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Abstract—As the ubiquity of IoT devices in smart homes 

escalates, so does the vulnerability to cyber threats that exploit 

weaknesses in device security. Timely and accurate detection of 

attacks is critical to protect smart home networks. Intrusion 

Detection Systems (IDS) are a cornerstone in any layered security 

defense strategy. However, building such a system is challenging 

given smart home devices' resource constraints and behaviors' 

diversity. This paper presents an adaptative IDS based on a 

device-specific approach and SDN deployment. We categorize 

devices based on traffic profiles to enable specialized 

architectural design and dynamically assign the suitable 

detection model. We demonstrate the IDS efficiency, 

effectiveness, and adaptability by thoroughly benchmarking an 

ensemble of machine learning models, mainly tree ensemble 

models and extreme learning machine variants, on the up-to-date 

IoT CICIoT2023 security dataset. Our IDS multi-component 

device-aware architecture leverages software-defined networking 

and virtualized network functions for scalable deployment, with 

an edge computing design to meet strict latency requirements. 

The results reveal that our adaptive model selection ensures 

detection accuracy while maintaining low latency, aligning with 

the critical requirement of real-time accuracy and adaptability to 

smart home devices' traffic patterns. 

Keywords—Smart home; IoT; IDS; taxonomy, architecture; 

SDN; ELM  

I. INTRODUCTION 

The rapid growth of the smart home market broadly opens 
the doors to several threats to people's security and privacy. 
People are often unaware of security vulnerabilities, and 
manufacturers fail to prioritize security. This combination leads 
to a growing attack surface for hackers to exploit. Indeed, it is 
well known that many smart home devices, including IP 
cameras, smart locks, smart lighting systems, etc., contain 
vulnerabilities that attackers can exploit to intrude into home 
networks. Successful intrusions into IoT devices can allow 
hackers to not only steal sensitive user data but also take 
control of critical devices. Hence, there is a growing need for 
intelligent security systems to detect abnormal behaviors and 
attacks on smart home IoT devices in real time. 

Since no one-size-fits-all security solution exists, a defense-
in-depth approach and appropriate design and implementation 
should be context-aware to protect against threats and specific 
attack vectors. Among the complementary tools in the security 
layered defense comes network intrusion detection systems 
(NIDSs). They are security tools that continuously analyze 
traffic to identify intrusions and attacks. Traditional IDS 

employ signature-based detection, which matches known 
attack patterns. More advanced anomaly detection techniques 
spot statistical deviations from normal traffic to surface 
previously unseen attacks. However, building accurate 
intrusion detection models for IoT is challenging due to several 
factors. IoT devices have much more resource constraints than 
traditional computing systems and exhibit complex and 
dynamic behaviors. Moreover, the constantly evolving threats 
and vulnerabilities must be efficiently well-tracked for an 
adaptive security defense in the smart home context. Thus, 
knowing the ground truth for device and traffic features will be 
useful in tackling intrusion security challenges posed by smart 
home environments. 

Several research efforts have been spent to tackle these 
challenges. The research in [1] provided a comprehensive 
review of intrusion detection systems using machine and deep 
learning in IoT, discussing challenges, solutions, and future 
directions. They emphasized the need for efficient and accurate 
detection methods but did not propose a specific architecture or 
implementation. The study in [2] surveys network intrusion 
detection for IoT security based on learning techniques, 
highlighting the importance of efficient learning algorithms for 
smart home security. It deeply and thoroughly explores recent 
works focusing on machine learning techniques. However, its 
scope does not include architectural design issues such as 
adaptability and real-time requirements. The study in [3] 
introduced a deep learning application for invasion detection in 
industrial IoT sensing systems. While this work is relevant for 
industrial applications, it may not directly translate to smart 
home environments due to different operational constraints and 
attack vectors. The research in [4] proposes an integrated 
multilayered framework for IoT intrusion decisions and 
instantiates it for the industrial IoT. Although the framework 
can be instantiated to the smart home context, the paper did not 
specify the architectural design and deployment. All these 
works raised the flag that most existing methods overlook key 
IoT constraints like low latency, dynamic device behaviors, 
and resource limitations that impact real-world-scale adoption. 

We also cite some works that gave us insights to develop 
our proposed solution. The study in [5] proposed an intrusion 
detection system using an Online Sequence Extreme Learning 
Machine in the advanced metering infrastructure of smart 
grids. Their model focused on sequential data processing, 
which is pertinent and can be adapted to the continuous 
monitoring required in smart homes. The research in [6] 
discussed intrusion detection in fog computing and Mobile 
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Edge Computing. This work is particularly relevant as it 
considers the edge computing paradigm, which is increasingly 
adopted in smart home IoT. However, it does not discuss the 
use of machine learning in intrusion detection. The study in [7] 
presented a self-configurable cyber-physical intrusion detection 
system for smart homes using reinforcement learning. This 
system's adaptability to changing conditions in smart homes is 
a significant step towards dynamic and responsive security 
systems. The research in [8] explored a hybrid approach using 
an artificial immune system for intrusion detection in smart 
home networks. This work highlighted the potential of ELM 
for fast learning and generalization but did not focus on the 
real-time aspect of intrusion detection. The study in [9] 
integrates the software-defined networking, machine learning, 
and manufacturer usage descriptions standard with an intrusion 
detection and prevention system to assess its influence on 
network security. While including standards-based ingredients 
is interesting, their work is limited to manufacturing and does 
not consider the architectural effectiveness and network traffic 
characteristics. 

For the traffic characterization, [10] recognizes the 
importance of understanding IoT data characteristics for 
modeling the data bursts typical of IoT use cases, and it 
introduces an advanced ON/OFF traffic modeling approach 
tailored for the varied applications within a smart city context. 
While the work is pivotal for statistical modeling of the IoT 
traffic, it does not consider their solutions' architectural design 
and deployment. The study in [11] provides insights into IoT 
traffic characteristics in the specific context of smart home and 
campus environments. They found that  IoT devices exhibit 
periodic behavior with significant idle time. The devices 
generate a small amount of traffic, and most communicate with 
a small number of remote servers, often located in the same 
country as the device. The study also found several security 
and privacy issues, including devices communicating over 
unencrypted channels and devices communicating with servers 
in countries known for privacy concerns. This paper aims to 
design and build a flexible, scalable IDS that efficiently 
ensures security defense in real smart home environments 
without losing generality and adaptability. The contributions 
are: 

 We introduce a device-aware approach that categorizes 
IoT devices based on their traffic profiles and 
behaviors, leading to a more tailored and efficient 
detection process that can adapt to the heterogeneous 
nature of smart home devices. 

 Our solution employs an ensemble of optimized 
machine learning models, including extreme learning 
machine variants chosen based on the device category, 
balancing the tradeoffs between speed, accuracy, and 
resource usage. 

 We provide an experimental evaluation using an up-to-
date security dataset, demonstrating the effectiveness of 
our approach in a realistic smart home context. 

 We design a multi-component IDS architecture using 
network traffic profiles for real-time intrusion detection 
in smart home IoT environments. Our architecture 

leverages software-defined networking (SDN) and 
virtualized network functions (VNFs), allowing for a 
flexible and scalable deployment that can be adapted for 
both cloud and edge computing scenarios. We mainly 
opted for an edge computing-based deployment on an 
SDN testbed to meet strict latency requirements. 

The remainder of this paper is organized as follows: 
Section II presents our methodology steps. Section III 
characterizes the smart home devices' traffic and presents a 
simple traffic-based taxonomy. Section IV shows the 
architecture design and deployment. Section V presents the 
benchmarking of the machine learning models. Section VI 
shows the benchmarking results. Section VII concludes the 
paper and gives some future works. 

II. METHODOLOGY 

We propose a two-stage methodology within four steps to 
develop our intrusion detection system: 

A. Devices' traffic characterization 

1) Explore and categorize the commonly used devices in 

the smart home environment. 

2) Characterize the traffic devices and build a traffic-

centric devices taxonomy. 

B. Architectural Design and Model Selection 

1) Design and deployment of a smart home IDS-tailored 

architecture. 

2) Benchmark the ML models on a recent dataset and 

select the appropriate model based on the previous steps. 

More specifically, we start by enumerating devices and 
device/data categories to understand the ecosystem, and then 
we characterize traffic patterns and classify devices into a 
useful taxonomy. We are leveraging this knowledge to design 
and deploy suitable IDS architecture. Then, select appropriate 
machine learning models that detect intrusions optimized for 
the specifics of the smart home domain. The result is an IDS 
purpose-built to the unique smart home environment versus 
more generic systems. The key rationale is that threats exploit 
specific device vulnerabilities and traffic flows in the smart 
home, so an IDS must be aware of these devices and patterns to 
identify attacks. The proposed methodology builds this 
intrinsic knowledge by examining the ecosystem to customize 
the IDS. This context-aware solution can better distinguish 
attacks from normal traffic and has utility detecting intrusions 
that more generic learning-based systems may overlook in the 
IoT setting. 

III. DEVICES' TRAFFIC CHARACTERIZATION 

A typical smart home would include various IoT devices 
commonly used, such as smart thermostats, smart lighting 
systems, smart security cameras, smart locks, smart appliances 
(e.g., refrigerators, washing machines), smart speakers or home 
assistants, and smart TVs. Table I  characterizes common 
consumer IoT devices along three dimensions: subcategories 
based on features, key devices' behavior patterns, and data 
reflecting network traffic patterns in size and time. Grouping 
into broader categories like smart speakers while still 
enumerating specific device types enables roll-up 
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summarization and device-specific analysis. Smart TVs, for 
instance, have subcategories of basic models focused on video 
streaming with basic controls versus smart TVs, which have an 
integrated app platform enabling third-party applications like 
Netflix and YouTube. The use cases cover on-demand video 
and accessing these apps for entertainment and information. 
This expanded functionality versus standalone streaming leads 
to more diverse, multimodal traffic encompassing control 
commands, actual video data, and app communications. 

Referring to Table I and the data nature, we see a mix of 
primarily unimodal control traffic for simpler devices like 
lightbulbs, thermostats, and locks with relatively 
straightforward command and monitoring use cases. 
Meanwhile, more advanced devices like cameras, speakers, 
and fridges demonstrate bimodal or multimodal traffic 
indicative of more mixed media, including audio, video, and 
firmware downloads, resulting in variable network utilization. 

The complexity arising from supporting multiple integrated 
apps paired with streaming video in one device results in a 
complex traffic profile that may require advanced analytic 
approaches beyond simple machine learning algorithms to 
adequately characterize if simple models prove to have 
insufficient descriptive capability and predictive accuracy. 
However, for unimodal traffic, simpler models should suffice 
without overcomplicating analysis. 

Thus, we built a simple taxonomy of smart home IoT 
devices based on their network traffic characteristics: 

 Streaming Devices [Smart speaker, IP camera, Voice 
assistant robot] (Traffic patterns are: (1) Bimodal 
packet size distribution (small control + large streaming 

packets), (2) Bursty packet timing during streaming, 
and (3) Higher and variable traffic volume.) 

 Intermittent Control Devices [Smart lightbulb, Smart 
thermostat, Smart fridge, Smart doorbell, Smart blinds, 
Irrigation controller] (Traffic patterns are: (1) 
Uniformly small packet sizes, (2) Periodic keepalives + 
event-driven commands, and (3) Low traffic volume 
with occasional spikes ) 

 Monitoring Devices [Smoke detector, Motion sensor, 
Door/window sensor] (Traffic patterns are: (1) Small 
packets for status updates, (2) Sporadic or periodic 
timing, and (3) Very low traffic volume) 

 Actuators [Smart lock, Garage door opener, Smart plug] 
(Traffic patterns are: (1) Small command packets, (2) 
Event-driven timing (3) Extremely low traffic volume). 

Based on this taxonomy, considering device behaviors and 
traffic profiles, we categorize home IoT devices into two broad 
classes for architectural design: 

 High-throughput devices include video cameras, media 
hubs, etc., generating high volumes of multimedia 
traffic. The patterns are more complex and variable. 

 Low-throughput devices consist of simpler sensors and 
controllers for lighting, smoker detectors, etc., with 
minimal traffic. The patterns tend to be regular and 
predictable.  

Accordingly, in the next section, we propose a multi-
component IDS architecture to secure the smart home. 

TABLE I.  DEVICES TRAFFIC CHARACTERISTICS 

Device Category 
Device Data 

Subcategory Behavior Size Timing 

Smart TV Basic, Smart Intermittent streaming 
Bimodal (control + audio 
packets) 

Bursty during use and 
periodic otherwise 

Smart Speaker 
Audio streaming, Voice 

assistant, Smart display 
Mostly control commands Uniformly small Event-driven/periodic 

Smart lightbulb 
Tunable white, RGB, Motion 
sensor 

Continuous video 
Bimodal (small + large video 
packets) 

Periodic real-time streaming 

IP camera 
Video doorbell, Baby 

monitor, Security camera 
Infrequent controls Uniformly small 

Periodic polling + event-

driven 

Smart thermostat 
Self-contained, HVAC 

integrated 
Intermittent traffic 

Bimodal (control + firmware 

updates) 
Periodic sensors updates 

Smart fridge 
Display model, Bottom-

freezer model 
Sparse controls Uniformly small 

Infrequent periodic 

keepalives 

Smart lock Bluetooth, WiFi, Z-Wave Activated when used Small control packets Event-driven only 

Garage door opener 
WiFi/Bluetooth connected, 

Remote controlled 
Intermittent controls Small control packets Periodic + event-driven 

Smart blinds 
Motorized, App/voice 
controlled 

Sparse status report Small power toggling packets Periodic status updates 

Smart plug Controllable, Monitored Event-driven alerts Small alert packets 
Sporadic alarms, periodic 

heartbeats 

Smoke detector Integrated, Smart alarm Regularly scheduled operation Small control/status packets 
Periodic polling + daily 

schedules 

Irrigation controller 
App connected, Weather 

adjusted 
Intermittent streaming Packet Size Distribution Packet Timing Distribution 
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IV. ARCHITECTURAL DESIGN AND MODEL SELECTION 

A. Architecture Design 

The core of our proposed intrusion detection system 
comprises a multi-component architecture tailored to secure 
diverse IoT devices in smart home environments. Our design 
meets the following key requirements: real-time detection 
capability, adaptability to evolving behaviors, detection 
accuracy for known and zero-day attacks, and computational 
efficiency to operate given smart home resource constraints. 

The modular architecture allows customizing specific 
components to address deployment-specific needs. The IoT 
devices would commonly be connected to a local network, 
including a gateway or router, to manage network traffic and 
connect to the Internet. The network commonly includes a mix 
of wired and wireless connections, depending on the specific 
devices used, and HTTP(S), MQTT, CoAP, and Zigbee are the 
common IoT-used protocols. Furthermore, smart home often 
has a network firewall and other basic security measures for 
each device the manufacturer provides. The security threats 
landscape includes denial or distributed denial of service 
(DoS/DDoS) attacks, malware or ransomware attacks, 
unauthorized access or intrusion attempts, and data breaches or 
exfiltration attempts. We add a layer for intrusion detection that 
stays behind the firewall. Mainly the NIDS system includes the 
following components: 

 Traffic Inspector capturing and pre-processing all 
device traffic flows. It mainly  (1) captures raw network 
traffic using port mirroring, (2) extracts flow-based 
features like source/destination IP, ports, packet sizes, 
etc., (3) tags flow with device identities from logs, and 
(4) forwards processed flows to Device Profiler. 

 Device Profiler identifies and assigns device type to a 
high/low throughput category. It mainly (1) maintains 
an inventory of identified IoT devices, (2) classifies 
devices into high or low throughput groups, and (3) 
pushes device type and group to ML Model Selector. 

 ML Model Selector chooses the optimal intrusion 
detection model for that device type. It mainly (1) 
houses a catalog of optimized ML models for each 
device group, (2) models tailored for the complexity 
and behaviors of that group, (3) queries device group 
for a flow from Device Profiler and (4) dynamically it 
selects the matching model for anomaly detection. 

 Model Repository contains specialized ML models 
tailored for each device class. It mainly (1) stores 
specialized ML models, (2) contains different 
algorithms that suit traffic complexities, and (3) 
includes models pre-trained on normal and attack 
device data. 

 Intrusion Detector to analyze traffic for intrusion using 
a selected model. It mainly (1) receives network traffic 
flow features, (2) feeds to Model Selector chosen 
model, (3) the model analyzes the sequence for 
intrusions, and (4) the classifier flags intrusion if found. 

 Alert Manager raising intrusion alerts as needed with 
attack details. It mainly (1) collects intrusion alerts from 
Intrusion Detector, (2) provides details like affected 
device attack type, and (3) raises notifications to admin 
and response systems. 

We first utilize a Traffic Inspector module that captures raw 
network traffic using port mirroring techniques. It then extracts 
flow-based features like source and destination IPs, ports, 
packet sizes, and tag flows to specific device identities 
obtained from logs. The processed traffic flows are forwarded 
to a Device Profiler component, which maintains an inventory 
of devices identified on the network. Leveraging both domain 
knowledge, the Device Profiler categorizes devices into either 
high throughput or low throughput groups. High throughput 
devices like cameras and media hubs generate higher volumes 
of multimedia network traffic with more complex and variable 
patterns. In contrast, simpler sensors and controllers constitute 
the low throughput group with minimal and regular traffic. 

The device type and group information are passed into an 
ML Model Selector module that maintains a catalog of 
specialized models tailored for each device group. When the 
Model Selector receives a query with the device group for a 
particular traffic flow, it dynamically selects the matching 
specialized model to analyze that flow for intrusions. This 
model repository containing diverse algorithms suited for 
varying traffic complexities is pre-trained on normal and attack 
data generated from devices in the corresponding category. 

An Intrusion Detector module takes the network traffic 
flow features and feeds them into the model instance chosen by 
the Model Selector for that flow. Based on previous learning, 
the selected model analyzes the sequence to detect intrusions, 
finally flagging likely security intrusions. Any intrusion alerts 
are collected by an Alert Manager, who provides details like 
the affected device and attack type to administrators and 
incident response systems. 

B. Architecture Deployment 

Our proposed intrusion detection system's components 
leverage software-defined networking (SDN) capabilities for 
efficient and flexible system deployment [12,13]. The SDN 
controller provides a central orchestration point for the various 
IDS modules [14]. Network switches are configured using 
SDN policies to mirror IoT traffic flows that need to be 
inspected, tapping them to feed into the IDS Traffic Inspector 
module. The centralized network view within the SDN control 
plane also enables mapping these flows to specific IoT devices 
on the network. 

A software-defined implementation offers significant 
advantages in flexibility, programmability, and scalability. The 
centralized control plane greatly simplifies tapping into a high 
volume of IoT flows in dynamic environments while 
automating complex policy configurations needed for 
mirroring. Device profiles and policies can be updated easily as 
new IoT devices get added over time. SDN also enables large-
scale deployments with intelligent traffic engineering and 
usage optimization across available IDS resources. Therefore, 
an SDN-based deployment for the intrusion detection 
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infrastructure makes our IDS more agile and adaptive, mainly 
as smart home IoT adoption grows exponentially. 

Practically, the core detection modules of the IDS, 
including the Device Profiler, ML  model Selector, and 
Intrusion Detector, are implemented as virtualized network 
functions (VNFs). By leveraging VNFs and placing them 
flexibly on commodity servers, we scale out these modules on 
demand to meet the throughput needs of real-time detection 
across many IoT devices. As device diversity expands or new 
models are added to the model repository, more VNF instances 
can be spun up accordingly. The global view allows the SDN 
controller to intelligently load balance traffic flows across the 
VNF resources for optimal efficiency. 

The VNF-based deployment can leverage both cloud and 
edge computing approaches: (1) Cloud-based Deployment 
where the VNFs for the IDS components like Traffic Inspector, 
Device Profiler, Model Repository, and Intrusion Detector can 
be hosted on virtual machines or containers in a private or 
public cloud. This allows leveraging cloud platforms' 
flexibility, scalability and managed services. The globally 
distributed nature of major cloud providers also allows VNFs 
to be placed closer to IoT deployments for lower latency. 
However, wide-area network traffic and cloud usage costs may 
be concerns. (2) Edge Computing Deployment, where we 
deploy the VNFs on edge servers directly located in smart 
homes. Edge computing overcomes cloud-based analysis's 
latency and bandwidth challenges by processing data locally. It 
provides better responsiveness for real-time intrusion detection 
[15, 16]. Edge servers can also interface with hardware 
accelerators for efficient ML model inference. While cloud and 
edge are viable deployment options, edge computing is better 
aligned to meet the low latency requirements for real-time 
intrusion detection across smart home installations. Indeed, the 
proximity of edge servers to IoT environments makes the IDS 
more adaptive. 

The deployment experimentation can be performed by an 
SDN testbed where we integrate the edge computing-based 
deployment with the Mininet/Ryu [17]. Mainly, we set up edge 
computing nodes in the Mininet topology to host the VNFs 
(Device Profiler, Model repository, Intrusion Detector). These 
would consist of lightweight Docker containers. Then, we 
configure the Ryu controller to steer copies of IoT traffic flows 
to the nearest edge node for intrusion detection analysis. This 
mimics real-world edge deployment. The VNF containers 
process the mirrored device traffic, generate alerts if needed, 
and export IDS telemetry data. We expose the VNFs via REST 
APIs for integration with the Ryu controller and monitoring 
software and evaluate overall latency from the IoT devices to 
the edge-based IDS VNFs during attack scenarios in Mininet. 
We can then analyze the responsiveness, overhead, and 
accuracy relative to an Edge-based deployment. This 
deployment allows prototyping and demonstrating the benefits 
of edge computing for IoT environments, leveraging Ryu's 
programmability and Mininet's flexibility. Automated traffic 
steering to nearby edge nodes also validates the low latency 
premise. 

C. Architecture Suitability 

Following, we discuss how the proposed modular multi-
components IDS architecture design and its SDN-based 
deployment, along with the Edge-computing technology, help 
to meet key requirements of real-time detection, adaptability, 
and accuracy: 

1) Real-time detection capability: The lean and 

specialized machine learning models ensure low latency 

between packet capture by the Traffic Inspector and intrusion 

alert generation by the Intrusion Detector. In the next section, 

we will show that the selected models are optimized for 

efficiency without sacrificing detection accuracy. The 

virtualized deployment also allows dynamic scaling of 

detection modules to match incoming traffic volumes. 

Together, these allow the IDS to provide real-time, sub-second 

analysis of IoT traffic flows to meet real-time detection needs. 

2) Adaptability to evolving behaviors: The feedback loop 

from the Device Profiler to the ML Model Selector allows the 

system to adapt to changes in device behaviors over time. As 

traffic patterns change, updated device profiles trigger 

selection of different models tailored to new behaviors. The 

models themselves, through re-training, will also adapt during 

operational use as they observe more data. This tight 

integration between device knowledge and flexible model 

selection allows the IDS to adjust to evolving IoT 

environments. 

3) Detection accuracy: The model repository for the 

device category allows highly accurate intrusion detection 

based on specific device profiles. Tailoring models to capture 

different IoT devices' normal/attack behavior patterns results 

in a solution that outperforms one-size-fits-all approaches. 

V. INTRUSION DETECTION MODELS BENCHMARKING 

A. Methodology and Dataset 

As per our proposed methodology, we leverage the 
CICIoT2023 dataset in [18] to categorize smart home IoT 
devices based on network traffic profiles and select suitable 
ML models for intrusion detection accordingly. The 
CICIoT2023 dataset has been created to accelerate research 
into security analytics and intrusion detection systems tailored 
for smart home IoT environments. It contains network traffic 
captures from an extensive smart home IoT testbed comprising 
over 100 heterogeneous devices. The key value of CICIoT2023 
lies in the 33 contemporary IoT-focused attacks spanning 
seven categories executed on the devices. Many of these attack 
types are unavailable in other IoT IDS datasets. The attacks 
leverage compromised IoT devices to penetrate the network, 
enabling the evaluation of multi-vector IoT threats. Therefore, 
CICIoT2023 is an invaluable, up-to-date resource for further 
research into robust intrusion detection tailored for smart home 
IoT environments facing escalating threats. Moreover, the 
CICIoT2023 experiments provide data-driven guidance for 
model selection in our multi-component IDS architecture that 
analyzes runtime traffic profiles to pick the optimal intrusion 
detection model tailored to IoT device behaviors and 
capacities. 
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The CICIoT2023 is an unbalanced dataset since it is attack 
intensive. We deploy the SMOT technique to generate a 
balanced dataset sample. Then, we subsample each dataset into 
low and high-traffic flow groups that align with our taxonomy 
of simple and complex IoT devices, respectively. The 
CICIoT2023 dataset contains 46 features describing the traffic 
flows. The flow rate in packets/second feature is the most 
discriminative feature for this clustering across all the available 
dataset attributes. Then, we experiment with various models on 
both traffic datasets (balanced and unbalanced), measuring 
evaluation and model efficiency metrics. Comparing these 
metrics reveals how different algorithms fare in detecting IoT 
intrusions for simple and complex device categories, 
respectively. Additionally, we benchmark the models on the 
full dataset to validate the improvements gained from our 
approach of tailored model selection per device traffic profiles. 
By correlating the model evaluation and efficiency metrics, we 
can determine the detection accuracy and precision vs. latency 
tradeoff and evaluate our meeting degree to our key IDS 
objectives around real-time alerts, adaptability to varying 
traffic volumes and attack types, and detection precision for 
IoT environments within typical resource constraints. 

B. Models Selection 

1) Intuitive analysis of models' suitability: We intuitively 

discuss here the suitability of the ML models for the IDS 

requirements in our context. Tree-based models construct 

multiple shallow decision trees. They capture nonlinear 

interactions and complex patterns like network attacks through 

branching decisions; the tree ensembles balance bias and 

variance. The tree architectures also suit evolving data through 

continuous model updates and handheld high-dimensional 

network data. Support vector machine (SVM) is known for its 

effectiveness with high dimensional multimodal data, but its 

complexity impacts real-time performance. While Deep 

learning models, based on many neural networks, identify 

complex patterns and capture sequential dependencies, 

helping detect multi-stage attacks, they require significant data 

and computing resources that may not suit resource-

constrained IoT context. One interesting approach to reducing 

this complexity is the Extreme Learning Machine (ELM) [11], 

a fast, single-layer feedforward neural network for 

classification and regression. They randomly initialize input 

layer weights and analytically determine output weights. This 

allows very fast model training suited for real-time usage. 

Intuitively, the tree ensemble and ELM class of models 
seem optimal for balancing efficiency, accuracy, and 
adaptability within typical IoT constraints. The modular 
architecture enables deploying complex models like support 
vector machine or deep learning techniques selectively for 
capable devices while using tree ensemble and ELM for most 
real-time detection. The Model Selector dynamically handles 
this model assignment per device profile. Based on this 
intuitive analysis, we selected the following set of ML models 
for benchmarking. Following is a brief description of each 
model: 

2) Benchmarked models: We select 12 models to perform 

our benchmark. Six of them are variants of the ELM, which 

intuitively brings a promising adequacy for our design 

requirements. We experiment with its variants [19-23]: 

 Kernel ELM is an extension of basic ELM that applies 
kernel functions like sigmoid, radial basis function 
(RBF), hyperbolic tangent (tanh), etc., to non-linearly 
map the input data to new feature spaces before output 
weight computation. This adds nonlinearity to improve 
model learning capability for complex patterns. 

 Regularized ELM imposes additional constraints on 
optimizing the output weights matrix calculation. 
Regularization parameters control model complexity to 
prevent overfitting, enabling more robust intrusion 
detection. 

 Weighted ELM introduces random scaling factors or 
weights when multiplying the input layer feature values 
during forward propagation. This acts as a regularizer 
like dropout techniques in neural networks, reducing 
inter-dependencies and improving generalizability. 

 OS-ELM (Online Sequential ELM) is the online 
sequential version of ELM that processes streaming 
data instance-by-instance for model updates rather than 
batch learning. This fast incremental learning allows 
continuous real-time model adaptation, useful for 
evolving traffic in our context. 

 Voting ELM is an ensemble method that trains multiple 
OS-ELM models on bootstrap samples of the original 
data. During prediction, the OS-ELM outputs are 
aggregated through voting to output the overall class. 

 Bagging ELM is another ensemble technique using 
bootstrap sampling to train multiple OS-ELM models. 
The predictions are aggregated by weighted averaging 
rather than voting. 

 The other six used  ML models in the benchmarking are 
[24-27]: 

 Logistic regression is a linear classification model that 
assigns probabilities to data points belonging to classes 
using the logistic/sigmoid function. It is fast to train but 
assumes linear decision boundaries. 

 Decision Tree is a simple hierarchical model with 
branching decisions based on feature thresholds. It is 
interpretable but prone to overfitting with noisy IoT 
data. 

 Random Forest is an ensemble method combining 
predictions from many uncorrelated decision trees. It 
averages out bias and variance for robust performance 
despite some complexity. 

 AdaBoost is another ensemble technique that iteratively 
focuses on misclassified instances. It can reduce bias 
and variance errors despite the complexity cost. 
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 XGBoost is a scalable tree-boosting system for both 
classification and regression. It uses regularized model 
formalization for controllable complexity and prevents 
overfitting. 

 LightGBM is a gradient-boosting framework 
specifically engineered for efficiency, performance, and 
lower memory usage. 

C. Performance Metrics 

 We choose the following key evaluation metrics for 
assessing our benchmark models' performance: 

 Training Time (s): selecting efficient models is crucial 
for real-time model updates as new devices get added 
and data change in volume and nature. Therefore, lower 
training time is better. 

 Prediction Time (s) measures classifying flow instances. 
It impacts the real-time intrusion alert generation 
capability. Therefore, a lower prediction time is better. 

 Latency Time (s) is the sum of training and prediction 
times reflecting the end-to-end delay from data 
ingestion to producing an alert. This metric is directly 
relevant for real-time adaptative detection needs. 

 Memory Usage (MB) measures the RAM consumed 
during model training and inference. It is important due 
to memory constraints in embedded IoT devices. 

 Accuracy is the fraction of correctly classified 
instances. It provides an overall performance measure 
but can be misleading for imbalanced data. 

 Precision is the fraction calculated by dividing True 
Positives over the sum of True Positives and False 
Positives. It is important to minimize false alarms 
which disrupt users. 

 Recall is the fraction calculated by dividing True 
Positives by the sum of True Positives and False 
Negatives. It is crucial to maximize the detection of 
actual attacks and intrusions. 

 F1 score is a harmonic mean of precision and recall 
balancing both metrics. It provides a good measure of 
detection capability. 

Analyzing the latency time tradeoff with accuracy and 
other metrics allows us to determine the models most suited to 
real-time, adaptive intrusion detection requirements in smart 
home IoT environments. 

VI. RESULTS AND DISCUSSION 

The results presented for the various machine learning 
models indicate a diverse range of performance outcomes, with 
particular interest in the balance between latency and detection 
metrics such as accuracy and precision. Since we have two 
datasets (unbalanced and balanced), the figures show the 
precision metric related to latency times for the unbalanced 
dataset since the accuracy can be misleading for unbalanced 

datasets. This is in contrast to the balanced dataset, where 
accuracy is appropriate. We generated 8*3*2 plots for the 12 
models since we measured 8 metrics  (training time, prediction 
time, latency time, memory usage, accuracy, precision, recall, 
and F1 score) for 3 datasets (low rate, high rate, and low + high 
rate) sampled from 2 datasets (unbalanced and balanced). 
Hereafter, we show a subset of the plots most related to the 
IDS architecture design requirement: real-time, 
accuracy/precision, and adaptability. 

A. Devices with Low-rate Traffic 

For the unbalanced CICIOT2023 dataset, Fig. 1 and Fig. 2 
show that the Extreme Learning Machine algorithms 
demonstrate fast training and prediction latency times, meeting 
real-time intrusion detection needs. Specifically, the 
Regularized ELM provides the best balance with strong 
precision and total latency time. Decision Tree has low latency, 
making it a good candidate for low-rate devices, as intuitively 
predicted. In contrast, ensemble methods can enhance precision 
but have high training times. 

For the balanced dataset, the Regularized ELM has the 
shortest training time at 1.0281 seconds, contributing to a low 
overall latency time of 1.3915 seconds when combined with its 
prediction time. This suggests that Regularized ELM is highly 
suitable for real-time applications where quick model training 
and prediction are critical. However, the regulated ELM has 
high precision and recall while maintaining 99.7% accuracy, 
slightly lower than other models. This combination of speed 
and reliability makes it the top choice if minimizing detection 
delay is critical. On the other end of the spectrum, ensemble 
methods like Random Forest, AdaBoost, XGBoost, and 
LightGBM have significantly longer training times, 
contributing to their higher overall latency times making them 
less suitable for real-time intrusion detection. 

Furthermore, the memory usage across all ELM models is 
relatively smaller than the other models. An interesting outlier 
is the Decision Tree model, which has low latency similar to 
ELM methods. The models are fairly consistent regarding 
memory usage, ranging from 1-1.1 GB, which is acceptable for 
Edge-computing intrusion detection architecture. 

B. Devices with High-rate Traffic 

Fig. 3 and Fig. 4 show that the ELM variants (OS-ELM, 
Kernel ELM, Regularized ELM, Weighted ELM) have very 
low latency times, under two seconds. This makes them well-
suited for real-time intrusion detection, where getting alerts 
quickly is critical. However, their detection accuracy is slightly 
lower than that of ensemble methods, which are slightly 
accurate but come at the cost of higher latency times. This 
suggests that Regularized ELM is particularly well-suited for 
environments where rapid detection is critical and resources 
may be limited, which fits our case. In contrast, tree ensemble 
methods show higher latency times, with AdaBoost reaching 
up to 15.9998 seconds. However, these models exhibit 
excellent detection performance. The tradeoff is between the 
higher computational and time costs against the benefit of 
potentially more accurate detection. 
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Fig. 1. Low-rate device training, prediction, latency times, and memory usage for unbalanced and balanced datasets. 

 
Fig. 2. Latency time according to precision (resp. accuracy) for unbalanced (resp balanced) datasets. 
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Fig. 3. High-rate device training, prediction, latency times, and memory usage for unbalanced and balanced datasets. 

  

Fig. 4. Latency time according to precision (resp. accuracy) for unbalanced (resp balanced) datasets.
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The ELM variants have the lowest training and prediction 
times for the balanced dataset. This enables very fast intrusion 
detection, suitable for real-time intrusion alerting. Regularized 
ELM stands out with high accuracy, precision, recall, and F1 
scores at 99% despite having the lowest latency of just 1.44 
seconds. This demonstrates it can deliver both speed and 
accuracy. The ensemble methods achieve nearly perfect 
evaluation metrics but with prohibitive training times. Their 
high latency makes them impractical for time-critical detection. 
Memory usage hovers between 1.1-1.3GB for most models 
with the lowest value of ELM variants. This confirms the 
adequacy of complex models for the high-rate devices 
reflecting the complexity of the traffic pattern. 

C. Devices with Low+high Rate Traffic 

Fig. 5 and Fig. 6 show that the Regularized ELM offers an 
impressive balance between speed and performance, with the 
lowest training time of 0.9867 seconds and a very competitive 
prediction time of 0.3748 seconds, resulting in a total latency 
of 1.3615 seconds. This is complemented by high accuracy 

(0.9986), precision (0.9989), and an F1 score (0.9993), making 
it a strong candidate for real-time applications where both 
speed and accuracy are critical. In contrast, ensemble methods 
exhibit higher latency times, ranging from 7.9752 to 31.2592 
seconds, but with high accuracy and precision. 

The memory usage metric indicates that all models are 
relatively memory-intensive, with usage ranging from 
1601.1875 to 1720.7383 MB. This is a limiting factor in 
resource-constrained environments, such as our edge 
computing, and confirms our architecture's suitability, which 
separates the traffic into two groups to master the time and 
memory usage consumption. 

The training times align with overall latency, with the ELM 
models being the fastest to train while the ensemble methods 
are slower. Prediction times are consistently low across the 
models. Memory usage hovers between 1.6-1.7GB for most 
models, up to 1.72 GB for LightGBM. So, memory is unlikely 
to be a constraint. 

 

 
Fig. 5. High-rate device training, prediction, latency times, and memory usage for unbalanced and balanced datasets. 
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Fig. 6. Latency time according to precision (resp. accuracy) for  unbalanced (resp balanced) datasets. 

For the balanced dataset, the ELM variants (OS-ELM, 
Kernel ELM, Regularized ELM) deliver the fastest 
performance with training and prediction times under 1 second, 
maintaining near-perfect accuracy. The low latency makes 
them optimal for real-time usage. Conversely, ensemble 
methods like Random Forest, AdaBoost, XGBoost, and 
LightGBM achieve near-perfect scores on all metrics but at the 
cost of very high training times, from 137 to over 248 seconds. 
Their latency is prohibitive for time-critical detection. 

Memory usage is reasonably consistent for most models 
between 1.8 GB and 2GB, which could be limiting for 
memory-constrained environments. The extreme learner 
methods have lower memory requirements that may suit 
resource-limited IoT devices better. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we built a simple taxonomy to separate 
devices into two broad categories: one with high-volume and 
complex patterns and low-rate and simple traffic patterns. 
Based on this categorization, we design a suitable NIDS 
architecture and select machine learning models that are most 
adequate for each device type and traffic profile. The models 
are chosen based on detection accuracy, computational 
efficiency, and ability to handle complex traffic patterns. For 
that, we leverage the new CICIoT2023 dataset containing up to 
date IoT network traffic data with different realistic attacks. 
Using this dataset, we evaluate various machine learning 
models to develop an IDS focused on real-time, adaptive 
detection of intrusions specific to IoT devices. 

We optimized the intrusion detection capabilities across 
smart home IoT deployments by matching the right models to 
the specific use case requirements around timing, accuracy, 
and resource constraints. The benchmark analysis guides on 
selecting between fast ELM variants versus slower but more 
precise ensemble methods. For low throughput IoT devices 
with minimal, regular traffic patterns, simpler models like 

decision trees provide efficient and fast anomaly detection. 
Their basic architectures allow quick training and scoring to 
enable real-time intrusion alerting. In contrast, high throughput 
multimedia devices require more advanced models like 
Regularized ELM to capture complex and evolving traffic 
patterns while maintaining low latency. The nonlinear 
mappings and optimized complexity in Regularized ELM 
balance speed and accuracy. So, the device traffic profiles and 
characteristics directly inform the machine learning model 
selection to optimize detection capabilities. The benchmark 
analysis maps models to the specific performance needs driven 
by the IoT taxonomy of low and high throughput groups. This 
specialized, profile-based model assignment enhances both 
efficiency and security. 

As a future work, we intend to deploy and evaluate the 
system in a real-world smart home environment at scale to 
assess performance with live traffic and attacks. We will also 
enhance the capability of the system to become intrusion 
detection and prevention system by correlating intrusion alerts 
with device vulnerabilities and risk profiles to harden IoT 
device configurations through SDN dynamically. 
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