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Abstract—End-Edge-Cloud Computing (EECC) has been ap-
plied in many fields, due to the increased popularity of smart
devices. But the cooperation of end devices, edge and cloud
resources is still challenge for improving service quality and
resource efficiency in EECC. In this paper, we focus on the task
offloading to address the challenge. We formulate the offloading
problem as mixed integer nonlinear programming, and solve it by
Genetic Algorithm (GA). In the GA-based offloading algorithm,
each chromosome is the code of a offloading solution, and the
evolution is to iteratively search the global best solution. To im-
prove the performance of GA-based task offloading, we integrate
two improvement schemes into the algorithm, which are the
chromosome replacement and the task rescheduling, respectively.
The chromosome replacement is to replace the chromosome of
every individual by its better offspring after every crossing, which
substitutes the selection operator for population evolution. The
task rescheduling is rescheduling each rejected task to available
resources, given offloading solution from every chromosome.
Extensive experiments are conducted, and results show that our
proposed algorithm can improve upto 32% user satisfaction, upto
12% resource efficiency, and upto 35.3% processing efficiency,
compared with nine classical and up-to-date algorithms.

Keywords—Genetic algorithm; task offloading; task scheduling;
edge computing; cloud computing

I. INTRODUCTION

Smart devices, such as smartphones, Internet of Things
(IoT) devices, drones, and so on, have become ubiquitous
in our life and their number continues to grow rapidly [1],
as communications and information technology advance and
our quality of life improves. Unfortunately, due to their small
physical space, most devices have limited resource capacity
and battery life. As a result, devices frequently lack the
processing power required by user requests, especially for
complex applications like facial recognition and intelligent
driving, which become more and more common.

To address the above issue, several works make use of
cloud computing, which provides “infinite” computing re-
sources, to extend the processing capacity of devices [2],
[3]. However, cloud computing has poor network performance
because it typically provides services via a Wide Area Network
(WAN), such as the Internet. To address this issue, edge
computing brings a few computing resources (edge servers)
close to devices to provide low latency services [4], [5],
[6]. Combining advantages of end devices, edge servers and
cloud, end-edge-cloud computing (EECC) has attracted much
attention from both academia and industry, as it can effectively
and efficiently provide various services to end users [7], [8],
[9].

*Corresponding authors.

In EECC environments, it is challenge to efficiently utilize
the collaboration of devices, edge servers and cloud. To address
the challenge, several works have designed task offloading or
scheduling algorithms for EECC, to improve service perfor-
mance or/and resource efficiency. The task offloading is to
decide the computing node for each task’s processing. Existing
works have made some assumptions to simplify the offloading
problem for EECC, which limits their application scope. For
example, some works ignored the heterogeneity between edge
and cloud resources, which can lead to resource inefficiency
[10], [11]. Some works didn’t exploit the resource capacity of
end devices, even though many modern devices are equipped
with a wealth of hardware resources, and thus wasted zero-
delay local resources for task processing.

There are mainly two categories algorithms used for task
offloading, heuristics and meta-heuristics. Heuristics exploit
some local optimum search strategies tailored to the specific
problem. Heuristics generally have rapid solving processes but
limited performances. In contrast, meta-heuristics are general
problem solvers. Meta-heuristics apply both local searches and
global searches, inspired by natural and social rules. Usually,
compared with heuristics, meta-heuristics can achieve better
performance, but cost more time.

Therefore, in this paper, we exploit hybridization of
heuristics and meta-heuristics, to exploit their complementary
strengths for the task offloading in EECC, considering the re-
source heterogeneity. Even though some works have proposed
hybrid heuristic offloading algorithms, most of them simply
perform two or more algorithms sequentially, leading to a
poor performance of hybridization. Specifically, we use genetic
algorithm (GA) due to its representativeness and extensive
application. GA has powerful global search ability, but slow
convergence sometimes. To make up for this shortcoming, we
propose to use chromosome replacement instead of selection
operator for GA. To improve the performance of offloading
solutions decoded from chromosomes, we reschedule failed
tasks by a heuristic algorithm. The contributions of this paper
can be summarized as follows:

• The task offloading problem of EECC is formulated
into a mixed integer nonlinear programming problem
(MINLP), with deadline constraints. The optimization
objectives are maximizing the finished task num-
ber and the overall resource utilization, which are
commonly used for quantifying user satisfaction and
resource efficiency, respectively.

• A task offloading algorithm is proposed based on GA
and first fit heuristic scheduling (FF). The proposed al-
gorithm uses an integer coding approach for mapping
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between task offloading solutions and chromosomes.
GA is employed for searching the global best solution.
To improve the quality of task offloading solutions, FF
is used to reschedule failed tasks to available resources
in EECC, for every offloading solution. To speed
up the convergence of GA, the selection operator is
replaced by a replacement operator that replaces every
chromosome with its better offspring produced by
crossover.

• Extensive simulated experiments are conducted for
evaluating the performance of our proposed algorithm.
Simulation parameters are set referring to related
works. Experiment results verify that our proposed
algorithm can finish more tasks than nine of classical
and up-to-date offloading algorithms. The efficiencies
of the replacement and the task rescheduling are also
verified by the results.

The content below is organised as follows. Section II for-
mulates the task offloading problem in EECC. Section III illus-
trates our proposed offloading algorithm. Section IV evaluates
the performance of the proposed algorithm. Section V presents
the works related to task offloading for EECC. Section VI
concludes this paper.

II. PROBLEM STATEMENT

A. Resource and Task Model

In this paper, we consider the EECC system consisting of
D end devices, E edge servers (ES), and V cloud servers (CS).
We use si, 1 ≤ i ≤ D + E + V to represent these computing
nodes, where devices include si, 1 ≤ i ≤ D, ES are si, D+1 ≤
i ≤ D+E, and CS are si, D+E +1 ≤ i ≤ D+E + V . For
computing node si, there are ni computing cores each with
gi capacity. The network connection between two computing
nodes, say si and sj , is represented by constants bi,j which
is its data transfer rate. If there is no connection between si
and si′ , bi,i′ = 0. For each computing node, there is no data
transmission delay within it, i.e., bi,i = +∞, 1 ≤ i ≤ D +
E + V .

T tasks (tk, 1 ≤ k ≤ T ) are launched by D devices. Binary
constants oi,k, 1 ≤ i ≤ D, 1 ≤ k ≤ T are used to indicate the
ownerships of these tasks, where oi,k = 1 means tk is launched
by si, and oi,k = 0 means not. Task tk has ck computing size,
i.e., it requires ck computing resource for its processing. The
input data amount of tk is ak. In this paper, we ignore the
transmission delay of the output data, because the output data
amount usually is very small [12]. The deadline of tk is dk,
which means tk must be finished before dk. For every task, if
its deadline constraint cannot be satisfied, it will be rejected,
because there will be no profit for processing the task.

A task offloading solution is the mapping/assignments of
tasks to computing cores for their processing, which can be
represented by a set of binary variables xi,j,k, as shown in
Eq. 1. xi,j,k is 1 if tk is assigned to jth core in computing
node si, and 0 otherwise. In this paper, we consider the
resource granularity as computing core instead of computing
node, because considering fine granularity of resources helps
to improve the resource efficiency [13].

xi,j,k =

{
1, if tk is assigned to jth core in si
0, else

,

1 ≤ i ≤ D + E + V, 1 ≤ j ≤ ni1 ≤ k ≤ T.

(1)

For each task, it can be only assigned to one core for
its processing. In this paper, we don’t consider to use the
redundant execution for the performance improvement due to
its huge resource costs. Thus, Eq. 2 holds.

D+E+V∑
i=1

ni∑
j=1

xi,j,k ≤ 1, 1 ≤ k ≤ T. (2)

And when tk is accepted and processed by a computing
core,

∑D+E+V
i=1

∑ni

j=1 xi,j,k = 1. When tk is rejected,∑D+E+V
i=1

∑ni

j=1 xi,j,k = 0. Then, the number of accepted
tasks can be achieved by Eq. 3.

N =

T∑
k=1

D+E+V∑
i=1

ni∑
j=1

xi,j,k. (3)

B. Task Processing Model

For a task assigned to a core, its computing can be started
only when its input data transfer finishes and the core is
available. Then Eq. (4) must be satisfied, where ftAk and stk
are respectively the completion time of data transfer and the
start time of computing for tk.

ftAk ≤ stk, 1 ≤ k ≤ T. (4)

When tk is assigned to jth core in the computing node si,
its computing consumes ck/gi time. Its input data is transferred
from its device (si′ where oi′ = 1) to si. Then the data transfer
rate is

∑D
i′ (oi′,k ·bi′,i), and the transfer time is ak/

∑D
i′ (oi′,k ·

bi′,i). Therefore, for each task, the start time and the finish time
of data transfer and computing satisfy constraints is Eq. (5) and
(6), where stAk and ftk represent the start time of tk’s input
data transfer and the finish time of its computing, respectively.
Noticing that Eq. (5)–(6) also hold for rejected tasks, as both
sides of inequality operators are 0 for these tasks. Then, the
deadline constraints can be formulated as Eq. (7).

stAk +
ak

D+E+V∑
i=1

ni∑
j=1

(xi,j,k ·
D∑
i′
(oi′,k · bi′,i))

≤ ftAk ,

1 ≤ k ≤ T.

(5)

stk +
ck

D+E+V∑
i=1

ni∑
j=1

(xi,j,k · gi)
≤ ftk, 1 ≤ k ≤ T. (6)

ftk ≤ dk, 1 ≤ k ≤ T. (7)

When multiple tasks are assigned to one computing core,
they cannot be computed simultaneously. There are two cases
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for the computing order of two tasks (tk and tk′ ) in every
computing core. If tk is computing before tk′ , ftk ≤ stk′ ,
and otherwise, ftk′ ≤ stk. Therefore, Eq. (8) formulates the
exclusiveness of tasks’ computing in every computing node.

xi,j,k · xi,j,k′ · (stk′ − ftk) · (stk − ftk′) ≤ 0,

1 ≤ k, k′ ≤ T.
(8)

For each computing core, its occupied time is the lat-
est finish time of tasks assigned to it, which is τi,j =
maxTk=1(xi,j,k · ftk) for jth core of si. The occupied time of
a computing node is the maximal occupied time of its cores,
which is τi = maxni

j=1 maxTk=1(xi,j,k · ftk) for si. Thus, the
amount of occupied computing resources is τi · ni · gi on si.
While, the resources effectively use for computing tasks are
R =

∑T
k=1

∑D+E+V
i=1

∑ni

j=1(xi,j,k · ck) in overall system.
Then, the overall computing resource can be calculated by
Eq. (9).

U =
R∑D+E+V

i=1 (τi · ni · gi)
. (9)

C. Task Offloading Problem Model

Now, based on above formulations, the task offloading
problem can be modelled as follows:

Maximizing N + U, (10)

subject to,
Eq. (1)–(9). (11)

The objective is to maximize the number of accepted tasks
plus the overall computing resource utilization. Because the
total number of tasks is fixed in EECC system, the maximiza-
tion of accepted task number is identical to maximizing the
accepted ratio which is one commonly used metric for quan-
tifying user satisfaction, service level agreement, and quality
of service. As resource utilization is not greater than one, user
satisfaction maximization is the major optimization objective
in the model. Noticing that U is nonlinear and non-convex,
and decision variables including binary (xi,j,k) and continuous
variables (stAk , ftAk , stk, and ftk), the task offloading problem
belongs to mixed integer non-linear programming (MINLP),
which is hard to be solved exactly. In fact, the task offloading
problem has been proved NP-hard [14]. Therefore, in the next
section, we propose a hybrid heuristic algorithm for efficiently
solving the offloading problem with polynomial time.

III. IMPROVED GENETIC ALGORITHM FOR OFFLOADING

In this section, we design an improved genetic algorithm
with chromosome replacement and task rescheduling method,
GRRS, to solve the task offloading problem presented in the
previous section, which is outlined in Algorithm 1.

At first, we design a solution representation method (or
encoding/decoding approach) to create the map between task
offloading solutions and chromosomes used for search in GA-
based algorithms. For GA inspired by Charles Darwin’s theory
of evolution, the population consists of multiple individu-
als and is evolved by changing these individuals’ chromo-
somes each with multiple genes. In the solution representation

Algorithm 1 GRRS: The genetic offloading algorithm with
replacement and rescheduling
Input: The information of tasks, and EECC resources;
Output: A task offloading strategy;

1: Initializing chromosomes of individuals randomly;
2: Evaluating fitness of every individual using Algorithm 2;
3: Initializing the best chromosome (bc) as one with the best fitness

in all individuals;
4: while the terminal condition is not reached do
5: for each individual (Y ) do
6: Crossing Y with another individual which is randomly

selected, with a certain probability, and producing two
offspring, i.e., new chromosomes;

7: Evaluating the fitnesses of two offspring;
8: Replacing Y ’s chromosome with the better offspring;
9: if Y ’s chromosome has better fitness than bc then

10: Updating bc as Y ’s chromosome;
11: end if
12: mutating Y with a certain probability;
13: Evaluating fitness of Y ;
14: Updating bc as done in lines 9–11.
15: end for
16: end while
17: return the offloading strategy decoded from bc by Algorithm 2;

method, there is a one-to-one relationship between genes and
tasks in EECC. The value of each gene is integer, which
identifies the computing core where the corresponding task
is assigned. Thus, the possible value of a gene is 1 to
the number of cores which can be used for processing the
corresponding task. Then, we get the assignments of all tasks
from a chromosome or an individual.

For example, considering an EECC system consisting two
devices, two ES, and two CS, where each node has one
computing core and each device launches one task. Then,
the number of genes is 2, corresponding to these two tasks.
The possible value in each dimension is 1 to 5, respectively
representing the cores of the device, two ES, and two CS for
the corresponding task.

A fitness function is needed to evaluate how goodness of
every chromosome/individual. We use the optimization objec-
tive (10), N +U , as the fitness function of GRRS. The fitness
evaluation of every chromosome is given in Algorithm 2.
Given a chromosome, it can be easily to achieve a task
assignment solution by the solution representation (lines 3–
5 in Algorithm 2). To achieve a complete offloading solution,
the computing order of tasks assigned to every core needs to
be decided. In this paper, we use the most simple algorithm,
First Fit (FF), for order decisions, and will study more efficient
algorithms to improve the performance of GRRS. With FF
order, we can calculate the finish time of each task one-by-
one (line 7 in Algorithm 2). If the finish time fits deadline
constraint for a task, it is accepted, and otherwise, rejected
(lines 8–12 in Algorithm 2). After all tasks are decided
to be accepted or rejected, GRRS tries to reschedule every
rejected task using FF, to improve the overall user satisfaction
(lines 14–22 in Algorithm 2). Now, we achieve a task offload-
ing solution from a chromosome. The accepted task number
and the overall resource utilization can be easily calculated
based on the offloading solution, and the fitness is achieved
for the chromosome.

www.ijacsa.thesai.org 1033 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 9, 2023

Algorithm 2 Decoding a chromosome into a task offloading
with rescheduling
Input: A chromosome;
Output: A task offloading solution, Ω, and the fitness;

1: Ω ← ϕ; /*the set including assignments of accepted tasks to
computing cores*/

2: Φ← ϕ; /*the set including rejected tasks*/
3: for each gene of the chromosome do
4: Per-assigning the corresponding task into the computing core

identified by the gene value;
5: end for
6: for each task t do
7: Calculating its finish time in the scheme of first fit scheduling

on the core (c) to which it is per-assigned;
8: if the finish time is earlier than the deadline then
9: Ω← Ω ∪ {< t, c >}; /*deciding to assign the task to the

core*/
10: else
11: Φ← Φ ∪ {t}; /*the deadline being violated*/
12: end if
13: end for
14: for each task t ∈ Φ /*rescheduling rejected tasks*/ do
15: for each core c do
16: Calculating its finish time as line 7;
17: if the finish time is earlier than the deadline then
18: Ω← Ω ∪ {< t, c >}; /*rescheduling t to c*/
19: break; /*rescheduling another rejected task*/
20: end if
21: end for
22: end for
23: Calculating overall resource utilization U by Eq. 9;
24: return Ω and |Ω|+ U ; /*the accepted task number N = |Ω|*/

Based on the solution representation and the fitness eval-
uation, GRRS exploits the main idea of GA to iteratively
search for the optimal solution for task offloading, as shown
in Algorithm 1. First, GRRS initializes the population, i.e.,
randomly sets the value of every gene for every individual’s
chromosome, as done by standard GA. Then, GRRS evaluates
the fitness for every initialized chromosome, and sets the best
chromosome as the chromosome with the best fitness. After
these initialization steps, GRRS uses some operators to evolve
individuals by updating their chromosomes (lines 4–16 in
Algorithm 1). The evolution procedure is as follows.

First, for every individual, GRRS uses crossover operator
to create new chromosomes/offspring. GRRS randomly selects
another individual, and performs the crossover operator on
them, with a certain possibility (the crossover possibility). To
ensure the individual diversity for large-scale offloading prob-
lems, GRRS exploits the uniform crossover operator, which
swaps values of two chromosomes in every gene location
with a certain probability. After crossing an individual, two
new chromosomes are produced. For the individual, GRRS
evaluates the fitness of its two offspring, and replaces its
chromosome by the offspring with better fitness than another
one. By such replacement, GRRS can increase the diversity by
retaining new produced chromosomes, and speed the conver-
gence rate by transmitting good genes of the better offspring to
the next generation. If a new offspring has better fitness than
the best chromosome, the best one is uprated as the offspring.

To further enhance exploration ability, GRRS applies the
uniform mutation operator on each individual, to increase

the diversity by creating new genes. The uniform mutation
operator is to change each gene with the mutation possibility
for an individual. After mutating an individual, if the new
chromosome has better fitness than the best one, the best one
is updated as the new one.

GRRS repeats the above evolution procedure until the
terminal condition is reached. There are two approaches for the
set of terminal condition. One is setting the maximal number of
iterations, and another is setting the most times that the fitness
of the best chromosome has no (significant) change. After the
evolution procedure, GRRS decodes the best chromosome into
the task offloading solution, and return it as the global best
solution.

In this paper, we focus on the improvement of GA by
chromosome replacement and task rescheduling. Undoubtedly,
the crossover and mutation operators as well as the parameters
have impact on the performance of GA. These opportunities
will be studied on our future works.

IV. PERFORMANCE EVALUATION

In this section, we conduct extensive simulated experiments
to verify the efficiency of GRRS by comparing with several
classical and up-to-date offloading algorithms. The experiment
environment is illustrated in Section IV-A, and the results are
discussed in Section IV-B.

A. Experiment Environment

In simulated EECC systems, where the simulation param-
eters are set referring to [18], [21], [23], [15] and reality, there
are ten devices, five ES, and ten types of CS. The core number
of devices, ES, and CS are set randomly in ranges of [2,8],
[4,32], and [1,8], respectively. The computing capacities of
each core in every device, ES, and CS are respectively set
as [1.8,2.5]GHz, [1.8,3.0]GHz, and [1.8,3.0]GHz, randomly.
The network transfer rate between a device and an ES/CS is
in the range of [80,120]/[10,20] Mbps. There are 1000 tasks
generated, and the device for lunching each task is randomly
allocated. The computing resource required by a task is in the
range of [0.5, 1.2]GHz, and the input data amount is [1.5,
6]MB. The deadline of every task is set between one and five
seconds.

The algorithms used for the performance comparison with
GRRS to confirm the performance include FF, FFD, EDF,
RAND, GA, GAR, PSO, PSOM, and GAPSO.

• First Fit (FF) iteratively schedules the first task to the
first computing node meeting its requirements.

• First Fit Decreasing (FFD) iteratively schedules the
task requiring maximal amount of computing re-
sources to the first computing node meeting its re-
quirements.

• Earliest Deadline First (EDF) iteratively schedules the
task with the earliest deadline to the first computing
node meeting its requirements.

• Random method (RAND) randomly generates a pop-
ulation as done by GRRS, and provides the solution
corresponding to the best individual.
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• GA [15], [16] uses the uniform crossover, the uniform
mutation, and the roulette wheel selection operators
for the population evolution.

• GA with replacement (GAR) [17] is same to GRRS
without the rescheduling.

• Particle Swarm Optimization (PSO) [18] uses the
idea of particle movement. PSO initializes a popula-
tion with multiple particle (individual), and iteratively
moves each particle toward its personal best position
and the global best position for the particle position
updates (the population evolution).

• PSO with mutation operator (PSOM) [19] added a
mutation operator on each particle at the end of each
iteration.

• GAPSO [20] first initializes a population, and then
sequentially performs GA and PSO on the population
evolution.

The performance of above algorithms are evaluated as
following, and all performance metrics are better when their
values are greater.

• User satisfaction is the experience of users, which
has great influence on the profit and the reputation of
service providers. In this paper, we use the number of
tasks with deadline met, i.e., the accepted task number
(N ), for the quantification.

• Resource efficiency is the workload processed by
a unit of resources, which determines the cost-
performance of service provision. The metrics used for
measuring the resource efficiency are the computing
resource utilization (U , the completed computing size
per unit of computing resource) and the data process-
ing efficiency (the processed data amount per unit of
computing resource,

∑T
k=1

∑D+E+V
i=1

∑ni

j=1(xi,j,k ·
ak)/

∑D+E+V
i=1 (τi · ni · gi)).

• Processing efficiency is the processing speed
of a computing system, which is quantified by
the completed computing size and the processed
data amount by a time unit (R/maxi{τi} and∑T

k=1

∑D+E+V
i=1

∑ni

j=1(xi,j,k · ak)/maxi{τi}).

The experiment process are as follows. We first generate
a EECC system, and then sequentially measure various per-
formance metrics for all of comparison algorithms and GRRS.
For each measured value for every algorithm and every metric,
we normalize it by dividing it into that of FF, to focus on
the relative performance between different algorithms. These
previous experiment steps are repeated more than 100 times,
and we report the average value for each metric in the follows.
Noticing that, in each measurement, there is a new EECC
system generated randomly. Thus, the statistical information
of every algorithm in each metric is meaningless without the
normalization. GRRS has statistically significant difference
with other algorithms in every performance metric.

Besides comparing the performance of GRRS with
other offloading algorithms, we verify the efficiency of the
task rescheduling, by comparing the performance between

GA/PSO/GAPSO/GAR with and without task rescheduling.
The results are presented and discussed in section IV-B4.

B. Experiment Results

1) User Satisfaction: Fig. 1 gives the relative number
of accepted tasks when applying different task offloading
methods, on average. As shown in the figure, GRRS achieves
the most accepted tasks, which completes 7.98%–32% more
tasks than other algorithms. This verifies that GRRS performs
good on the optimization of the user satisfaction. The main
reasons are as follows.

For heuristics, FF, FFD, and EDF, the priority order of
resources used for task processing is devices, ES, and CS.
This can complete more task in low network latency but scarce
resources of devices and ES. As shown in experiment results,
GRRS accepts 12%–29.4% and 32%–33.7% less tasks than
these heuristic algorithms at devices and ES, respectively, as
shown in Fig. 2 and Fig. 3. But this can result in some
tasks with loose deadline assigned to devices or ES at first.
This leads to insufficient resources for processing subsequent
tasks with tight deadline, and thus can drastically decrease the
number of tasks processed by CS and reduce the overall user
satisfaction. As shown in Fig. 4, meta-heuristics process more
than 100% more tasks than heuristics by the cloud. As shown
in Fig. 2 - 4, GRRS processes not the most tasks in one tier
of devices, edges, and cloud. But GRRS has the best overall
satisfaction, as shown in Fig. 1. This phenomenon verifies the
powerful global search ability of GRRS.

Compared with other meta-heuristic algorithms (GA, GAR,
PSO, PSOM, GAPSO), GRRS achieve better performance
in optimizing the user satisfaction, as shown in Fig. 1. The
main advantages of GRRS is the replacement replacing the
selection operator for GA and the rescheduling for improving
the quality of the solution corresponded to an individual.
GAR can complete more tasks than GA, which verifies
that the replacement improves the evolution effectiveness by
substituting the selection operator. The improvement of the
rescheduling strategy on the task offloading will be illustrated
in Section IV-B4.

In addition, we can see that some meta-heuristics (GA,
PSO, PSOM, and GAPSO) has poorer performance than
heuristics, even though they are designed for pursuing the
global best and heuristics are aiming at the local best, in
such a large-scale offloading problem. This inspires us that
meta-heuristics should be carefully designed for a good per-
formance.

2) Resource Efficiency: Fig. 5 and Fig. 6 show resource
utilization and data processing efficiency achieved by different
offloading algorithms. From the figure, we can see that heuris-
tics achieve higher resource utilization and higher data process-
ing efficiency than meta-heuristics. This is mainly because that
heuristics process tasks using scarce local and edge resources
at first. This can provide a good performance for accepted
tasks, and a high computing resource efficiency, because there
is no or a low latency for data transfer. But with prioritization
of device and edge resources, much less tasks can be completed
by the cloud resources, leading to a low user satisfaction as
illustrated above. Contrary to heuristics, meta-heuristics try to
find the global best solution, which can schedule every task to
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Fig. 1. The relative accepted task number achieved by various task
offloading methods in overall.
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Fig. 2. The relative accepted task number achieved by various task
offloading methods in device tier.
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Fig. 3. The relative accepted task number achieved by various task
offloading methods in edge tier.

any resource at first. This provides opportunities for processing
more tasks in overall. Therefore, GRRS improves the user
satisfaction by sacrificing the resource efficiency, compared
with heuristics. It is worth it because the user satisfaction
usually decides the income and reputation of service providers.

In all of these meta-heuristics, GRRS has the highest
resource utilization and data processing efficiency, which are
6.74%–12% and 9.5%–14.1% higher than that of other meta-
heuristics, respectively, as shown in Fig. 5 and 6. This demon-
strates that GRRS performs good at the optimization of both
the user satisfaction and the resource efficiency, and further
confirms the high effectiveness of GRRS.
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Fig. 4. The relative accepted task number achieved by various task
offloading methods in the cloud.
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Fig. 5. The relative resource utilization achieved by various task offloading
methods.
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Fig. 6. The relative processed data amount per unit of computing resources
achieved by various task offloading methods.

3) Processing Efficiency: Fig. 7 and Fig. 8 present the pro-
cessing rates or efficiencies in computing and data processing
in EECC when applying various task offloading methods. In a
distributed system, the processing rate reflects the parallelism,
and thus the throughput, which is one of the most used metrics
quantifying overall performance. As shown in these two fig-
ures, we can see that GRRS has the highest processing rates,
which are 7.6%–31.5% and 11.4%–35.3% higher than other
methods in the computing and data processing, respectively.
This illustrates that GRRS achieves good processing efficiency
for EECC systems.
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Fig. 7. The relative computing efficiency by various task offloading methods.
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Fig. 8. The relative data processing efficiency achieved by various task
offloading methods.

4) Performance of Improvements: One of our improvement
schemes for meta-heuristics is task rescheduling, which can
be applied by any meta-heuristic. In this section, we test
the performance of rescheduling in the improvement of user
satisfaction, resource efficiency, and processing efficiency. The
experiment results are shown in Fig. 9-13, where x RS means
x improved with the rescheduling. From these figures, we
can see that rescheduling can improve above 11% perfor-
mance in every metric for meta-heuristic algorithms on task
offloading. This verifies the high efficiency of rescheduling in
improving the performance of meta-heuristic-based offloading
algorithms. The main reason why rescheduling can improve the
performance of meta-heuristics is that meta-heuristics make
decision of task assignment without considering the load
balance between computing cores. This leads to some cores
are overloaded while some others are underloaded, giving a
opportunity for performance improvement by rescheduling.

V. RELATED WORKS

As the development of IoT, EECC has been applied to var-
ious fields for improving the performance of various data pro-
cessing applications. To improve service quality and resource
efficiency in EECC environments, several works focused on
addressing the task offloading problem.

Sang et al. [21] proposed a heuristic offloading algorithm
to improve the cooperativeness of EECC resources. They used
cloud resources for processing offloaded tasks at first, and
rescheduled some tasks from the cloud to ES and devices to
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Fig. 9. The accepted task number improved by rescheduling.
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Fig. 10. The resource utilization improved by rescheduling.
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Fig. 11. The data processing efficiency improved by rescheduling.
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Fig. 12. The overall computing rate improved by rescheduling.

improve overall performance. This can improve overall user
satisfaction, but negatively affect the overall performance of
task processing. Wang et al. [22] presented two offloading al-
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Fig. 13. The overall data processing rate improved by rescheduling.

gorithms, named as FRFOA and LBOA, respectively. FRFOA
was to offload a task to an ES such that the response time is
minimum every time. LBOA iteratively assigned a task to an
ES which can satisfy requirements of the most tasks. These
heuristic-based algorithms generally consume few resources
but have limited performance, because they only exploit local
search strategies.

Therefore, some works used meta-heuristics to pursue the
global best offloading solution. Both Wang et al. [18] and
Gao et al. [23] applied PSO with same solution representation
method to this paper. In addition, to improve exploration
ability, Gao et al. [23] used Lévy Flight movement pattern for
updating particle positions. Wang et al. [15] used GA for op-
timizing user satisfaction and resource efficiency. Chakraborty
and Mazumdar [16] employed GA to reduce energy consump-
tion with latency constraints. Bali et al. [24] used NSGA-II
to optimize energy and queue delay for offloading data to ES
and CS.

To further improve performance, some works considered
to exploit complementary advantage of different algorithms,
proposed hybrid heuristic algorithms. Hussain and Al-Turjman
[17] replaced the chromosome by its better offspring generated
by the crossover operator for each individual, which is similar
to population evolution behavior of PSO. Nwogbaga et al. [19]
performed mutation operator for every individual at the end of
each evolutionary iteration for PSO to improve diversity for
avoiding premature convergence. Farsi et al. [20] sequentially
performed GA and PSO for the population evolution. Zhang et
al. [25] presented a dynamic selection mechanism to combine
multiple meta-heuristics, which selected offspring generated
by these meta-heuristics to be passed on to next generation.
All of above works just performed two or more meta-heuristics
separately, which leads to a poor performance of combination.

Therefore, in this paper, we exploit a combination approach
to integrate the swarm intelligent into the evolutionary algo-
rithm for a better offloading solution on EECC. In addition,
we propose to use heuristic rescheduling approach to further
improve the solution quality.

VI. CONCLUSION

In this section, we focus on the task offloading problem for
EECC systems. We first formulate the problem into MINLP,
which has been proofed as NP-hard. Then, to solve the problem
with reasonable time complexity, we design a task offloading
algorithm, GRRS, based on GA which is one of the most

representative meta-heuristics and performs well on solving
various optimization problems in many fields. To enhance
exploration and exploitation of GA, we integrate two improve-
ment scheme into it. One is replacing each individual with its
better offspring during the population evolution, to pass on
good genes. Another is rescheduling rejected tasks to take full
advantage of available EECC resources. Extensive experiments
are conducted, and results verify efficiency and effectiveness
of GRRS.
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