order to complete 
this evaluation. The results showed that the algorithm was 
successful in finding the best tested path for the test data, 
which led to an improvement in performance. The performance 
of TMVO is tested over several well-known functions. The 
results have shown that TMVO outperform original MVO 
algorithm over most of the tested functions. 

However, this study presented two contributions. Firstly, an 
improved version of the Multi-verse Optimizer called Testing 
Multi-Verse Optimizer (TMVO) was proposed, which 
considered the movement of the swarm and the mean of the 
two best solutions in the universe. The particles moved towards 
the optimal solution by using a mean-based algorithm model, 
which guaranteed efficient exploration and exploitation. 
Secondly, TMVO was applied to develop test cases for 
structural data testing, specifically path testing, in an automated 
manner. Instead of automating the entire testing process, the 
focus was on centralizing automated procedures for collecting 
testing data. Automation for generating testing data was 
becoming increasingly popular due to the high cost of manual 
data generation. To evaluate the effectiveness of TMVO, it was 
tested on various well-known functions as well as five 
programs that presented unique challenges in testing. The test 
results indicated that TMVO outperformed the original MVO 
algorithm on the majority of the tested functions. 

Despite the success of TMVO, there are still several areas 
where the algorithm can be further developed and tested. This 
includes algorithmic parameter tuning where most optimization 
algorithms have several tuning parameters that need to be set 
for optimal performance. Future research can explore 
automated parameter tuning techniques such as machine 
learning algorithms to improve the performance of TMVO. In 
addition to that, testing TMVO on large-scale problems where 
researchers can focus on testing TMVO on large-scale 
optimization problems and analyzing its scalability and 
efficiency. 
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