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Abstract—In response to the diverse resource utilization 

patterns observed across enterprises, this study proposes the 

utilization of adaptable cloud services. A novel system 

framework is presented, capturing and logging resource 

consumption at discrete intervals. Subsequently, this recorded 

data serves as input for a linear regression model, functioning as 

a machine learning tool to predict resource utilization in 

forthcoming intervals, leveraging historical data stored within 

the regression module. To bolster the resilience of the linear 

regression model, various effective meta-heuristic techniques are 

integrated alongside the conventional linear regression 

methodology, facilitating more accurate anticipation of 

overloaded or under-loaded resource conditions before their 

occurrence in real-world scenarios. Simulations demonstrate that 

the hybrid algorithm, named Whale Optimization Algorithm-

based Linear Regression (WOA-LR), outperforms Genetic 

Algorithm-Linear Regression (GA-LR), Particle Swarm 

Optimization-Linear Regression (PSO-LR), JAYA-LR, and 

traditional Linear Regression (LR) in achieving desired objective 

functions and significantly reducing Mean Squared Error (MSE). 

This approach holds promise for more accurate resource 

utilization prediction and optimization in dynamic cloud 

environments. 
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I. INTRODUCTION 

With recent advances in artificial intelligence, the Internet 
of Things (IoT) [1, 2], Wireless Sensor Networks (WSNs) [3], 
and cloud computing, research efforts are shifting towards 
simplifying communication across various devices. Cloud 
computing represents a novel computational paradigm for 
provisioning computing resources, catering to a wide spectrum 
of users, ranging from individuals to large-scale enterprises [4, 
5]. Cloud computing ecosystems are dominated by the intricate 
and cost-intensive data centers (DCs) that significantly impact 
service providers' financial viability [6]. Cloud providers offer 
three primary service categories, namely Software as a Service 
(SaaS), Platform as a Service (PaaS), and Infrastructure as a 
Service (IaaS), leveraging web service technology [7, 8]. 
Notable examples include Amazon for IaaS [9], Google for 
PaaS [10], and Salesforce for SaaS [11], all renowned as 
leading cloud providers worldwide. On one front, cloud 
providers offer their computational resources to fulfill users' 
Quality of Service (QoS) requirements, and on the other, they 
must effectively manage their Total Cost of Ownership (TCO) 
to thrive in the increasingly competitive cloud market [12]. 
Virtualization technology is widely employed within DCs to 
optimize resource allocation and reduce overall power 
consumption, a pivotal component of TCO. Furthermore, 

power management aligns with sustainability objectives. In a 
virtualized environment, a hypervisor intervenes to multiplex 
the resources of Physical Machines (PMs) among Virtual 
Machines (VMs) [13]. Inefficient resource allocation has 
repercussions on both resource utilization and the overall 
power consumption of DCs [14, 15]. 

Given the dynamic and ever-changing nature of cloud 
infrastructures and platforms, live VM migration emerges as a 
practical strategy that aligns with the current state of DCs [16]. 
Two common occurrences in DCs are under-utilization and 
over-utilization events [17]. The former entails a high-power 
consumption rate, while the latter is characterized by a high 
SLA violation rate. To address the scenario where businesses 
deploy VMs with varying usage patterns and resource 
requirements over time, machine learning approaches prove 
invaluable in discerning near-precise usage patterns in the 
short-term future [18]. Consequently, live virtual machine 
migration is employed to meet requirements before the 
aforementioned unfavorable events materialize. To maintain 
the desired QoS for users, Service Level Agreements (SLAs) 
are established between users and providers [19]. For instance, 
if a user submits an application comprising 150,000 million 
Instructions (MIs) and requests a VM with processing power 
equivalent to 250 million Instructions Per Second (MIPS), the 
provider must ensure the VM operates continuously at 100% 
utilization to deliver the results within 10 minutes. Failure to 
do so results in an SLA violation and a penalty for the service 
provider. The risk of SLA violation escalates when PMs 
become overloaded in DCs. Hence, preemptive offloading of 
some VMs prior to this event can mitigate SLA violations. 
Conversely, the phenomenon of server sprawl significantly 
increases total power consumption, whereby numerous under-
loaded active PMs run concurrently. Server consolidation, 
which consolidates VMs into the fewest active PMs, is an 
effective strategy for reducing overall power consumption [20]. 

The integration of machine learning, deep learning, and 
meta-heuristic algorithms significantly enhances resource 
usage prediction in dynamic cloud environments. These 
methodologies provide a key insight into complex resource 
utilization patterns, contributing to the efficient management of 
cloud infrastructures [21]. Machine learning models, 
particularly linear regression and its variants, empower 
predictions based on historical resource usage data, enabling 
proactive resource allocation and load balancing [22]. Deep 
learning techniques, with their ability to analyze vast amounts 
of unstructured data, facilitate the identification of intricate 
patterns within cloud workloads, leading to more accurate 
predictions [23, 24]. Moreover, the inclusion of meta-heuristic 
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algorithms, such as genetic algorithms, particle swarm 
optimization, and whale optimization, augments predictive 
accuracy by refining the traditional models, enabling them to 
adapt and evolve according to dynamic resource demands [25]. 
The synergy among these methodologies results in robust and 
adaptable prediction models vital for optimizing resource usage 
in dynamic cloud environments, ultimately leading to 
improved service quality, cost efficiency, and better user 
experiences within cloud services [26, 27]. 

In this paper, machine learning techniques are extensively 
leveraged to derive resource usage patterns from historical 
data. This empowers the hypervisor to make swift decisions 
regarding under-utilization and over-utilization events before 
they occur. To address this challenge, machine learning 
techniques are applied to historical data to predict near-future 
resource requests. Processing and memory resources are 
pivotal for each requested VM, with processing capacity 
holding greater significance among power consumers, which 
informs the focus of this study on CPU capacity requirements 
[28]. To forecast near-future resource requests, the linear 
regression algorithm, a branch of machine learning, is 
employed. This involves recording the average resource 
utilization at five-minute intervals, utilizing the data history 
from the previous hour to inform short-term predictions. The 
time interval for data collection can be tailored to specific 
requirements. To enhance the performance of traditional linear 
regression, several effective meta-heuristic approaches are 
incorporated, yielding promising results. The innovation in this 
paper centers on the following key aspects: 

 Introduction of a resource usage prediction model based 
on historical data.  

 Presenting a migration trigger model for timely 
decision-making to avert unforeseen events. 

 Exploration and evaluation of customized meta-
heuristic algorithms to determine the most efficient 
approach. 

The structure of this paper is organized as follows: Section 
II provides an overview of related work in the field. Section III 
introduces the proposed system model. In Section IV, the 
problem is formally defined and elaborated upon. Section V 
presents the suggested algorithm to address the problem. The 
performance assessment of the proposed approach is outlined 
in Section VI. Section VII concludes the paper and outlines 
potential future directions for research in this domain. 

II. BACKGROUNDS 

Live VM migration is the intricate process of seamlessly 
transferring a VM's loads from one PM to another, ensuring 
uninterrupted service for the end user. The initiation of live 
VM migration and server consolidation is motivated by various 
factors, with power management being of paramount 
importance [29]. Other driving factors include mobile 
computing [30], reduction of communication costs [31, 32], 
system maintenance [33], and enhancing system failure 
reliability [34]. This leads to fundamental questions regarding 
when and where VM migration should be triggered, a topic that 
has been extensively explored in existing literature. One 

notable contribution in this domain was made by Martinovic, et 
al. [35], who introduced a server consolidation model aimed at 
minimizing power consumption. They approached the problem 
by transforming the VM placement challenge into a bi-packing 
problem with conflicts and modeled by an integer linear 
program to solve it while utilizing the minimum number of 
PMs required. Zhou, et al. [36] proposed a linear regression 
model for predicting the CPU demands of VMs and 
subsequently triggering live VM migration in anticipation of 
near-future overload. Although this approach holds promise, it 
suffers from relatively high prediction errors. 

Zhao, et al. [37] introduced a communication-aware live 
VM migration algorithm based on the Ant Colony 
Optimization (ACO) algorithm to minimize overall costs. This 
algorithm consists of two phases: first, it identifies VMs with 
high affinity for migration, and second, it selects the 
destination PMs for relocating the VMs. An energy-aware VM 
migration model was presented by Patel, et al. [38] to achieve 
both load balancing and power conservation, involving a three-
way decision-making process for heavy, medium, and light 
workloads. A combined forecasting and load-aware migration 
model, along with an automated algorithm, was proposed by 
Forsman, et al. [39] to address live VM migration. A similar 
approach was put forth by Paulraj, et al. [40], focusing on 
saving energy, enhancing system reliability against failures, 
and maximizing service availability. The VM migration 
process, being resource-intensive and potentially degrading 
performance, employs forecasting models to estimate the 
resource requirements of each VM. Optimal online 
deterministic VM placement and adaptive heuristic algorithms 
are employed to address server consolidation, contributing to 
efficient DC power management and performance maintenance 
[41]. In the proposed approach, a novel system framework is 
introduced, featuring both local and global managers. The 
global manager resides at the master node, while each PM is 
equipped with a local manager responsible for collecting 
information on resource utilization and transmitting it to the 
global manager. Subsequently, the global manager issues 
directives for optimal VM placement, considering user SLAs. 
To further enhance efficiency, a cost function is defined, linked 
to the time associated with the migration process. The 
migration process is carefully orchestrated to avoid violating 
predetermined SLAs. 

The review of existing literature reveals promising 
contributions from the research community. However, there 
remains a challenge in achieving near-precise prediction 
models. This motivates the current article, which leverages 
machine learning methods to predict short-term resource 
requirements for each VM, thereby triggering relevant VM 
migration processes to reduce both power consumption and 
SLA violation rates significantly. 

III. SYSTEM MODEL 

This section introduces the proposed system model and its 
components, along with a schematic example to demonstrate 
how the model functions. The proposed system model, 
depicted in Fig. 1, consists of two main parts: the front end and 
the back end. In the front end, users request specific types and 
specifications of VMs encapsulated in SLA format. These 
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requests are forwarded to a broker module that possesses 
knowledge of the underlying infrastructure's capabilities. The 
requested resources for each VM are logged in a repository, 
accumulating as historical data. Subsequently, the forecaster 
module, a part of the live VM migration scheme, is activated 
based on the historical data in the repository. Its primary 
objective is to prevent both SLA violations resulting from 
overloaded conditions and high-power consumption due to the 
server sprawl phenomenon. 

Fig. 2 provides a schematic example of a scenario 
involving the execution of different VMs within a data center 
with three PMs. Initially, three different users submit their 
requests denoted as R1, R2, and R3, where R1 entails a request 
for 2 VMs, R2 for 1 VM, and R3 for 2 VMs. The broker 
promptly dispatches these requests to the available PMs, as 
depicted in Fig. 2(a). At five-minute intervals, resource 
requests are recorded in a repository. The forecaster module 

extracts insights from this data history and anticipates that PM3 
will become overloaded in the near short-term future due to the 
surging resource request of VM5. To prevent an overload event, 
the live VM migration module is activated, and PM2 is chosen 
for offloading due to its surplus resources. After the live 
migration, the scenario is represented in Fig. 2(b). In this 
situation, when the five-minute time interval is reached, the 
forecaster module predicts that VM2 and VM4 will reduce their 
resource requirements. This prediction aims to decrease 
resource requests. 

Consequently, both PM1 and PM3 are in an under-loaded 
condition in the near future. Therefore, the live VM migration 
scheme is initiated for both VM2 and VM4 to consolidate 
servers. Subsequently, the unused PM3 is transitioned into 
hibernation mode to conserve energy that would otherwise be 
dissipated. 

 

Fig. 1. System model. 

 

Fig. 2. A schematic example of a data center with deployed VMs. 
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IV. PROBLEM STATEMENT 

The core problem at hand is the necessity to make prompt 
decisions to preempt unfavorable events before they 
materialize. Periodically, the forecaster module retrieves data 
from the data repository within the data center to predict the 
impending over-loaded and under-loaded states of each PM. 
Subsequently, the most appropriate decision is made based on 
these predictions. To accomplish this, an advanced linear 
regression model is employed with the objective of minimizing 
the model's Mean Squared Error (MSE). In this pursuit, the 
conventional linear regression method is fused with a meta-
heuristic algorithm, resulting in a novel and advanced hybrid 
forecaster algorithm. The key aim is to reduce the MSE to the 
lowest extent, thereby enhancing the accuracy of the decision-
making process. In essence, the decision becomes increasingly 
accurate as the error approaches its minimum value. To 
facilitate this, the data history stored in the repository 
pertaining to resource requests within the most recent hour is 
divided into 12 records, each representing a five-minute 
interval. Utilizing the information within these recorded data, a 
linear function is established. Eq. (1) represents this linear 
function, where x and y denote the input and forecast functions, 
respectively. The terms C0 and C1 signify the two constants 
that serve as the coefficients of the linear function and must be 
determined by the proposed model. 

           (1) 

V. PROPOSED ALGORITHM 

To address the live VM migration, which is inherently an 
optimization challenge, various competitive algorithms have 
been proposed. These algorithms have been selected based on 
their demonstrated success in the existing literature for solving 
continuous optimization problems and their adaptability to the 
specific problem under consideration. In this section, we 
introduce the following algorithms for calculating both LR's 
parameters C0 and C1: Canonical Linear Regression (LR), 
Genetic Algorithm-based Linear Regression (GA-LR), Particle 
Swarm Optimization-based Linear Regression (PSO-LR), 
Whale Optimization Algorithm-based Linear Regression 
(WOA-LR), and JAYA Linear Regression (JAYA-LR). GA-
LR predicts the utilization of each server for the short-term 
future based on previously recorded mean server CPU 
utilization. In this context, single-point crossover and random 
gene mutation operators are employed. Additionally, a 
tournament algorithm is formulated. These algorithms are 
designed to optimize the LR's parameters C0 and C1, thereby 
enabling more accurate predictions and decision-making in the 
context of the problem at hand. 

In the proposed GA-LR, random individuals are generated 
to represent both populations associated with the two constants, 
C0 and C1, which serve as the coefficients in the linear 
regression function. Each record for each coefficient is 
incorporated into the linear regression function, and the 
difference between this value and the actual value in the dataset 
is regarded as the fitness value. This optimization problem is a 
straightforward minimization problem, where the goal is to 
refine the coefficients over successive rounds. For encoding, 
each chromosome consists of two segments: the first part 
encodes an integer value, and the second part encodes a real 

number. It's worth noting that binary genes are used in the 
encoding process. The Tournament selection procedure aims to 
increase the likelihood of selecting promising chromosomes. In 
this procedure, K chromosomes are randomly chosen from the 
populations, and the best-performing ones are returned. It is 
important to highlight that the proposed tournament selection 
approach does not directly select the best individuals from the 
entire population, as this would risk early convergence, 
potentially resulting in suboptimal performance. The algorithm 
iterates until a specified termination condition is met, 
ultimately returning the best-performing chromosomes that 
yield the minimum MSE value. 

In the PSO-LR algorithm, two distinct swarms of particles 
are randomly generated, akin to the populations of individuals 
in genetic Algorithms. Each particle's future trajectory is 
determined by three key parameters: inertia, local best, and 
global best values. The first parameter, inertia, is responsible 
for the particle continuing in its previous direction. The second 
parameter directs the particle to adjust its direction based on its 
local best, which is recorded in its memory. The third 
parameter steers the particle towards changing its direction to 
align with the global best of the entire swarm. To weigh the 
effectiveness of each parameter, specific weights are assigned 
to them. The algorithm is executed over multiple iterations, and 
subsequently, the best-performing particle thus far is identified 
and returned as the optimal solution. This iterative process 
helps refine the solution and converge towards the most 
accurate values for C0 and C1 in the linear regression model. 
For another comparative approach, the WOA-LR algorithm is 
presented in Fig. 3. 

Similar to other swarm-based meta-heuristic algorithms, 
the WOA-LR begins with the generation of random swarms of 
whales. In this algorithm, each pair of whales represents a 
solution, as each solution requires two coefficients. To this end, 
variables 𝑃𝑜𝑝 0(𝑖) and 𝑃𝑜𝑝 1(𝑖) pertain to the i

th
 whale. The 

loop encompassing lines 4 to 34 is executed for each whale, 
which is why there are two inner for-loops. In lines seven and 
eight, two sets of vectors, a, A, and C, are updated. It is 
important to note that a is a vector that gradually decreases 
from 2 to 0. Additionally, the vectors A and C consist of 
random real values within the [0..1] interval. The changes in 𝑟 
are determined by Eq. (2), and Eq. (3) defines the alterations in 
these vectors. 

 ⃗    ⃗ 𝑟   ⃗       (2) 

 ⃗   𝑟               (3) 

Furthermore, random real values l are stochastically 
selected from the interval [-1..1]. The essence of the WOA lies 
in the oscillation between exploration and exploitation phases 
at intervals during the algorithm's lifecycle. To this end, a 
random variable P is drawn to determine whether to explore or 
exploit the search space. The update process in line 15 is 
specifically designed to reflect the inclination towards 
exploitation or local search. In the context of exploration, the 
update is carried out using Eq. (4), and this operation is 
executed in line 18. In this scenario, the update is impartially 
performed based on the random position of the whale without 
any bias. 
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Fig. 3. Algorithm WOA-LR. 

 ⃗⃗⃗⃗ (   )   ⃗⃗⃗⃗ ( )   ⃗  ⃗⃗⃗   (4) 

The algorithm uses Eq. (5) to update the chosen whale's 
location in order to imitate the distinctive circular movement of 
whales, which is sometimes referred to as a "spiral update 
position." This mechanism is designed to mimic the distinctive 
movement pattern of whales during the optimization process. 

 ⃗⃗⃗⃗ (   )    ⃗⃗⃗⃗⃗      𝑜 (  )    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ( ) (5) 

After the update is executed for all whales, in case any 
whale's solution becomes infeasible, the Clamping function is 
invoked to adjust the encoded solution within the appropriate 
and feasible space. Line 31 represents the application of the 

Clamping (.) function. The specific implementation of the 
Clamping function can vary based on the context. Ultimately, 
the best whale found so far, which represents an efficient 
solution, is returned as the final solution. Another successful 
optimization algorithm, which has been introduced recently, is 
the JAYA algorithm. The JAYA algorithm is specifically 
designed for addressing continuous optimization problems. 
Similar to other meta-heuristic algorithms, it commences with 
a limited number of randomly generated solutions. In each 
iteration, the best and worst solutions found so far are 
identified. The primary objective is to approach the best 
solution while distancing from the worst one. Throughout the 
evolution of each solution, if a new solution improves in terms 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 1, 2024 

70 | P a g e  

www.ijacsa.thesai.org 

of fitness value, it is accepted; otherwise, the previous version 
is retained. Each solution is iteratively adjusted to converge 
toward the best solution gradually found thus far. 

VI. RESULTS 

This section is devoted to the performance evaluation of the 
proposed prediction model. To assess its effectiveness, various 
meta-heuristic-based algorithms have been put forward, and a 
comparative study has been conducted [42-44]. In this context, 
three distinct sets of datasets representing data from the last 
hour have been randomly generated. Table I provides an 
overview of these datasets. All of the selected algorithms 
operate on the same datasets, ensuring a level playing field for 
fair competition in the evaluation process. The simulation 
results are presented in Table II, with the reported values for 
the successful WOA-Regression algorithm highlighted. The 
key to the success of WOA-Regression lies in its ability to 
strike a balance between the exploration and exploitation 
phases during the optimization process, effectively optimizing 
the search process. 

One of the most critical concerns in energy-intensive data 
centers is power consumption. Furthermore, the rate of SLA 
violations significantly affects users' decisions when it comes 
to adopting cloud services. In practice, users tend to abandon 
unreliable cloud providers that cannot meet the agreed SLA 
terms. Thus, ensuring a high-quality experience for users is of 
paramount importance. To address this issue, a power 
consumption model with a linear relationship to CPU 
utilization is introduced in Eq. (6). 

𝑃       

   
    𝑃

    

   
 (    )  𝑃

    

   
     

   
 (6) 

The term    is employed to denote that an idle machine 

consumes a certain percentage of power compared to a fully 
loaded machine. Various research studies, including the current 
paper, commonly use    as 70% of the power consumed by a 

fully utilized machine. To calculate the CPU utilization of a 
PM, the summation of the utilization of all co-hosted VMs 
processing requests is considered, which can be obtained using 
Eq. (7). Additionally, the memory utilization of each PM is 
determined by summing the requested memory of all co-hosted 
VMs, a calculation that can be performed using Eq. (8). These 
measurements are essential for assessing and managing the 
resource utilization of each PM in the data center. 

    

   
 ∑     

       
 
     (7) 

    

   
 ∑     

       
 
     (8) 

The binary decision variable, denoted as    , indicates 

whether a VM is placed on a PM or not. If a VM is placed on a 
PM, this variable is set to 1; otherwise, it is set to 0. 

Additionally, the terms     
    and     

    are used to represent 

the CPU and memory bandwidth requirements of a VM i. 

Similarly, the terms     

   
 and     

   
  are employed to denote 

the CPU and memory utilization of a PM j, respectively. These 
variables and terms play a vital role in optimizing the 
allocation and utilization of resources within the data center. 

TABLE I. AN OVERVIEW OF THE GENERATED DATASETS 

Server 
CPU utilization recorded for different rounds 

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10 Round 11 Round 12 

First server 82% 93% 73% 69% 33% 81% 94% 83% 39% 64% 27% 82% 

Second server 69% 72% 37% 58% 17% 6% 62% 41% 40% 69% 53% 55% 

Third server 66% 96% 49% 43% 81% 71% 6% 42% 17% 94% 41% 76% 

TABLE II. SIMULATION RESULTS 

Error calculation model First PM Second PM Third PM 

WOA-LR MSE= 0.514 MSE= 0.352 MSE= 1.082 

Regression coefficient C0= 0.594, C1= -0.093 C0= 0.664, C1= -0.417 C0= -7.601, C1= 1.271 

JAYA-LR MSE= 1.128 MSE= 0.505 MSE= 1.282 

Regression coefficient C0= 0.628, C1= -0.16 C0= 0.784, C1= -0.511 C0= 0.654, C1= -0.191 

PSO-LR MSE= 1.0073 MSE= 0.441 MSE= 1.123 

Regression coefficient C0= 0.624, C1= -0.752 C0= 0.355, C1= 0.259 C0= 0.751, C1= -0.341 

GA-LR MSE= 0.684 MSE= 0.432 MSE= 1.108 

Regression coefficient C0= 0.722, C1= -0.0481 C0= 0.407, C1= 0.126 C0= 0.563, C1= -0.116 

Conventional LR MSE= 5.762 MSE= 4.128 MSE=7.361 

Regression coefficient C0= 0.653, C1= 0.024 C0= 0.397, C1= 0.154 C0= 0.622, C1= -0.164 
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The live VM migration technique allows the transfer of a 
VM's pages from the source PM to the destination PM with 
minimal interruption, resulting in a small downtime. However, 
VM live migration can have adverse effects on the overall 
system performance and potentially jeopardize SLA between 
users and service providers. This is due to the time required for 
page transfers during migration. For cloud-based web 
applications, on average, downtime may decrease CPU 
utilization by approximately 10%. In other words, this 
phenomenon can lead to SLA violations to some extent. On the 
flip side, it is desirable to reduce the number of aggressive live 
migrations. The Live Migration Time (LMT) is highly 
dependent on the size of the VM's pages being transferred and 
the underlying bandwidth capacity. Since data centers often use 
Storage Area Networks (SAN), there is no need to transfer VM 
storage data, as all PMs have uniform access to SAN. The 
LMT for a VM is calculated using Eq. (9). This information is 
crucial for managing VM migrations efficiently and 
minimizing potential SLA violations. 

   (   )  
     (  )

   
  (9) 

The term   𝑖  (  ) represents the memory size of data 
being transferred via a shared link with a bandwidth capacity 
of    . Furthermore, experimental results indicate that there is 
a 10% degradation in CPU utilization during the process of live 
migration. This performance degradation is quantified using 
Eq. (10), where the term   ( )  represents CPU utilization 
associated with VM i during the migration process. This 
equation provides a measure of the performance impact of live 
migrations, which is crucial for optimizing resource allocation 
and minimizing SLA violations. 

𝑃 (        ∫   ( )  
      (   )

  
 (10) 

The paramount issue that encourages users to remain loyal 
to specific cloud providers is the delivery of a high-quality user 
experience from the services provided. In this context, key 
points such as the minimum throughput and the maximum 
response time must be determined to meet the required QoS, 
which is outlined in the SLA. Web applications that leverage 
cloud infrastructure often exhibit fluctuations in resource 

utilization. As a result, an independent parameter reflecting the 
system's SLA violation rate is needed. To address this, two 
new parameters have been introduced: SLA violation length 
per active PM, denoted as a, and the total performance 
degradation due to VM migration, denoted as β. The parameter 
α represents the duration during which active PMs experience 
100% CPU utilization, indicating the time span during which 
PMs are overloaded. This parameter is measured using Eq. (11) 
and plays a crucial role in quantifying SLA violations within 
the system. 

  
 

 
∑

    

       (   )

 
     (11) 

where, n represents the number of PMs,     
 stands for the 

time during which PMi experiences 100% CPU utilization, 
indicating when PMi is overloaded.        (   )

 is the total time 

during which PMi remains active, serving various VMs. The 
parameter β is calculated using Eq. (12). In this equation, m is 
the number of VMs, 𝑃 (   ) is the performance degradation 
caused by VM migration, and  (   ) represents the total CPU 
resource capacity associated with   𝑖 in terms of MIPS. 

  
 

 
∑

  (   )

 (   )

 
     (12) 

Both parameters α and β independently influence SLA 
violations. To provide a comprehensive assessment of SLA 
violations, a new parameter called the SLA Violation Rate 
(SLAVR) is introduced in Eq. (13). 

          
 

 
∑

    

        (   )
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 (   )

 
   

 
    (13) 

With the inclusion of live migration costs, the performance 
of comparative algorithms is assessed in terms of energy 
consumption attributable to SLA violations, SLAVR, α (SLA 
violation length per active PM), β (total performance 
degradation due to VM migrations), and the number of VM 
migrations. Table III provides a comparison of the state-of-the-
art algorithms based on these assessment metrics. All of the 
comparative algorithms were executed in the CloudSim 
environment, with 20 independent runs. The reported results 
represent the average outcomes obtained from these runs.

TABLE III. PERFORMANCE EVALUATION 

Algorithm VM migrations β (%) α (%) SLAVR (%) Total power consumption (Watt) Power for SLAVR (Watt) 

WOA-LR 189 0.11 1.31 14.76 1327 65.11 

JAYA-LR 203 0.13 1.36 15.61 1672 77.05 

PSO-LR 208 0.13 1.37 17.79 1463 79.19 

GA-LR 211 0.14 1.48 19.62 1495 75.91 

Conventional LR 306 0.16 1.42 21.47 1588 89.02 

VII. CONCLUSION 

This paper introduced a system framework for cloud data 
centers, comprising multiple modules designed to enable 
timely live VM migration for preventing SLA violations 
through the integration of machine learning tools. In this 
framework, a repository module is deployed within the DC, 

functioning as a data history repository where each physical 
machine records its average CPU utilization over time. 
Subsequently, a machine learning tool, specifically a linear 
regression-based model, is employed at regular intervals to 
predict near-future resource requirements. Based on these 
predictions, decisions are made to optimize resource allocation 
and avoid SLA violations. 
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There are still unanswered issues and unresolved problems 
in this field. Expanding the predictive capabilities to include 
important resources such as memory, storage, and network 
bandwidth might improve the overall effectiveness of the 
system. Furthermore, conducting performance evaluations on a 
range of real-world datasets and in different workload 
conditions would provide a more thorough understanding of 
the system's capacity to adjust and withstand challenges. 
Furthermore, it is necessary to do further research to determine 
the scalability, flexibility, and real-time responsiveness of the 
system when implemented and deployed in live cloud settings. 
The limitations of this study are its primary emphasis on CPU 
use, which may result in neglecting the complex interaction 
between various resources and their effect on adhering to SLA 
requirements. Moreover, the system's reliance on past data may 
provide difficulties in dynamic settings, requiring ongoing 
model training and adjustment methods. Future improvements 
may include integrating sophisticated machine learning 
methods, such as deep learning algorithms, to boost the 
accuracy of predictions and consider intricate resource 
linkages. Furthermore, investigating decentralized or 
distributed decision-making models for VM migrations, while 
also taking into account security and privacy concerns in a 
multi-tenant cloud environment, presents a promising direction 
for future study and improvement of the suggested framework. 
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