
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

937 | P a g e

www.ijacsa.thesai.org

Designing an Adaptive Effective Intrusion Detection

System for Smart Home IoT
A Device-Specific Approach with SDN Deployment

Hassen Sallay

College of Computing, Umm Al-Qura University, Makkah, KSA

Abstract—As the ubiquity of IoT devices in smart homes

escalates, so does the vulnerability to cyber threats that exploit

weaknesses in device security. Timely and accurate detection of

attacks is critical to protect smart home networks. Intrusion

Detection Systems (IDS) are a cornerstone in any layered security

defense strategy. However, building such a system is challenging

given smart home devices' resource constraints and behaviors'

diversity. This paper presents an adaptative IDS based on a

device-specific approach and SDN deployment. We categorize

devices based on traffic profiles to enable specialized

architectural design and dynamically assign the suitable

detection model. We demonstrate the IDS efficiency,

effectiveness, and adaptability by thoroughly benchmarking an

ensemble of machine learning models, mainly tree ensemble

models and extreme learning machine variants, on the up-to-date

IoT CICIoT2023 security dataset. Our IDS multi-component

device-aware architecture leverages software-defined networking

and virtualized network functions for scalable deployment, with

an edge computing design to meet strict latency requirements.

The results reveal that our adaptive model selection ensures

detection accuracy while maintaining low latency, aligning with

the critical requirement of real-time accuracy and adaptability to

smart home devices' traffic patterns.

Keywords—Smart home; IoT; IDS; taxonomy, architecture;

SDN; ELM

I. INTRODUCTION

The rapid growth of the smart home market broadly opens
the doors to several threats to people's security and privacy.
People are often unaware of security vulnerabilities, and
manufacturers fail to prioritize security. This combination leads
to a growing attack surface for hackers to exploit. Indeed, it is
well known that many smart home devices, including IP
cameras, smart locks, smart lighting systems, etc., contain
vulnerabilities that attackers can exploit to intrude into home
networks. Successful intrusions into IoT devices can allow
hackers to not only steal sensitive user data but also take
control of critical devices. Hence, there is a growing need for
intelligent security systems to detect abnormal behaviors and
attacks on smart home IoT devices in real time.

Since no one-size-fits-all security solution exists, a defense-
in-depth approach and appropriate design and implementation
should be context-aware to protect against threats and specific
attack vectors. Among the complementary tools in the security
layered defense comes network intrusion detection systems
(NIDSs). They are security tools that continuously analyze
traffic to identify intrusions and attacks. Traditional IDS

employ signature-based detection, which matches known
attack patterns. More advanced anomaly detection techniques
spot statistical deviations from normal traffic to surface
previously unseen attacks. However, building accurate
intrusion detection models for IoT is challenging due to several
factors. IoT devices have much more resource constraints than
traditional computing systems and exhibit complex and
dynamic behaviors. Moreover, the constantly evolving threats
and vulnerabilities must be efficiently well-tracked for an
adaptive security defense in the smart home context. Thus,
knowing the ground truth for device and traffic features will be
useful in tackling intrusion security challenges posed by smart
home environments.

Several research efforts have been spent to tackle these
challenges. The research in [1] provided a comprehensive
review of intrusion detection systems using machine and deep
learning in IoT, discussing challenges, solutions, and future
directions. They emphasized the need for efficient and accurate
detection methods but did not propose a specific architecture or
implementation. The study in [2] surveys network intrusion
detection for IoT security based on learning techniques,
highlighting the importance of efficient learning algorithms for
smart home security. It deeply and thoroughly explores recent
works focusing on machine learning techniques. However, its
scope does not include architectural design issues such as
adaptability and real-time requirements. The study in [3]
introduced a deep learning application for invasion detection in
industrial IoT sensing systems. While this work is relevant for
industrial applications, it may not directly translate to smart
home environments due to different operational constraints and
attack vectors. The research in [4] proposes an integrated
multilayered framework for IoT intrusion decisions and
instantiates it for the industrial IoT. Although the framework
can be instantiated to the smart home context, the paper did not
specify the architectural design and deployment. All these
works raised the flag that most existing methods overlook key
IoT constraints like low latency, dynamic device behaviors,
and resource limitations that impact real-world-scale adoption.

We also cite some works that gave us insights to develop
our proposed solution. The study in [5] proposed an intrusion
detection system using an Online Sequence Extreme Learning
Machine in the advanced metering infrastructure of smart
grids. Their model focused on sequential data processing,
which is pertinent and can be adapted to the continuous
monitoring required in smart homes. The research in [6]
discussed intrusion detection in fog computing and Mobile

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

938 | P a g e

www.ijacsa.thesai.org

Edge Computing. This work is particularly relevant as it
considers the edge computing paradigm, which is increasingly
adopted in smart home IoT. However, it does not discuss the
use of machine learning in intrusion detection. The study in [7]
presented a self-configurable cyber-physical intrusion detection
system for smart homes using reinforcement learning. This
system's adaptability to changing conditions in smart homes is
a significant step towards dynamic and responsive security
systems. The research in [8] explored a hybrid approach using
an artificial immune system for intrusion detection in smart
home networks. This work highlighted the potential of ELM
for fast learning and generalization but did not focus on the
real-time aspect of intrusion detection. The study in [9]
integrates the software-defined networking, machine learning,
and manufacturer usage descriptions standard with an intrusion
detection and prevention system to assess its influence on
network security. While including standards-based ingredients
is interesting, their work is limited to manufacturing and does
not consider the architectural effectiveness and network traffic
characteristics.

For the traffic characterization, [10] recognizes the
importance of understanding IoT data characteristics for
modeling the data bursts typical of IoT use cases, and it
introduces an advanced ON/OFF traffic modeling approach
tailored for the varied applications within a smart city context.
While the work is pivotal for statistical modeling of the IoT
traffic, it does not consider their solutions' architectural design
and deployment. The study in [11] provides insights into IoT
traffic characteristics in the specific context of smart home and
campus environments. They found that IoT devices exhibit
periodic behavior with significant idle time. The devices
generate a small amount of traffic, and most communicate with
a small number of remote servers, often located in the same
country as the device. The study also found several security
and privacy issues, including devices communicating over
unencrypted channels and devices communicating with servers
in countries known for privacy concerns. This paper aims to
design and build a flexible, scalable IDS that efficiently
ensures security defense in real smart home environments
without losing generality and adaptability. The contributions
are:

 We introduce a device-aware approach that categorizes
IoT devices based on their traffic profiles and
behaviors, leading to a more tailored and efficient
detection process that can adapt to the heterogeneous
nature of smart home devices.

 Our solution employs an ensemble of optimized
machine learning models, including extreme learning
machine variants chosen based on the device category,
balancing the tradeoffs between speed, accuracy, and
resource usage.

 We provide an experimental evaluation using an up-to-
date security dataset, demonstrating the effectiveness of
our approach in a realistic smart home context.

 We design a multi-component IDS architecture using
network traffic profiles for real-time intrusion detection
in smart home IoT environments. Our architecture

leverages software-defined networking (SDN) and
virtualized network functions (VNFs), allowing for a
flexible and scalable deployment that can be adapted for
both cloud and edge computing scenarios. We mainly
opted for an edge computing-based deployment on an
SDN testbed to meet strict latency requirements.

The remainder of this paper is organized as follows:
Section II presents our methodology steps. Section III
characterizes the smart home devices' traffic and presents a
simple traffic-based taxonomy. Section IV shows the
architecture design and deployment. Section V presents the
benchmarking of the machine learning models. Section VI
shows the benchmarking results. Section VII concludes the
paper and gives some future works.

II. METHODOLOGY

We propose a two-stage methodology within four steps to
develop our intrusion detection system:

A. Devices' traffic characterization

1) Explore and categorize the commonly used devices in

the smart home environment.

2) Characterize the traffic devices and build a traffic-

centric devices taxonomy.

B. Architectural Design and Model Selection

1) Design and deployment of a smart home IDS-tailored

architecture.

2) Benchmark the ML models on a recent dataset and

select the appropriate model based on the previous steps.

More specifically, we start by enumerating devices and
device/data categories to understand the ecosystem, and then
we characterize traffic patterns and classify devices into a
useful taxonomy. We are leveraging this knowledge to design
and deploy suitable IDS architecture. Then, select appropriate
machine learning models that detect intrusions optimized for
the specifics of the smart home domain. The result is an IDS
purpose-built to the unique smart home environment versus
more generic systems. The key rationale is that threats exploit
specific device vulnerabilities and traffic flows in the smart
home, so an IDS must be aware of these devices and patterns to
identify attacks. The proposed methodology builds this
intrinsic knowledge by examining the ecosystem to customize
the IDS. This context-aware solution can better distinguish
attacks from normal traffic and has utility detecting intrusions
that more generic learning-based systems may overlook in the
IoT setting.

III. DEVICES' TRAFFIC CHARACTERIZATION

A typical smart home would include various IoT devices
commonly used, such as smart thermostats, smart lighting
systems, smart security cameras, smart locks, smart appliances
(e.g., refrigerators, washing machines), smart speakers or home
assistants, and smart TVs. Table I characterizes common
consumer IoT devices along three dimensions: subcategories
based on features, key devices' behavior patterns, and data
reflecting network traffic patterns in size and time. Grouping
into broader categories like smart speakers while still
enumerating specific device types enables roll-up

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

939 | P a g e

www.ijacsa.thesai.org

summarization and device-specific analysis. Smart TVs, for
instance, have subcategories of basic models focused on video
streaming with basic controls versus smart TVs, which have an
integrated app platform enabling third-party applications like
Netflix and YouTube. The use cases cover on-demand video
and accessing these apps for entertainment and information.
This expanded functionality versus standalone streaming leads
to more diverse, multimodal traffic encompassing control
commands, actual video data, and app communications.

Referring to Table I and the data nature, we see a mix of
primarily unimodal control traffic for simpler devices like
lightbulbs, thermostats, and locks with relatively
straightforward command and monitoring use cases.
Meanwhile, more advanced devices like cameras, speakers,
and fridges demonstrate bimodal or multimodal traffic
indicative of more mixed media, including audio, video, and
firmware downloads, resulting in variable network utilization.

The complexity arising from supporting multiple integrated
apps paired with streaming video in one device results in a
complex traffic profile that may require advanced analytic
approaches beyond simple machine learning algorithms to
adequately characterize if simple models prove to have
insufficient descriptive capability and predictive accuracy.
However, for unimodal traffic, simpler models should suffice
without overcomplicating analysis.

Thus, we built a simple taxonomy of smart home IoT
devices based on their network traffic characteristics:

 Streaming Devices [Smart speaker, IP camera, Voice
assistant robot] (Traffic patterns are: (1) Bimodal
packet size distribution (small control + large streaming

packets), (2) Bursty packet timing during streaming,
and (3) Higher and variable traffic volume.)

 Intermittent Control Devices [Smart lightbulb, Smart
thermostat, Smart fridge, Smart doorbell, Smart blinds,
Irrigation controller] (Traffic patterns are: (1)
Uniformly small packet sizes, (2) Periodic keepalives +
event-driven commands, and (3) Low traffic volume
with occasional spikes)

 Monitoring Devices [Smoke detector, Motion sensor,
Door/window sensor] (Traffic patterns are: (1) Small
packets for status updates, (2) Sporadic or periodic
timing, and (3) Very low traffic volume)

 Actuators [Smart lock, Garage door opener, Smart plug]
(Traffic patterns are: (1) Small command packets, (2)
Event-driven timing (3) Extremely low traffic volume).

Based on this taxonomy, considering device behaviors and
traffic profiles, we categorize home IoT devices into two broad
classes for architectural design:

 High-throughput devices include video cameras, media
hubs, etc., generating high volumes of multimedia
traffic. The patterns are more complex and variable.

 Low-throughput devices consist of simpler sensors and
controllers for lighting, smoker detectors, etc., with
minimal traffic. The patterns tend to be regular and
predictable.

Accordingly, in the next section, we propose a multi-
component IDS architecture to secure the smart home.

TABLE I. DEVICES TRAFFIC CHARACTERISTICS

Device Category
Device Data

Subcategory Behavior Size Timing

Smart TV Basic, Smart Intermittent streaming
Bimodal (control + audio
packets)

Bursty during use and
periodic otherwise

Smart Speaker
Audio streaming, Voice

assistant, Smart display
Mostly control commands Uniformly small Event-driven/periodic

Smart lightbulb
Tunable white, RGB, Motion
sensor

Continuous video
Bimodal (small + large video
packets)

Periodic real-time streaming

IP camera
Video doorbell, Baby

monitor, Security camera
Infrequent controls Uniformly small

Periodic polling + event-

driven

Smart thermostat
Self-contained, HVAC

integrated
Intermittent traffic

Bimodal (control + firmware

updates)
Periodic sensors updates

Smart fridge
Display model, Bottom-

freezer model
Sparse controls Uniformly small

Infrequent periodic

keepalives

Smart lock Bluetooth, WiFi, Z-Wave Activated when used Small control packets Event-driven only

Garage door opener
WiFi/Bluetooth connected,

Remote controlled
Intermittent controls Small control packets Periodic + event-driven

Smart blinds
Motorized, App/voice
controlled

Sparse status report Small power toggling packets Periodic status updates

Smart plug Controllable, Monitored Event-driven alerts Small alert packets
Sporadic alarms, periodic

heartbeats

Smoke detector Integrated, Smart alarm Regularly scheduled operation Small control/status packets
Periodic polling + daily

schedules

Irrigation controller
App connected, Weather

adjusted
Intermittent streaming Packet Size Distribution Packet Timing Distribution

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

940 | P a g e

www.ijacsa.thesai.org

IV. ARCHITECTURAL DESIGN AND MODEL SELECTION

A. Architecture Design

The core of our proposed intrusion detection system
comprises a multi-component architecture tailored to secure
diverse IoT devices in smart home environments. Our design
meets the following key requirements: real-time detection
capability, adaptability to evolving behaviors, detection
accuracy for known and zero-day attacks, and computational
efficiency to operate given smart home resource constraints.

The modular architecture allows customizing specific
components to address deployment-specific needs. The IoT
devices would commonly be connected to a local network,
including a gateway or router, to manage network traffic and
connect to the Internet. The network commonly includes a mix
of wired and wireless connections, depending on the specific
devices used, and HTTP(S), MQTT, CoAP, and Zigbee are the
common IoT-used protocols. Furthermore, smart home often
has a network firewall and other basic security measures for
each device the manufacturer provides. The security threats
landscape includes denial or distributed denial of service
(DoS/DDoS) attacks, malware or ransomware attacks,
unauthorized access or intrusion attempts, and data breaches or
exfiltration attempts. We add a layer for intrusion detection that
stays behind the firewall. Mainly the NIDS system includes the
following components:

 Traffic Inspector capturing and pre-processing all
device traffic flows. It mainly (1) captures raw network
traffic using port mirroring, (2) extracts flow-based
features like source/destination IP, ports, packet sizes,
etc., (3) tags flow with device identities from logs, and
(4) forwards processed flows to Device Profiler.

 Device Profiler identifies and assigns device type to a
high/low throughput category. It mainly (1) maintains
an inventory of identified IoT devices, (2) classifies
devices into high or low throughput groups, and (3)
pushes device type and group to ML Model Selector.

 ML Model Selector chooses the optimal intrusion
detection model for that device type. It mainly (1)
houses a catalog of optimized ML models for each
device group, (2) models tailored for the complexity
and behaviors of that group, (3) queries device group
for a flow from Device Profiler and (4) dynamically it
selects the matching model for anomaly detection.

 Model Repository contains specialized ML models
tailored for each device class. It mainly (1) stores
specialized ML models, (2) contains different
algorithms that suit traffic complexities, and (3)
includes models pre-trained on normal and attack
device data.

 Intrusion Detector to analyze traffic for intrusion using
a selected model. It mainly (1) receives network traffic
flow features, (2) feeds to Model Selector chosen
model, (3) the model analyzes the sequence for
intrusions, and (4) the classifier flags intrusion if found.

 Alert Manager raising intrusion alerts as needed with
attack details. It mainly (1) collects intrusion alerts from
Intrusion Detector, (2) provides details like affected
device attack type, and (3) raises notifications to admin
and response systems.

We first utilize a Traffic Inspector module that captures raw
network traffic using port mirroring techniques. It then extracts
flow-based features like source and destination IPs, ports,
packet sizes, and tag flows to specific device identities
obtained from logs. The processed traffic flows are forwarded
to a Device Profiler component, which maintains an inventory
of devices identified on the network. Leveraging both domain
knowledge, the Device Profiler categorizes devices into either
high throughput or low throughput groups. High throughput
devices like cameras and media hubs generate higher volumes
of multimedia network traffic with more complex and variable
patterns. In contrast, simpler sensors and controllers constitute
the low throughput group with minimal and regular traffic.

The device type and group information are passed into an
ML Model Selector module that maintains a catalog of
specialized models tailored for each device group. When the
Model Selector receives a query with the device group for a
particular traffic flow, it dynamically selects the matching
specialized model to analyze that flow for intrusions. This
model repository containing diverse algorithms suited for
varying traffic complexities is pre-trained on normal and attack
data generated from devices in the corresponding category.

An Intrusion Detector module takes the network traffic
flow features and feeds them into the model instance chosen by
the Model Selector for that flow. Based on previous learning,
the selected model analyzes the sequence to detect intrusions,
finally flagging likely security intrusions. Any intrusion alerts
are collected by an Alert Manager, who provides details like
the affected device and attack type to administrators and
incident response systems.

B. Architecture Deployment

Our proposed intrusion detection system's components
leverage software-defined networking (SDN) capabilities for
efficient and flexible system deployment [12,13]. The SDN
controller provides a central orchestration point for the various
IDS modules [14]. Network switches are configured using
SDN policies to mirror IoT traffic flows that need to be
inspected, tapping them to feed into the IDS Traffic Inspector
module. The centralized network view within the SDN control
plane also enables mapping these flows to specific IoT devices
on the network.

A software-defined implementation offers significant
advantages in flexibility, programmability, and scalability. The
centralized control plane greatly simplifies tapping into a high
volume of IoT flows in dynamic environments while
automating complex policy configurations needed for
mirroring. Device profiles and policies can be updated easily as
new IoT devices get added over time. SDN also enables large-
scale deployments with intelligent traffic engineering and
usage optimization across available IDS resources. Therefore,
an SDN-based deployment for the intrusion detection

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

941 | P a g e

www.ijacsa.thesai.org

infrastructure makes our IDS more agile and adaptive, mainly
as smart home IoT adoption grows exponentially.

Practically, the core detection modules of the IDS,
including the Device Profiler, ML model Selector, and
Intrusion Detector, are implemented as virtualized network
functions (VNFs). By leveraging VNFs and placing them
flexibly on commodity servers, we scale out these modules on
demand to meet the throughput needs of real-time detection
across many IoT devices. As device diversity expands or new
models are added to the model repository, more VNF instances
can be spun up accordingly. The global view allows the SDN
controller to intelligently load balance traffic flows across the
VNF resources for optimal efficiency.

The VNF-based deployment can leverage both cloud and
edge computing approaches: (1) Cloud-based Deployment
where the VNFs for the IDS components like Traffic Inspector,
Device Profiler, Model Repository, and Intrusion Detector can
be hosted on virtual machines or containers in a private or
public cloud. This allows leveraging cloud platforms'
flexibility, scalability and managed services. The globally
distributed nature of major cloud providers also allows VNFs
to be placed closer to IoT deployments for lower latency.
However, wide-area network traffic and cloud usage costs may
be concerns. (2) Edge Computing Deployment, where we
deploy the VNFs on edge servers directly located in smart
homes. Edge computing overcomes cloud-based analysis's
latency and bandwidth challenges by processing data locally. It
provides better responsiveness for real-time intrusion detection
[15, 16]. Edge servers can also interface with hardware
accelerators for efficient ML model inference. While cloud and
edge are viable deployment options, edge computing is better
aligned to meet the low latency requirements for real-time
intrusion detection across smart home installations. Indeed, the
proximity of edge servers to IoT environments makes the IDS
more adaptive.

The deployment experimentation can be performed by an
SDN testbed where we integrate the edge computing-based
deployment with the Mininet/Ryu [17]. Mainly, we set up edge
computing nodes in the Mininet topology to host the VNFs
(Device Profiler, Model repository, Intrusion Detector). These
would consist of lightweight Docker containers. Then, we
configure the Ryu controller to steer copies of IoT traffic flows
to the nearest edge node for intrusion detection analysis. This
mimics real-world edge deployment. The VNF containers
process the mirrored device traffic, generate alerts if needed,
and export IDS telemetry data. We expose the VNFs via REST
APIs for integration with the Ryu controller and monitoring
software and evaluate overall latency from the IoT devices to
the edge-based IDS VNFs during attack scenarios in Mininet.
We can then analyze the responsiveness, overhead, and
accuracy relative to an Edge-based deployment. This
deployment allows prototyping and demonstrating the benefits
of edge computing for IoT environments, leveraging Ryu's
programmability and Mininet's flexibility. Automated traffic
steering to nearby edge nodes also validates the low latency
premise.

C. Architecture Suitability

Following, we discuss how the proposed modular multi-
components IDS architecture design and its SDN-based
deployment, along with the Edge-computing technology, help
to meet key requirements of real-time detection, adaptability,
and accuracy:

1) Real-time detection capability: The lean and

specialized machine learning models ensure low latency

between packet capture by the Traffic Inspector and intrusion

alert generation by the Intrusion Detector. In the next section,

we will show that the selected models are optimized for

efficiency without sacrificing detection accuracy. The

virtualized deployment also allows dynamic scaling of

detection modules to match incoming traffic volumes.

Together, these allow the IDS to provide real-time, sub-second

analysis of IoT traffic flows to meet real-time detection needs.

2) Adaptability to evolving behaviors: The feedback loop

from the Device Profiler to the ML Model Selector allows the

system to adapt to changes in device behaviors over time. As

traffic patterns change, updated device profiles trigger

selection of different models tailored to new behaviors. The

models themselves, through re-training, will also adapt during

operational use as they observe more data. This tight

integration between device knowledge and flexible model

selection allows the IDS to adjust to evolving IoT

environments.

3) Detection accuracy: The model repository for the

device category allows highly accurate intrusion detection

based on specific device profiles. Tailoring models to capture

different IoT devices' normal/attack behavior patterns results

in a solution that outperforms one-size-fits-all approaches.

V. INTRUSION DETECTION MODELS BENCHMARKING

A. Methodology and Dataset

As per our proposed methodology, we leverage the
CICIoT2023 dataset in [18] to categorize smart home IoT
devices based on network traffic profiles and select suitable
ML models for intrusion detection accordingly. The
CICIoT2023 dataset has been created to accelerate research
into security analytics and intrusion detection systems tailored
for smart home IoT environments. It contains network traffic
captures from an extensive smart home IoT testbed comprising
over 100 heterogeneous devices. The key value of CICIoT2023
lies in the 33 contemporary IoT-focused attacks spanning
seven categories executed on the devices. Many of these attack
types are unavailable in other IoT IDS datasets. The attacks
leverage compromised IoT devices to penetrate the network,
enabling the evaluation of multi-vector IoT threats. Therefore,
CICIoT2023 is an invaluable, up-to-date resource for further
research into robust intrusion detection tailored for smart home
IoT environments facing escalating threats. Moreover, the
CICIoT2023 experiments provide data-driven guidance for
model selection in our multi-component IDS architecture that
analyzes runtime traffic profiles to pick the optimal intrusion
detection model tailored to IoT device behaviors and
capacities.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

942 | P a g e

www.ijacsa.thesai.org

The CICIoT2023 is an unbalanced dataset since it is attack
intensive. We deploy the SMOT technique to generate a
balanced dataset sample. Then, we subsample each dataset into
low and high-traffic flow groups that align with our taxonomy
of simple and complex IoT devices, respectively. The
CICIoT2023 dataset contains 46 features describing the traffic
flows. The flow rate in packets/second feature is the most
discriminative feature for this clustering across all the available
dataset attributes. Then, we experiment with various models on
both traffic datasets (balanced and unbalanced), measuring
evaluation and model efficiency metrics. Comparing these
metrics reveals how different algorithms fare in detecting IoT
intrusions for simple and complex device categories,
respectively. Additionally, we benchmark the models on the
full dataset to validate the improvements gained from our
approach of tailored model selection per device traffic profiles.
By correlating the model evaluation and efficiency metrics, we
can determine the detection accuracy and precision vs. latency
tradeoff and evaluate our meeting degree to our key IDS
objectives around real-time alerts, adaptability to varying
traffic volumes and attack types, and detection precision for
IoT environments within typical resource constraints.

B. Models Selection

1) Intuitive analysis of models' suitability: We intuitively

discuss here the suitability of the ML models for the IDS

requirements in our context. Tree-based models construct

multiple shallow decision trees. They capture nonlinear

interactions and complex patterns like network attacks through

branching decisions; the tree ensembles balance bias and

variance. The tree architectures also suit evolving data through

continuous model updates and handheld high-dimensional

network data. Support vector machine (SVM) is known for its

effectiveness with high dimensional multimodal data, but its

complexity impacts real-time performance. While Deep

learning models, based on many neural networks, identify

complex patterns and capture sequential dependencies,

helping detect multi-stage attacks, they require significant data

and computing resources that may not suit resource-

constrained IoT context. One interesting approach to reducing

this complexity is the Extreme Learning Machine (ELM) [11],

a fast, single-layer feedforward neural network for

classification and regression. They randomly initialize input

layer weights and analytically determine output weights. This

allows very fast model training suited for real-time usage.

Intuitively, the tree ensemble and ELM class of models
seem optimal for balancing efficiency, accuracy, and
adaptability within typical IoT constraints. The modular
architecture enables deploying complex models like support
vector machine or deep learning techniques selectively for
capable devices while using tree ensemble and ELM for most
real-time detection. The Model Selector dynamically handles
this model assignment per device profile. Based on this
intuitive analysis, we selected the following set of ML models
for benchmarking. Following is a brief description of each
model:

2) Benchmarked models: We select 12 models to perform

our benchmark. Six of them are variants of the ELM, which

intuitively brings a promising adequacy for our design

requirements. We experiment with its variants [19-23]:

 Kernel ELM is an extension of basic ELM that applies
kernel functions like sigmoid, radial basis function
(RBF), hyperbolic tangent (tanh), etc., to non-linearly
map the input data to new feature spaces before output
weight computation. This adds nonlinearity to improve
model learning capability for complex patterns.

 Regularized ELM imposes additional constraints on
optimizing the output weights matrix calculation.
Regularization parameters control model complexity to
prevent overfitting, enabling more robust intrusion
detection.

 Weighted ELM introduces random scaling factors or
weights when multiplying the input layer feature values
during forward propagation. This acts as a regularizer
like dropout techniques in neural networks, reducing
inter-dependencies and improving generalizability.

 OS-ELM (Online Sequential ELM) is the online
sequential version of ELM that processes streaming
data instance-by-instance for model updates rather than
batch learning. This fast incremental learning allows
continuous real-time model adaptation, useful for
evolving traffic in our context.

 Voting ELM is an ensemble method that trains multiple
OS-ELM models on bootstrap samples of the original
data. During prediction, the OS-ELM outputs are
aggregated through voting to output the overall class.

 Bagging ELM is another ensemble technique using
bootstrap sampling to train multiple OS-ELM models.
The predictions are aggregated by weighted averaging
rather than voting.

 The other six used ML models in the benchmarking are
[24-27]:

 Logistic regression is a linear classification model that
assigns probabilities to data points belonging to classes
using the logistic/sigmoid function. It is fast to train but
assumes linear decision boundaries.

 Decision Tree is a simple hierarchical model with
branching decisions based on feature thresholds. It is
interpretable but prone to overfitting with noisy IoT
data.

 Random Forest is an ensemble method combining
predictions from many uncorrelated decision trees. It
averages out bias and variance for robust performance
despite some complexity.

 AdaBoost is another ensemble technique that iteratively
focuses on misclassified instances. It can reduce bias
and variance errors despite the complexity cost.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

943 | P a g e

www.ijacsa.thesai.org

 XGBoost is a scalable tree-boosting system for both
classification and regression. It uses regularized model
formalization for controllable complexity and prevents
overfitting.

 LightGBM is a gradient-boosting framework
specifically engineered for efficiency, performance, and
lower memory usage.

C. Performance Metrics

 We choose the following key evaluation metrics for
assessing our benchmark models' performance:

 Training Time (s): selecting efficient models is crucial
for real-time model updates as new devices get added
and data change in volume and nature. Therefore, lower
training time is better.

 Prediction Time (s) measures classifying flow instances.
It impacts the real-time intrusion alert generation
capability. Therefore, a lower prediction time is better.

 Latency Time (s) is the sum of training and prediction
times reflecting the end-to-end delay from data
ingestion to producing an alert. This metric is directly
relevant for real-time adaptative detection needs.

 Memory Usage (MB) measures the RAM consumed
during model training and inference. It is important due
to memory constraints in embedded IoT devices.

 Accuracy is the fraction of correctly classified
instances. It provides an overall performance measure
but can be misleading for imbalanced data.

 Precision is the fraction calculated by dividing True
Positives over the sum of True Positives and False
Positives. It is important to minimize false alarms
which disrupt users.

 Recall is the fraction calculated by dividing True
Positives by the sum of True Positives and False
Negatives. It is crucial to maximize the detection of
actual attacks and intrusions.

 F1 score is a harmonic mean of precision and recall
balancing both metrics. It provides a good measure of
detection capability.

Analyzing the latency time tradeoff with accuracy and
other metrics allows us to determine the models most suited to
real-time, adaptive intrusion detection requirements in smart
home IoT environments.

VI. RESULTS AND DISCUSSION

The results presented for the various machine learning
models indicate a diverse range of performance outcomes, with
particular interest in the balance between latency and detection
metrics such as accuracy and precision. Since we have two
datasets (unbalanced and balanced), the figures show the
precision metric related to latency times for the unbalanced
dataset since the accuracy can be misleading for unbalanced

datasets. This is in contrast to the balanced dataset, where
accuracy is appropriate. We generated 8*3*2 plots for the 12
models since we measured 8 metrics (training time, prediction
time, latency time, memory usage, accuracy, precision, recall,
and F1 score) for 3 datasets (low rate, high rate, and low + high
rate) sampled from 2 datasets (unbalanced and balanced).
Hereafter, we show a subset of the plots most related to the
IDS architecture design requirement: real-time,
accuracy/precision, and adaptability.

A. Devices with Low-rate Traffic

For the unbalanced CICIOT2023 dataset, Fig. 1 and Fig. 2
show that the Extreme Learning Machine algorithms
demonstrate fast training and prediction latency times, meeting
real-time intrusion detection needs. Specifically, the
Regularized ELM provides the best balance with strong
precision and total latency time. Decision Tree has low latency,
making it a good candidate for low-rate devices, as intuitively
predicted. In contrast, ensemble methods can enhance precision
but have high training times.

For the balanced dataset, the Regularized ELM has the
shortest training time at 1.0281 seconds, contributing to a low
overall latency time of 1.3915 seconds when combined with its
prediction time. This suggests that Regularized ELM is highly
suitable for real-time applications where quick model training
and prediction are critical. However, the regulated ELM has
high precision and recall while maintaining 99.7% accuracy,
slightly lower than other models. This combination of speed
and reliability makes it the top choice if minimizing detection
delay is critical. On the other end of the spectrum, ensemble
methods like Random Forest, AdaBoost, XGBoost, and
LightGBM have significantly longer training times,
contributing to their higher overall latency times making them
less suitable for real-time intrusion detection.

Furthermore, the memory usage across all ELM models is
relatively smaller than the other models. An interesting outlier
is the Decision Tree model, which has low latency similar to
ELM methods. The models are fairly consistent regarding
memory usage, ranging from 1-1.1 GB, which is acceptable for
Edge-computing intrusion detection architecture.

B. Devices with High-rate Traffic

Fig. 3 and Fig. 4 show that the ELM variants (OS-ELM,
Kernel ELM, Regularized ELM, Weighted ELM) have very
low latency times, under two seconds. This makes them well-
suited for real-time intrusion detection, where getting alerts
quickly is critical. However, their detection accuracy is slightly
lower than that of ensemble methods, which are slightly
accurate but come at the cost of higher latency times. This
suggests that Regularized ELM is particularly well-suited for
environments where rapid detection is critical and resources
may be limited, which fits our case. In contrast, tree ensemble
methods show higher latency times, with AdaBoost reaching
up to 15.9998 seconds. However, these models exhibit
excellent detection performance. The tradeoff is between the
higher computational and time costs against the benefit of
potentially more accurate detection.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

944 | P a g e

www.ijacsa.thesai.org

Fig. 1. Low-rate device training, prediction, latency times, and memory usage for unbalanced and balanced datasets.

Fig. 2. Latency time according to precision (resp. accuracy) for unbalanced (resp balanced) datasets.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

945 | P a g e

www.ijacsa.thesai.org

Fig. 3. High-rate device training, prediction, latency times, and memory usage for unbalanced and balanced datasets.

Fig. 4. Latency time according to precision (resp. accuracy) for unbalanced (resp balanced) datasets.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

946 | P a g e

www.ijacsa.thesai.org

The ELM variants have the lowest training and prediction
times for the balanced dataset. This enables very fast intrusion
detection, suitable for real-time intrusion alerting. Regularized
ELM stands out with high accuracy, precision, recall, and F1
scores at 99% despite having the lowest latency of just 1.44
seconds. This demonstrates it can deliver both speed and
accuracy. The ensemble methods achieve nearly perfect
evaluation metrics but with prohibitive training times. Their
high latency makes them impractical for time-critical detection.
Memory usage hovers between 1.1-1.3GB for most models
with the lowest value of ELM variants. This confirms the
adequacy of complex models for the high-rate devices
reflecting the complexity of the traffic pattern.

C. Devices with Low+high Rate Traffic

Fig. 5 and Fig. 6 show that the Regularized ELM offers an
impressive balance between speed and performance, with the
lowest training time of 0.9867 seconds and a very competitive
prediction time of 0.3748 seconds, resulting in a total latency
of 1.3615 seconds. This is complemented by high accuracy

(0.9986), precision (0.9989), and an F1 score (0.9993), making
it a strong candidate for real-time applications where both
speed and accuracy are critical. In contrast, ensemble methods
exhibit higher latency times, ranging from 7.9752 to 31.2592
seconds, but with high accuracy and precision.

The memory usage metric indicates that all models are
relatively memory-intensive, with usage ranging from
1601.1875 to 1720.7383 MB. This is a limiting factor in
resource-constrained environments, such as our edge
computing, and confirms our architecture's suitability, which
separates the traffic into two groups to master the time and
memory usage consumption.

The training times align with overall latency, with the ELM
models being the fastest to train while the ensemble methods
are slower. Prediction times are consistently low across the
models. Memory usage hovers between 1.6-1.7GB for most
models, up to 1.72 GB for LightGBM. So, memory is unlikely
to be a constraint.

Fig. 5. High-rate device training, prediction, latency times, and memory usage for unbalanced and balanced datasets.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

947 | P a g e

www.ijacsa.thesai.org

Fig. 6. Latency time according to precision (resp. accuracy) for unbalanced (resp balanced) datasets.

For the balanced dataset, the ELM variants (OS-ELM,
Kernel ELM, Regularized ELM) deliver the fastest
performance with training and prediction times under 1 second,
maintaining near-perfect accuracy. The low latency makes
them optimal for real-time usage. Conversely, ensemble
methods like Random Forest, AdaBoost, XGBoost, and
LightGBM achieve near-perfect scores on all metrics but at the
cost of very high training times, from 137 to over 248 seconds.
Their latency is prohibitive for time-critical detection.

Memory usage is reasonably consistent for most models
between 1.8 GB and 2GB, which could be limiting for
memory-constrained environments. The extreme learner
methods have lower memory requirements that may suit
resource-limited IoT devices better.

VII. CONCLUSION AND FUTURE WORK

In this paper, we built a simple taxonomy to separate
devices into two broad categories: one with high-volume and
complex patterns and low-rate and simple traffic patterns.
Based on this categorization, we design a suitable NIDS
architecture and select machine learning models that are most
adequate for each device type and traffic profile. The models
are chosen based on detection accuracy, computational
efficiency, and ability to handle complex traffic patterns. For
that, we leverage the new CICIoT2023 dataset containing up to
date IoT network traffic data with different realistic attacks.
Using this dataset, we evaluate various machine learning
models to develop an IDS focused on real-time, adaptive
detection of intrusions specific to IoT devices.

We optimized the intrusion detection capabilities across
smart home IoT deployments by matching the right models to
the specific use case requirements around timing, accuracy,
and resource constraints. The benchmark analysis guides on
selecting between fast ELM variants versus slower but more
precise ensemble methods. For low throughput IoT devices
with minimal, regular traffic patterns, simpler models like

decision trees provide efficient and fast anomaly detection.
Their basic architectures allow quick training and scoring to
enable real-time intrusion alerting. In contrast, high throughput
multimedia devices require more advanced models like
Regularized ELM to capture complex and evolving traffic
patterns while maintaining low latency. The nonlinear
mappings and optimized complexity in Regularized ELM
balance speed and accuracy. So, the device traffic profiles and
characteristics directly inform the machine learning model
selection to optimize detection capabilities. The benchmark
analysis maps models to the specific performance needs driven
by the IoT taxonomy of low and high throughput groups. This
specialized, profile-based model assignment enhances both
efficiency and security.

As a future work, we intend to deploy and evaluate the
system in a real-world smart home environment at scale to
assess performance with live traffic and attacks. We will also
enhance the capability of the system to become intrusion
detection and prevention system by correlating intrusion alerts
with device vulnerabilities and risk profiles to harden IoT
device configurations through SDN dynamically.

ACKNOWLEDGMENT

The author would like to thank the Deanship of Scientific
Research at Umm Al-Qura University for supporting this work
by Grant Code: 24UQU4350605DSR02.

REFERENCES

[1] J., Asharf, N., et all. A review of intrusion detection systems using
machine and deep learning in Internet of things: Challenges, solutions
and future directions. Electronics, vol. 9 no. 7, pp. 11-77, 2020.

[2] N., Chaabouni, M., Mosbah, A., Zemmari, C., Sauvignac, and P. Faruki,
Network intrusion detection for IoT security based on learning
techniques. IEEE Communications Surveys & Tutorials, vol. 21. no. 3,
pp. 2671-2701. 2019.

[3] G. Altan, SecureDeepNet‐IoT: A deep learning application for invasion
detection in industrial Internet of things sensing systems. Transactions

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 1, 2024

948 | P a g e

www.ijacsa.thesai.org

on Emerging Telecommunications Technologies, vol.32, no 4, pp. 42-
28.2021.

[4] H. Sallay, An integrated multilayered framework for IoT security
intrusion decisions. Intelligent Automation & Soft Computing, vol 36.
no 1.pp. 429-444.2023.

[5] Li, Y., Qiu, R., & Jing, S. Intrusion detection system using Online
Sequence Extreme Learning Machine (OS-ELM) in advanced metering
infrastructure of smart grid. PloS one, vol. 13. no 2. 2018.

[6] X., An, X., Zhou, X., Lü, F., Lin, and L. Yang. Sample selected extreme
learning machine based intrusion detection in fog computing and MEC.
Wireless Communications and Mobile Computing, pp.1-10.2018.

[7] R., Heartfield, G., Loukas, A., Bezemskij, and E. Panaousis, Self-
configurable cyber-physical intrusion detection for smart homes using
reinforcement learning. IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 1720-1735. 2020.

[8] E. D. Alalade. Intrusion detection system in smart home network using
artificial immune system and extreme learning machine hybrid
approach. In 2020 IEEE 6th World Forum on Internet of Things (WF-
IoT). pp. 1-2.2020 .

[9] M., Noman S., Rosli A.H., Mohammad and, Z. Muhammad. SDN based
intrusion detection and prevention systems using manufacturer usage
description: a survey. (IJACSA) International Journal of Advanced
Computer Science and Applications, vol 11, no 12, 2020.

[10] A. S., Ibrahim, K. Y., Youssef, H., Kamel, and M. Abouelatta. Traffic
modelling of smart city internet of things architecture. IET
Communications, vol 4, no 8, pp.1275-1284.2020.

[11] S., Kumar, et all. Characterizing IoT traffic in smart home and campus
environments. Proceedings IEEE INFOCOM pp.2706-2715.2020.

[12] N., Feamster, J., Rexford, and E. Zegura, The road to SDN: an
intellectual history of programmable networks. ACM SIGCOMM
Computer Communication Review, vol. 44, no. 2, pp. 87-98, 2014.

[13] K., Benzekki, A., El Fergougui, and A. Elbelrhiti Elalaoui. Software
defined networking (SDN): a survey. Security and communication
networks, vol. 9, no. 18, pp. 5803-5833.2016.

[14] L., Mamushiane, A., Lysko, and S. Dlamini,. A comparative evaluation
of the performance of popular SDN controllers. In 2018 Wireless Days
(WD) (pp. 54-59). 2018.

[15] F., Liu, et all. A survey on edge computing systems and tools.
Proceedings of the IEEE, vol. 107, no. 8, pp.1537-1562.2019.

[16] S., Hamdan, M., Ayyash, and S. Almajali, Edge-computing architectures
for Internet of things applications: A survey. Sensors, vol. 20, no. 22,
 .6441.2020

[17] D., Dholakiya, T., Kshirsagar, and A. Nayak, Survey of mininet
challenges, opportunities, and application in software-defined network
(sdn). Information and Communication Technology for Intelligent
Systems: Proceedings of ICTIS 2020, vol 2, pp. 213-221.2021.

[18] E.,Neto, et all. CICIoT2023: A real-time dataset and benchmark for
large-scale attacks in IoT environment. Sensors, vol. 23, no. 13, 5941,
2023.

[19] G. B., Huang, Q. Y., Zhu, and C. K. Siew, Extreme learning machine:
theory and applications. Neurocomputing, vol. 70, no 1-3, pp. 489-
 .2006.501

[20] G. B., Huang, D. H., Wang, and Y. Lan, Extreme learning machines: a
survey. International journal of machine learning and cybernetics, vol. 2,
pp. 107-122.2011 .

[21] W., Deng, Q., Zheng, and L.Chen, Regularized extreme learning
machine. In 2009 IEEE symposium on computational intelligence and
data mining. pp. 389-395. 2009.

[22] G. B., Huang, S., Song, and K. You, Trends in extreme learning
machines: A review. Neural Networks, vol. 61, pp. 32-48.2015.

[23] O. A., Alade, A., Selamat, and R.Sallehuddin. A review of advances in
extreme learning machine techniques and its applications. In Recent
Trends in Information and Communication Technology: Proceedings of
the 2nd International Conference of Reliable Information and
Communication Technology. pp. 885-895. 2018.

[24] I. D., Mienye, Y.Sun. A survey of ensemble learning: Concepts,
algorithms, applications, and prospects. IEEE Access, vol. 10, pp. 129-
149. .2022

[25] D. Kumar, Priyanka. Decision tree classifier: a detailed survey.
International Journal of Information and Decision Sciences, vol. 12, no.
3, pp. 246-269.2020.

[26] P. A. A., Resende, A. C. Drummond . A survey of random forest based
methods for intrusion detection systems. ACM Computing Surveys
(CSUR), vol. 51, no. 3, pp. 1-36.2018.

[27] G., Ke, et all. Lightgbm: A highly efficient gradient boosting decision
tree. Advances in neural information processing systems, vol. 30.2017.

