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Abstract—Alzheimer's disease (AD) poses a significant 

healthcare challenge, with an escalating prevalence and a 

forecasted surge in affected individuals. The urgency for precise 

diagnostic tools to enable early interventions and improved 

patient care is evident. Despite advancements, existing detection 

frameworks exhibit limitations in accurately identifying AD, 

especially in its early stages. Model optimisation and accuracy 

are other issues. This paper aims to address this critical research 

gap by introducing ConvADD, an advanced Convolutional 

Neural Network architecture tailored for AD detection. By 

meticulously designing ConvADD, this study endeavours to 

surpass the limitations of current methodologies and enhance 

accuracy metrics, optimisation, and reliability of AD diagnosis. 

The dataset was collected from Kaggle and consists of 

preprocessed 2D images extracted from 3D images. Through 

rigorous experimentation, ConvADD demonstrates remarkable 

performance metrics, showcasing its potential as a robust and 

effective. The proposed model shows remarkable results with a 

tool for AD detection accuracy of 98.01%, precision of 98%, 

recall of 98%, and an F1-Score of 98%, with only 2.1 million 

parameters. However, despite its promising results, several 

challenges and limitations remain, such as generalizability across 

diverse populations and the need for further validation studies. 

By elucidating these gaps and challenges, this paper contributes 

to the ongoing discourse on improving AD detection 

methodologies and lays the groundwork for future research 

endeavours in this domain. 

Keywords—Alzheimer’s disease; AD detection; convolution 

neural network 

I. INTRODUCTION 

Alzheimer's disease (AD) poses an escalating challenge in 

healthcare, demanding sophisticated and timely diagnostic 

mechanisms to enable prompt interventions and elevate the 

quality of patient care [1]. The persistent rise in dementia 

incidence, currently at a staggering 10 million new cases 

annually [2], signals an impending crisis, with forecasts 

indicating that the population afflicted by AD will soar to 152 

million by 2050 [2]. This exponential growth trajectory not 

only underscores the pressing demand for precise diagnostic 

approaches but also emphasises the critical necessity for 

inventive and resilient detection frameworks to alleviate the 

impending healthcare burden. 

The pathological mechanisms driving Alzheimer's disease 

(AD) unveil a tumultuous cascade of neuronal degeneration, 

precipitating a profound decline in cognitive functions and the 

gradual erosion of memory capabilities [3]. This devastating 

progression is propelled by the insidious accumulation of 

proteins within the neuronal environment, instigating 

consequential structural alterations in the intricate architecture 

of the brain [4], [5], [6], [7]. Despite this disease's profound 

impact and relentless advancement, the quest for a precise 

diagnostic methodology remains an elusive endeavour, 

impeding the development of effective therapeutic 

interventions [8], [9], [10]. The imperative for early detection 

of Alzheimer's disease assumes paramount significance, 

particularly in identifying its nascent stage, Mild Cognitive 

Impairment (MCI). This preclinical phase signifies a pivotal 

juncture, spotlighting the crucial window for intervention and 

strategic treatment planning. Recognising MCI enables 

proactive measures aimed at mitigating disease progression, 

potentially forestalling the onset of debilitating symptoms and 

enhancing patient outcomes. Consequently, the development of 

robust diagnostic modalities capable of discerning subtle 

cognitive changes at this incipient stage holds profound 

implications for advancing both clinical management and 

therapeutic innovation in Alzheimer's disease [11], [12]. 

The landscape of Alzheimer's disease (AD) detection has 

undergone a transformative evolution catalysed by 

breakthroughs in neuroimaging methodologies and the 

emergence of computer-aided diagnostic approaches [7]. These 

pioneering innovations have revolutionised the field, furnishing 

clinicians with unprecedented insights into the intricate 

neuronal manifestations inherent to AD. Yet, notwithstanding 

the commendable strides achieved through machine learning 

[13] and deep learning [14] models, significant limitations 

persist in the realm of AD detection. 

Machine learning algorithms have shown promise in 

identifying patterns indicative of Alzheimer's disease (AD) 

pathology from neuroimaging data. However, challenges 

persist in achieving consistent accuracy rates across diverse 

patient groups and imaging methods due to data variability, 

limited sample sizes, and the heterogeneous nature of AD. 

Interpretability remains a concern, as black-box models lack 
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transparency in explaining diagnostic predictions. Deep 

learning techniques offer the potential to extract features from 

neuroimaging data but require large, labelled datasets for 

effective training and are prone to overfitting. Integrating these 

algorithms into clinical practice necessitates rigorous validation 

and standardisation protocols alongside ethical considerations 

regarding patient privacy, data security, and algorithmic bias. 

In light of these challenges, concerted efforts are underway 

to address the existing gaps in AD detection through 

interdisciplinary collaborations, data harmonisation initiatives, 

and the development of interpretable machine learning 

frameworks. By surmounting these obstacles, the field stands 

poised to realise the full potential of artificial intelligence in 

revolutionising early detection and personalised management 

strategies for Alzheimer's disease. 

Remarkable advances in machine learning and deep 

learning models have indeed propelled the field of Alzheimer's 

disease detection forward, primarily through classification 

paradigms [15], [16], [17], [18]. These models have exhibited 

commendable abilities to discern intricate patterns and 

categorise data, offering promising avenues for early diagnosis 

and intervention. However, the predominant emphasis on 

classification may inadvertently overlook the nuanced 

complexities inherent in Alzheimer's disease pathology. 

Alzheimer's disease involves complex neurodegenerative 

processes, including cognitive decline and various brain 

alterations. Early disruptions in synaptic function and 

signalling precede clinical symptoms by years. Amyloid-beta 

plaques and tau protein tangles lead to widespread neuronal 

dysfunction and cognitive decline. Machine learning and deep 

learning models excel in classification tasks but may 

oversimplify Alzheimer's complex pathology. A holistic 

approach is needed to capture disease progression and clinical 

diversity accurately. 

To address this challenge, there is a growing recognition of 

the importance of integrating multimodal data sources and 

leveraging advanced analytical techniques that can capture the 

multidimensional nature of Alzheimer's disease. By combining 

neuroimaging data with clinical, genetic, and molecular 

biomarkers, researchers aim to construct comprehensive 

disease signatures that capture the diverse manifestations of 

Alzheimer's pathology across different stages of disease 

progression and patient subpopulations. 

The use of classification-focused deep learning models has 

posed significant challenges in effectively capturing the 

spectrum of multifaceted manifestations of Alzheimer's 

disease. While these models excel at categorising data into 

discrete classes, they often fall short in capturing the complex 

interplay of subtle neuronal abnormalities that characterise the 

onset and progression of AD. By primarily focusing on 

distinguishing between healthy and diseased states, these 

models may overlook the heterogeneity of AD pathology and 

fail to capture the nuanced changes occurring within the brain 

over time. 

There is, therefore, a compelling imperative to transcend 

the limitations of classification-based models and embrace a 

paradigm that comprehensively encompasses the multiple 

facets of Alzheimer's disease pathology. Rather than simply 

categorising data into binary outcomes, it is essential to adopt a 

new approach that not only identifies patterns but also discerns 

the subtle and intricate nuances indicative of the early stages of 

Alzheimer's disease. This shift towards a more nuanced and 

comprehensive diagnostic framework holds the potential to 

enhance our understanding of AD pathogenesis and improve 

the accuracy of early detection strategies. 

Our research introduces ConvADD, a novel convolutional 

neural network (CNN) architecture specifically tailored for 

accurate Alzheimer's disease detection. Unlike traditional 

models, ConvADD effectively handles imbalanced datasets 

without requiring extensive data augmentation. It features 

adapted convolutional blocks and deep layers optimised for 

discerning subtle disease patterns, even with smaller datasets. 

ConvADD represents a paradigm shift in Alzheimer's 

detection, overcoming dataset imbalances and revolutionising 

diagnosis. Leveraging advanced deep learning techniques, it 

offers promising potential for early detection and improved 

management, advancing our pursuit of effective treatments. 

The contributions outlined highlight significant 

advancements in the field of Alzheimer's disease (AD) 

detection, particularly focusing on the development of 

ConvADD, a novel Convolutional Neural Network (CNN) 

architecture tailored specifically for this purpose. Here's an 

elaboration: 

 The first major contribution is the creation of 
ConvADD, which stands for Convolutional Alzheimer's 
Disease Detection. This architecture represents a 
pioneering approach designed explicitly for detecting 
Alzheimer's Disease. Unlike previous models, 
ConvADD is crafted to prioritise accuracy without 
relying on dataset-balancing techniques. This means 
that it can maintain robust performance across datasets 
of varying sizes without needing additional 
preprocessing steps to balance the data distribution. 

 ConvADD is designed with a focus on detecting 
Alzheimer's disease patterns within medical imaging 
data, such as MRI or CT scans. This tailored 
architecture ensures that the model is adept at 
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identifying the specific features indicative of AD, 
optimising its performance for this task. 

 Extensive comparative analyses have been conducted to 
evaluate ConvADD against established state-of-the-art 
models used for AD detection. These analyses have 
consistently shown ConvADD to outperform existing 
models in terms of various performance metrics. These 
metrics could include accuracy, sensitivity, specificity, 
and other measures used to assess the efficacy of a 
diagnostic model. 

 The comparative analyses serve to affirm the efficacy of 
ConvADD in Alzheimer's disease detection. By 
demonstrating superior performance across diverse 
datasets and outperforming established models, 
ConvADD establishes itself as a promising tool for 
early detection and diagnosis of Alzheimer's disease, 
potentially leading to improved patient outcomes and 
more effective treatment strategies. 

The upcoming sections cover a thorough review of related 

studies in the Literature Review in Section II, followed by a 

detailed explanation of the Methodology in Section III behind 

crafting the novel architecture. Next, the Comparative Study 

contrasts the proposed approach with established models, while 

the Results and Discussion in Section IV examines and 

discusses the outcomes. Limitations and Future Directions 

address current constraints and potential advancements are 

given in Section V. Finally, Section VI summarises the 

findings and their broader implications. 

II. LITERATURE REVIEW 

Convolutional Neural Networks (CNNs) have emerged as a 

cornerstone in medical imaging, playing a pivotal role in 

advancing diagnostic capabilities across various domains. In 

particular, within the realm of neuroimaging, CNNs have 

demonstrated remarkable efficacy in tasks such as organ 

segmentation and disease detection, thereby significantly 

enhancing healthcare outcomes. The intricate nature of neural 

images, with their complex structures and subtle abnormalities, 

presents a unique challenge that CNNs are well-suited to 

address. 

In the specific context of Alzheimer's disease (AD) 

detection, CNNs offer a promising pathway toward early 

diagnosis and intervention. AD is a progressive 

neurodegenerative disorder characterised by the accumulation 

of beta-amyloid plaques and tau protein tangles in the brain, 

leading to cognitive decline and memory loss. Early detection 

of AD is crucial for timely intervention and the development of 

effective treatment strategies. However, traditional diagnostic 

methods often rely on subjective interpretation and are limited 

in their ability to detect subtle changes in brain structure. 

CNNs provide a powerful tool for AD detection by 

leveraging their ability to decode intricate connections within 

images. By analysing neuroimaging data, such as magnetic 

resonance imaging (MRI) scans, CNNs can identify subtle 

patterns and abnormalities indicative of AD pathology. This 

not only enables more accurate and reliable diagnosis but also 

opens avenues for understanding the underlying mechanisms of 

the disease. 

The significance of CNNs in AD detection is underscored 

by a growing body of literature [15], [16], [17], [18], [19], [20]. 

These studies highlight the effectiveness of CNN-based 

approaches in identifying AD-related biomarkers and 

distinguishing between healthy and diseased brain tissue. By 

harnessing the vast amounts of data available in neuroimaging 

databases, CNNs offer a data-driven approach to AD diagnosis 

that is both objective and scalable. 

In summary, CNNs represent a transformative technology 

in the field of neuroimaging, with profound implications for 

AD detection and diagnosis. Their ability to decode intricate 

connections within images offers a novel avenue for early 

intervention and personalised treatment strategies, ultimately 

enhancing the quality of care for patients affected by this 

devastating disease. 

A. Traditional CNN Architectures in AD Analysis 

While traditional CNN architectures like LeNet-5 [21] and 

AlexNet [22] have laid a solid foundation for AD analysis, 

their efficacy in capturing the intricate features relevant to AD 

pathology may be limited [23], [24], [25], [26]. Although 

successful in various image classification tasks, these 

architectures may struggle to capture the subtle and complex 

patterns present in neuroimaging data associated with AD 

progression. 

The complexity of AD pathology necessitates a more 

nuanced approach to feature extraction and representation 

learning. While LeNet-5 and AlexNet excel in extracting basic 

features, they may fall short when faced with the intricate 

structural changes and spatial relationships within the brain that 

are indicative of AD [27]. As a result, there is a growing 

recognition of the need for more advanced models specifically 

tailored to address the unique challenges posed by AD 

detection. 

The limitations of traditional CNN architectures underscore 

the need for more advanced models capable of capturing the 

nuanced features relevant to AD pathology [28]. These features 

may include subtle changes in brain morphology, alterations in 

connectivity patterns, and the presence of specific biomarkers 

indicative of disease progression. By leveraging more 

sophisticated architectures and learning algorithms, researchers 
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can enhance the sensitivity and specificity of AD detection 

models, thereby improving diagnostic accuracy and patient 

outcomes. 

Advanced CNN architectures offer several advantages in 

the context of AD detection [29]. They can adaptively learn 

hierarchical representations of neuroimaging data, allowing for 

the extraction of features at multiple spatial and temporal 

scales. Additionally, advanced models can incorporate domain-

specific knowledge and priors, enabling them to effectively 

capture the complex patterns associated with AD pathology 

[30]. 

Moving forward, there is significant potential for the 

development of advanced CNN architectures tailored 

specifically for AD detection. These architectures may 

incorporate innovative design elements such as attention 

mechanisms [31], recurrent connections [32], and graph-based 

representations [33] to better capture the spatial and temporal 

dynamics of AD pathology. Moreover, the integration of 

multimodal imaging data, including MRI, fMRI, PET, and 

sMRI, presents an exciting opportunity to enhance the 

performance of AD detection models further [34]. 

By leveraging the latest advancements in deep learning and 

neuroimaging, researchers can develop highly specialised CNN 

architectures optimised for AD detection. These architectures 

have the potential to revolutionise the field by enabling earlier 

and more accurate diagnoses of AD, facilitating timely 

intervention, and personalised treatment strategies. Overall, the 

development of advanced CNN architectures represents a 

critical step towards addressing the growing challenge of AD 

and improving outcomes for affected individuals and their 

families. 

B. The Emergence of 3D CNNs in AD Analysis 

The advent of 3D Convolutional Neural Networks (CNNs) 

represents a significant advancement in the analysis of 

neuroimaging data, particularly in the context of AD detection 

[35]. Unlike traditional 2D CNNs, which process images as 

two-dimensional grids of pixels, 3D CNNs operate directly on 

volumetric data, such as MRI scans, capturing spatial 

information across multiple slices and dimensions [23], [24], 

[25], [26]. This ability to analyse volumetric data enables 3D 

CNNs to capture nuanced features crucial for understanding 

AD's temporal progression, including changes in brain volume, 

morphology, and connectivity over time. 

The use of 3D CNNs in AD analysis offers several distinct 

advantages. By considering the spatial context of neuroimaging 

data, 3D CNNs can better capture the complex three-

dimensional structures of the brain and the subtle changes 

associated with AD pathology [35]. This allows for more 

accurate and robust detection of disease-related abnormalities, 

enhancing diagnostic accuracy and facilitating early 

intervention. 

While 3D CNNs have shown promise in AD analysis, the 

interpretability of their predictions remains a significant 

challenge. Conventional performance metrics such as accuracy, 

sensitivity, and specificity provide valuable insights into model 

performance but offer a limited understanding of the 

underlying features driving predictions. In the context of AD 

detection, where the identification of subtle biomarkers is 

crucial, interpretability is essential for gaining insights into 

disease mechanisms and guiding clinical decision-making. 

To address this challenge, ongoing research is focused on 

developing interpretability tools and techniques for 3D CNNs. 

One promising approach involves the use of attention 

mechanisms [31], which highlight regions of interest within 

neuroimaging data that are most relevant to the model's 

predictions. By visualising these attention maps, researchers 

can gain insights into the features driving the model's decisions 

and identify potential biomarkers of AD pathology. 

Additionally, advances in visualisation techniques, such as 

heatmaps and saliency maps [36], provide intuitive 

representations of model predictions, enabling clinicians to 

interpret and validate the results more effectively. These 

visualisation tools not only enhance the interpretability of 3D 

CNNs but also facilitate communication and collaboration 

between researchers and clinicians, ultimately improving the 

translation of AI-driven findings into clinical practice. 

Looking ahead, there is significant potential for further 

advancements in 3D CNNs for AD analysis. Future research 

efforts may focus on refining model architectures to improve 

both performance and interpretability, incorporating novel 

attention mechanisms and visualisation techniques. Moreover, 

the integration of multimodal neuroimaging data [37], 

including structural MRI, functional MRI, and positron 

emission tomography (PET), presents an exciting opportunity 

to enhance the sensitivity and specificity of AD detection 

models. 

By leveraging the capabilities of 3D CNNs and addressing 

the challenges of interpretability, researchers can develop more 

accurate, reliable, and clinically relevant tools for AD 

diagnosis and monitoring. These advancements have the 

potential to revolutionise the field of neuroimaging and 

improve outcomes for individuals affected by AD, ultimately 

leading to earlier diagnosis, personalised treatment strategies, 

and improved quality of life. 
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C. Transfer Learning Strategies in AD Detection 

Transfer learning has emerged as a potent strategy in the 

field of Alzheimer's disease (AD) detection, offering a 

promising approach to leverage pre-trained models and 

enhance the accuracy of AD detection systems. One notable 

example of transfer learning involves the use of pre-trained 

models like VGG16, which are fine-tuned using AD-specific 

datasets to improve their performance in detecting AD-related 

biomarkers and abnormalities [23], [24], [25], [26]. By 

leveraging insights from extensive image datasets, pre-trained 

models can effectively capture complex patterns and features 

relevant to AD pathology, thereby enhancing the accuracy and 

reliability of AD detection systems. 

Transfer learning offers several advantages in the context 

of AD detection [38]. By utilising pre-trained models trained 

on large-scale image datasets, researchers can leverage the 

knowledge and representations learned by these models to 

bootstrap the training process for AD-specific tasks. This not 

only accelerates the training process but also enables AD 

detection systems to benefit from the generalisation capabilities 

of pre-trained models, thereby improving their performance on 

new and unseen data. 

In addition to transfer learning, the efficacy of 3D 

architectures in handling volumetric data underscores their 

relevance in capturing the temporal nuances critical for AD 

progression analysis. Unlike traditional 2D CNNs, which 

process images as two-dimensional grids of pixels, 3D CNNs 

operate directly on volumetric data, enabling them to capture 

spatial and temporal information across multiple dimensions 

[23], [24], [25], [26]. This allows 3D architectures to 

effectively analyse longitudinal neuroimaging data, such as 

MRI scans, and identify subtle changes indicative of AD 

progression over time. 

The integration of transfer learning and 3D architectures 

represents a powerful approach to AD detection, combining the 

benefits of pre-trained models with the ability to analyse 

volumetric data. By fine-tuning pre-trained 3D CNNs using 

AD-specific datasets, researchers can develop highly 

specialised models optimised for detecting AD-related 

abnormalities and biomarkers [38]. This integrated approach 

not only improves the accuracy and reliability of AD detection 

systems but also facilitates the interpretation of results by 

capturing the temporal dynamics of AD progression. 

Looking ahead, the combination of transfer learning and 

3D architectures holds promise for advancing the field of AD 

detection. Future research efforts may focus on further 

optimising transfer learning techniques and developing more 

sophisticated 3D CNN architectures tailored specifically for 

AD progression analysis. Moreover, the integration of 

multimodal neuroimaging data, including structural MRI, 

functional MRI, and positron emission tomography (PET), 

presents an exciting opportunity to enhance the sensitivity and 

specificity of AD detection models. Ultimately, the integration 

of transfer learning and 3D architectures has the potential to 

revolutionise AD detection by providing clinicians with 

powerful and reliable tools for early diagnosis and intervention, 

ultimately improving patient outcomes and quality of life [39]. 

D. Recent Advancements in CNN for AD Detection 

Recent studies have underscored the potential of 

Convolutional Neural Networks (CNNs) in various facets of 

Alzheimer's disease (AD) detection, ranging from hippocampal 

segmentation to disease stage classification and early 

prediction using diverse imaging modalities [8], [9], [10], [11], 

[12]. These studies have demonstrated the versatility and 

effectiveness of CNN-based approaches in analysing 

neuroimaging data and extracting relevant biomarkers 

indicative of AD pathology. 

While CNNs have shown promise in AD detection, most 

existing models rely on transfer learning or access to larger 

datasets to enhance their performance. Transfer learning 

involves fine-tuning pre-trained models on AD-specific 

datasets to leverage knowledge learned from other domains. 

While effective, this approach often requires access to 

extensive computational resources and large, well-curated 

datasets, which may not be readily available in many clinical 

settings. Moreover, existing models may struggle to generalise 

to new datasets or clinical populations, limiting their utility in 

real-world applications. 

In contrast to traditional approaches, ConvADD represents 

a pioneering approach to AD detection that directly addresses 

the dependency on transfer learning and large datasets. 

ConvADD prioritises accuracy without resorting to dataset 

balancing techniques, mitigating the need for exceptionally 

large datasets or extensive pre-training. By focusing on robust 

feature extraction and representation learning, ConvADD aims 

to enhance the reliability and generalizability of AD detection 

models across diverse datasets and clinical populations. 

ConvADD offers several advantages over existing models 

in AD detection. By prioritising accuracy and robustness, 

ConvADD reduces the risk of model bias or overfitting, 

thereby improving the reliability of AD diagnosis. 

Additionally, ConvADD's ability to perform effectively 

without extensive pre-training or dataset balancing simplifies 

the implementation and deployment of AD detection systems 

in clinical settings, making them more accessible to healthcare 

practitioners and researchers. 
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ConvADD's pioneering approach marks a promising 

direction in overcoming the challenges associated with AD 

detection. Moving forward, further research efforts may focus 

on refining ConvADD's architecture and training strategies to 

improve its performance and scalability. Additionally, the 

integration of multimodal neuroimaging data and advanced 

analysis techniques, such as attention mechanisms and graph-

based representations, presents an exciting opportunity to 

enhance the sensitivity and specificity of AD detection models. 

In conclusion, recent advances in CNNs have demonstrated 

their potential to transform AD detection by enabling accurate, 

reliable, and accessible diagnostic tools. ConvADD's 

pioneering approach represents a significant step forward in 

overcoming the challenges associated with AD detection, 

offering a promising direction for future research and clinical 

applications. By prioritising accuracy and robustness while 

minimising dependencies on transfer learning and large 

datasets, ConvADD holds promise for improving patient 

outcomes and advancing our understanding of AD. 

E. Importance of  novel CNN 

In the area of Alzheimer's disease (AD) detection, the 

justification for the development of novel CNN architectures is 

imperative. Traditional methods often face challenges in 

accurately identifying AD, particularly in its early stages, due 

to the complexity and heterogeneity of the disease [40], [41]. 

Besides that, advanced approaches are too complex and take 

computational resources and as well as time [42], [43]. By 

introducing ConvADD, a tailored CNN architecture for AD 

detection and optimisation, this research endeavours to address 

these challenges and enhance diagnostic accuracy with 

effective memory management. Novel CNN architectures offer 

the potential for improved feature extraction and representation 

learning, enabling better discrimination between AD and non-

AD brain images. Recent studies have shown the efficacy of 

deep learning approaches, such as CNNs, in various medical 

imaging tasks [44], [45], [46], [47], including AD 

classification. Moreover, advancements in deep learning 

techniques, coupled with the availability of large-scale medical 

imaging datasets, have forced the exploration of innovative 

CNN architectures for AD detection [48]. Therefore, the 

development and validation of ConvADD contribute to the 

ongoing efforts to enhance the accuracy and reliability of AD 

diagnosis, underscoring the necessity for novel CNN 

architectures in addressing the evolving challenges of AD 

detection. 

III. METHODOLOGY 

The methodology employed in this study amalgamates 

innovative architectural design with meticulous dataset 

curation to formulate a robust convolutional neural network 

(CNN) model tailored explicitly for Alzheimer's Disease (AD) 

detection. Fig. 1. depicts the overall methodology of the 

process. The ConvADD architecture stands as the cornerstone 

of this study, meticulously designed to encapsulate the intricate 

nuances of AD pathology. Comprising ConvADD 

convolutional blocks and novel design principles, this 

architecture addresses the imperative need for precise and 

nuanced AD detection methodologies. 

 
Fig. 1. Methodology diagram of ConvADD. 

 

Fig. 2. ConvADD architecture. 
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Fig. 2. outlines the schematic representation of the 

ConvADD architecture, elucidating its intricate layers and 

design principles. Subsequent subsections detail the dataset 

collection process, delineate the architectural design 

considerations and provide an in-depth analysis of the 

ConvADD convolutional blocks. These subsections elucidate 

the meticulous approach taken in crafting the ConvADD 

architecture, underscoring its robustness and efficacy in AD 

detection.  

A. Dataset Collection 

Several datasets available online for Alzheimer's Disease 

(AD) classification were considered for this research. 

However, many of these datasets were in CSV format, which 

was deemed unsuitable for the purposes of this study. 

Dedicated organisations such as the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) and the Open Access Series 

of Imaging Studies (OASIS) offer extensive datasets for 

research and educational use. Nevertheless, both the OASIS 

and ADNI datasets consist of voluminous 3-dimensional image 

files, with the OASIS dataset totalling 18 gigabytes and the 

ADNI dataset reaching 450 gigabytes in size. 

To address these challenges, the Kaggle dataset was 

selected for this research. The Kaggle dataset (link) undergoes 

meticulous verification by the uploader, ensuring the reliability 

of each sample. Moreover, its manageability is enhanced by its 

reasonable size and meticulous preprocessing efforts, including 

resizing and organisation. The dataset comprises a total of 

6400 samples, each represented as individual three-channel 

(RGB) images with dimensions of 176 x 208 pixels, which 

were resized to 248 x 248 pixels for uniformity. These samples 

are categorised into four distinct classes: Non-Demented 

(NOD), Very Mild-Demented (VMD), Mild-Demented (MD), 

and Moderate Demented (MOD). The NOD class, with 3200 

samples, constitutes the majority, while the remaining classes 

comprise 2240, 896, and 64 images, respectively (see Table I). 

TABLE I. CLASS DISTRIBUTION IN AD DATASET 

Class label Number of Images 

Mild Demented (MD) 896 

Moderate Demented (MOD) 64 

Non-Demented (NOD) 3200 

Very-Mild Demented (VMD) 2240 

Furthermore, the dataset was strategically partitioned into 

training (70%), validation (15%), and test sets (15%) to ensure 

an equitable distribution for robust model training and 

evaluation. Fig. 3. provides a visual representation of some 

random samples from the dataset, along with their 

corresponding class labels. This comprehensive approach to 

dataset selection and preprocessing lays a strong foundation for 

the subsequent experimentation and evaluation of the proposed 

ConvADD model for AD detection. 

 
Fig. 3. Random sample from the dataset representing the MRI image with 

the corresponding class label. 

B. Architecture Design – ConvADD 

The ConvADD architecture, a Convolutional Neural 

Network (CNN), embodies a hierarchical structure that 

effectively processes input data through a series of distinct 

layers. Starting from the input layer, the network ingests 

grayscale images of size 176x208 pixels. These images are 

passed through the initial convolutional block, where the data 

traverses two consecutive convolutional layers. The first layer, 

a 3x3 kernel Conv2d operation with 32 output channels, 

extracts fundamental features from the input. Batch 

normalisation follows, ensuring standardised inputs to the 

rectified linear unit (ReLU) activation, introducing non-

linearity and enhancing model convergence. Subsequently, the 

second convolutional layer with a similar kernel size further 

transforms these features, condensing them into 16 output 

channels. Another round of batch normalisation and ReLU 

activation precedes max pooling, downsampling the data by a 

factor of 2x2. 

The subsequent convolutional blocks follow a similar 

pattern, progressively deepening the network's representation 

of intricate features. The second block takes the 16 output 

channels from the previous block, initiating another 3x3 kernel 

Conv2d operation to generate 32 output channels. Batch 

normalisation, ReLU activation, and max pooling are then 

applied. This process continues through the third and fourth 

blocks, each enhancing the depth and complexity of feature 

extraction. The third block further transforms the 32 channels 

into 64 output channels, while the fourth block expands this to 

128 output channels, thereby capturing increasingly 

sophisticated patterns. 
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The architecture integrates dropout regularisation to 

prevent overfitting, strategically removing a small fraction of 

nodes during training. Following the convolutional layers, a 

flattening operation converts the multidimensional data into a 

one-dimensional vector, preparing it for processing through 

fully connected layers. These layers, comprising linear 

transformations and batch normalisation, iteratively reduce the 

dimensions of the data to eventually output class probabilities 

via the softmax layer. ConvADD's design embodies this 

systematic progression, facilitating the extraction of 

hierarchical features, culminating in effective classification 

outputs for Alzheimer's disease stages. 

C. ConvADD Convolutional Blocks 

The ConvADD architecture introduces a novel approach to 

feature extraction through its meticulously designed 

convolutional blocks. These blocks, strategically structured to 

capture intricate patterns in Alzheimer's disease (AD) imaging 

data, mark a significant departure from traditional 

architectures. 

1) Block 1: Initial Feature Extraction: The first 

convolutional block kickstarts the feature extraction process. It 

consists of two convolutional layers: the first layer operates 

with a 3x3 kernel size, transforming the input grayscale 

images into 32 fundamental features. Batch normalisation and 

ReLU activation layers ensure stabilised inputs and introduce 

non-linearity, respectively. Subsequent max-pooling 

downsamples the data, aiding in information condensation. 

2) Block 2 to Block 4: Hierarchical Complexity: Blocks 2 

through 4 follow a similar blueprint, progressively enhancing 

the network's feature representation. Block 2, building upon 

the output channels from the previous block, refines these 

features by employing 32 output channels. Successive blocks 

intensify the complexity of feature extraction, with Block 3 

generating 64 output channels and Block 4 culminating in 128 

output channels. Each block integrates batch normalisation, 

ReLU activation, and max pooling, contributing to a 

hierarchical refinement of extracted features. 

3) Novelty of ConvADD's convolution blocks: The 

innovation within ConvADD's architecture lies in the precise 

orchestration of these convolutional blocks. Each block 

contributes to the nuanced extraction of hierarchical features, 

leveraging depth and width to capture AD-specific patterns in 

imaging data. This novel arrangement distinguishes 

ConvADD from conventional CNN architectures, enhancing 

its efficacy in AD stage classification. 

D. Dense Blocks: Enabling Robust Classification in 

ConvADD 

Following the convolutional layers, ConvADD employs 

dense blocks to refine the extracted features further before the 

final classification. These dense layers contribute to the 

network's ability to understand intricate patterns and make 

informed predictions regarding the stages of Alzheimer's 

disease (AD). 

1) Linear Block 1: Feature Fusion and Transformation: 

After flattening the feature maps extracted by the 

convolutional layers, Linear Block 1 acts as a pivotal point for 

feature fusion and transformation. This block consists of a 

fully connected layer (Linear) that transforms the high-

dimensional flattened features into a lower-dimensional space 

of 16 units. Batch normalisation enhances stability within the 

network, and ReLU activation introduces non-linearity, 

facilitating the network's capacity to learn complex mappings 

between features. 

2) Linear Block 2: Stage Classification: The subsequent 

Linear Block 2 is designed explicitly for stage classification. 

This block employs another fully connected layer, reducing 

the feature space further to four units, aligning with the four 

distinct classes related to AD stages. Batch normalisation and 

ReLU activation continue to contribute to feature stability and 

non-linearity, respectively, preparing the features for the final 

Softmax activation. 

3) Contribution of dense blocks in ConvADD: The 

inclusion of these dense blocks within ConvADD amplifies 

the network's capability to abstract and distil essential features 

learned from the convolutional layers. These blocks play a 

pivotal role in synthesising complex hierarchical features into 

a form that facilitates the precise classification of AD stages, 

marking a significant contribution to the architecture's 

efficacy. 

E. Hyperparameters and Network Configuration 

ConvADD architecture incorporates a set of meticulously 

chosen hyperparameters and specific network configurations 

that profoundly influence its performance and learning 

capabilities. 

1) Learning rate and optimizer: The learning rate, set at a 

crucial 0.001, guides the step size during the network's weight 

updates, balancing between convergence speed and 

overshooting. The Adam optimiser, a variant of stochastic 

gradient descent (SGD), dynamically adjusts learning rates for 

each parameter, ensuring efficient convergence and optimal 

weight updates during training. 

2) Dropout for regularization: To mitigate overfitting and 

enhance generalisation, ConvADD integrates dropout 

regularisation with a probability of 0.03. Implemented after 

the convolutional blocks, dropout randomly deactivates a 

fraction of neurons during each training iteration, preventing 

the network from relying too heavily on specific features or 

connections and promoting more robust feature learning. 

3) Activation function: ReLU: Rectified Linear Unit 

(ReLU) activation functions are employed throughout 

ConvADD. ReLU introduces non-linearity, allowing the 

network to model complex relationships within the data 

efficiently. By thresholding negative values to zero, ReLU 
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accelerates convergence during training and prevents the 

vanishing gradient problem. 

4) Batch normalization: Batch normalisation layers are 

strategically placed after convolutional and linear blocks. 

These layers standardise the input to a layer, reducing internal 

covariate shift and accelerating training by ensuring more 

stable gradients and facilitating faster convergence. 

5) Weight initialization: ConvADD utilises appropriate 

weight initialisation strategies, such as Xavier or Him 

initialisation, enhancing the network's ability to learn and 

converge effectively by providing a suitable starting point for 

weights. 

6) Grid search for optimal hyperparameters: The 

selection of these hyperparameters was meticulously curated 

through systematic grid search and cross-validation, 

optimising ConvADD's performance on the dataset used for 

training and validation. 

7) Impact of parameter configuration: The careful 

selection and configuration of these parameters and techniques 

significantly contribute to ConvADD's stability, robustness, 

and capability to discern intricate patterns associated with AD 

stages. 

IV. RESULTS AND DISCUSSION 

A. Performance Evaluation Metrics 

1) Evaluation criteria: Evaluation metrics are pivotal in 

assessing the performance and efficacy of machine learning 

models. The ConvADD architecture's performance in 

Alzheimer's Disease classification using MRI images was 

rigorously evaluated employing a diverse set of metrics. These 

evaluation criteria allowed for a comprehensive understanding 

of the model's capabilities in different facets of classification 

accuracy and robustness. 

a) Metrics Utilized 

i) Accuracy: A fundamental metric indicating the 

proportion of correctly classified samples over the total number 

of samples. It provides an overall understanding of the model's 

correctness in predictions. The equation of accuracy [48], [49], 

[50], [51], [52] could be described as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

where, TP is true positive, TN is true negative, FN refers to 

false negative, and FP is false positive. 

ii) Precision: Precision measures the model's accuracy 

concerning positive predictions. It denotes the ratio of correctly 

predicted positive observations to the total predicted positive 

observations. The formula is obtained as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

iii) Recall (Sensitivity): This metric signifies the model's 

ability to identify all positive instances. It calculates the ratio of 

correctly predicted positive observations to the actual positives. 

The recall equation is: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

iv) F1-score: The F1 score conveys a balance between 

precision and recall. It's the harmonic mean of precision and 

recall, providing a consolidated measure of a model's accuracy. 

The F1-score formula is: 

𝐹1 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

v) Confusion Matrix: The confusion matrix serves as a 

foundational tool for evaluating the performance of a 

classification model. It systematically presents the division of 

outcomes, encompassing all the predictions made by the model 

during its training or testing phase. This matrix provides a 

comprehensive breakdown of predicted versus actual class 

labels, offering insights into the model's accuracy and potential 

misclassifications. 

vi) Loss Function: The loss function serves as a crucial 

guidepost in the training process of machine learning models. 

It quantifies the model's performance by calculating the 

inconsistency between predicted and actual values, ultimately 

indicating how well the model is learning the patterns within 

the data. This metric is pivotal in adjusting the model's 

parameters to minimise errors, leading to enhanced predictive 

accuracy and convergence towards optimal outcomes. 

b) Significance: These evaluation criteria enable a 

comprehensive analysis of the ConvADD model's 

performance. Accuracy, precision, and recall provide insights 

into the model's correctness and its ability to classify different 

stages of Alzheimer's Disease correctly. The F1 score balances 

precision and recall, offering a consolidated performance 

measure. Furthermore, ROC-AUC quantifies the model's 

discriminatory capacity between different classes, contributing 

to a holistic understanding of its effectiveness. 

The utilisation of these metrics contributes to a nuanced 

and comprehensive assessment of the ConvADD architecture's 

performance in Alzheimer's disease classification, facilitating a 

deeper understanding of its strengths and areas for potential 

improvement. 

2) Comparative analysis: Table II provides a 

comprehensive comparison of various models employed in the 

classification of Alzheimer's disease utilising MRI images. 

Each model's performance is evaluated based on crucial 

metrics, including accuracy, precision, recall, and F1-score, 

elucidating their effectiveness in accurately diagnosing 

Alzheimer's disease. The comparison encompasses ConvADD 

and ADD-Net with and without the SMOTETOMEK 

technique, as well as well-known architectures like AlexNet, 

ResNet-50, and Inception ResNet-50. This detailed analysis 

offers insights into the strengths and limitations of each 

model, highlighting ConvADD's exceptional performance 

across multiple evaluation metrics, signifying its potential as a 

pioneering diagnostic tool for Alzheimer's disease detection. 

In our comparative analysis with existing methods for 

Alzheimer's disease classification using MRI images, 
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ConvADD emerged as a standout performer, showcasing 

superior performance across multiple evaluation metrics. 

ConvADD achieved an accuracy of 98.01%, outperforming 

other models such as ADD-Net (97.05%), ADD-Net with the 

SMOTETOMEK technique (92.88%), AlexNet (92.20%), 

ResNet-50 (93.10%), and Inception ResNet-50 (79.12%). 

TABLE II. COMPARISON OF ALZHEIMER'S DISEASE CLASSIFICATION 

MODELS USING MRI IMAGES 

Reference Accuracy Precision Recall F1-score 

ConvADD 98.01% 98% 98% 98 % 

ADD-Net 

(SMOTETOMEK) 

[48] 

97.05% 97% 97% 97.05% 

ADD-Net [48] 92.88% 82% 89% 84.55% 

AlexNet [22] 92.20% - 94.50% - 

ResNet-50 [52] 93.10% - 92.55% - 

Inception ResNet-

50 [49] 
79.12% 70.64% 28.22% 39.91% 

When evaluating precision, ConvADD demonstrated a 

precision rate of 98%, surpassing ADD-Net (97%), ADD-Net 

with SMOTETOMEK (82%), AlexNet (N/A), ResNet-50 

(N/A), and Inception ResNet-50 (70.64%). This superior 

precision illustrates ConvADD's capability to accurately 

identify true positive cases among the predicted positive 

results, highlighting its robustness in minimising false 

positives. 

Regarding recall metrics, ConvADD exhibited a recall rate 

of 98%, outstripping ADD-Net (97%), ADD-Net with 

SMOTETOMEK (89%), AlexNet (94.50%), ResNet-50 

(92.55%), and Inception ResNet-50 (28.22%). This high recall 

rate indicates ConvADD's effectiveness in identifying true 

positive cases from the actual positive cases in the dataset, 

showcasing its ability to detect relevant instances without 

missing many positive samples. 

Analysing the F1 Score, ConvADD showcased an F1 Score 

of 98%, demonstrating a harmonious balance between 

precision and recall. This excelled against ADD-Net (84.55%), 

ADD-Net with SMOTETOMEK (97.05%), AlexNet (N/A), 

ResNet-50 (N/A), and Inception ResNet-50 (39.91%). 

ConvADD's high F1 score signifies its proficiency in correctly 

classifying positive instances while minimising false positives 

and negatives. 

ConvADD's consistently superior performance across 

accuracy, precision, recall, and F1-score underscore its efficacy 

in Alzheimer's disease classification, showcasing its potential 

as an advanced diagnostic tool in healthcare settings. 

B. Experimental Setup 

1) Experimental environment: Utilising the robust 

computational resources of Google Colab Pro's GPU 

environment was pivotal in training and evaluating 

ConvADD, our novel architecture. This cloud-based platform 

provided scalable computational power, freeing us from 

hardware constraints and allowing a concentrated focus on 

model refinement. 

Instead of relying on personal hardware configurations, 

Google Colab Pro offered a versatile environment, enabling a 

laser focus on ConvADD's architecture. We meticulously 

assessed the model's performance using a segregated test set 

derived from the original dataset, ensuring an unbiased 

evaluation of its generalizability and accuracy. 

Recognising the limitations of singular metrics like 

accuracy, we took a multifaceted approach. Alongside 

accuracy, we examined diverse metrics encompassing loss, 

overfitting, and other relevant indicators. This comprehensive 

evaluation methodology presents a nuanced view of 

ConvADD's strengths and limitations, leading to a more robust 

and reliable model. 

In adherence to open science principles, we are dedicated to 

sharing our work openly. The complete source code for 

ConvADD will be publicly accessible on GitHub 1 . This 

transparency fosters collaboration, allowing for replication, 

extension, and contribution to the advancement of Alzheimer's 

Disease research. 

2) Training configuration: Table III represents a 

comprehensive breakdown of the ConvADD architecture, 

delineating the intricate details of each layer within this 

specialised neural network tailored for Alzheimer's Disease 

classification using MRI images. From ConvBlock1 to the 

final Softmax layer, the table provides a detailed account of 

the output shapes, number of parameters, and specific 

configurations of each layer, underscoring the complexity and 

depth of the ConvADD model. Additionally, it encapsulates 

the predefined hyperparameters and training configurations 

instrumental in optimising the ConvADD architecture's 

performance and robustness during the training and validation 

phases. 

The ConvADD architecture, tailored for Alzheimer's 

Disease classification utilising MRI images, comprises a 

sequence of convolutional blocks, fully connected layers, and a 

concluding Softmax output. Each convolutional block, ranging 

from ConvBlock1 to ConvBlock4, introduces distinct layers of 

complexity to the model's architecture. 

                                                           
1https://github.com/MAlsubaie/ConvADD.git 
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TABLE III. CONVADD ARCHITECTURE: LAYER DETAILS AND TRAINING 

CONFIGURATIONS 

Layer Type Output Shape Number of Parameters 

ConvBlock1 (64, 32, 176, 208) 2,308 

ConvBlock2 (64, 32, 88, 104) 34,976 

ConvBlock3 (64, 64, 44, 52) 70,752 

ConvBlock4 (64, 128, 22, 26) 1,895,104 

Dropout (64, 128, 22, 26) 0 

Flatten (64, 7056) 0 

LinearBlock1 (64, 16) 113,008 

LinearBlock4 (64, 4) 72 

Softmax (64, 4) 0 

Total number of parameters 2,116,220 

ConvBlock1 initiates MRI image processing with 32 filters 

of 3x3 dimensions, yielding 32 sets of learned features and an 

output shape of (64, 32, 176, 208), entailing 2,308 parameters. 

Following this, ConvBlock2, utilising 32 filters akin to its 

predecessor, downsizes spatial dimensions via pooling, 

yielding an output of (64, 32, 88, 104) while contributing 

34,976 parameters. 

Advancing further, ConvBlock3 heightens model intricacy 

by doubling filters to 64, refining the image to (64, 64, 44, 52), 

and infusing 70,752 parameters. Subsequently, ConvBlock4 

amplifies complexity with 128 filters, refining image 

processing and reducing spatial dimensions to (64, 128, 22, and 

26), significantly elevating parameters to 1,895,104. 

The Dropout and Flatten layers, though not adding 

parameters, play pivotal roles. Dropout combats overfitting by 

randomly deactivating neurons, while Flatten reshapes output 

for fully connected layers. 

Linear blocks, especially Linear Block 1, which has 

113,080 parameters, and Linear Block 4, which has merely 72 

parameters, progressively process the flattened output, 

ultimately shaping the final output. The Softmax layer, 

computing class probabilities, doesn't introduce additional 

parameters. 

The ConvADD architecture encompasses over two million 

parameters (2,116,220), highlighting its depth, intricate 

processing capacity, and potential to discern complex features 

from MRI images for Alzheimer's Disease classification. 

Additionally, the ConvADD architecture underwent 

training and validation using predefined hyperparameters and 

training configurations to optimise performance and gauge 

robustness: 

 Train Batch Size: 64 

 Test Batch Size: 64 

 Learning Rate: 0.001 

 Number of Epochs: 10 

 Validation Split: 15% 

 Test Split: 15% 

C. Performance of ConvADD 

The ConvADD model was meticulously trained and 

validated over ten epochs using meticulously designed 

architecture and a carefully curated dataset. Throughout the 

training process, the model demonstrated remarkable progress 

in both accuracy and loss reduction, indicative of its ability to 

discern complex patterns inherent in AD pathology. 

1) Loss function: The loss function, a critical metric in 

assessing model convergence and optimisation, exhibited a 

consistent downward trend over ten epochs. Fig. 4. shows loss 

starting at 0.0184 in the initial epoch; the loss function 

steadily decreased to 0.013 in the final epoch, showcasing the 

model's ability to minimise errors and optimise its predictions 

with training progression. 

 
Fig. 4. Loss function trend over epochs. 

2) Training accuracy: Simultaneously, ConvADD's 

accuracy increased remarkably during training, reflecting the 

model's enhanced proficiency in correctly classifying AD-

related patterns within the dataset. Fig. 3. depicts starting 

accuracy at 68.5% in the initial epoch, ConvADD achieved an 

impressive 99.9% accuracy by the final epoch. 

 
Fig. 5. Accuracy progression over training epochs. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 4, 2024 

311 | P a g e  

www.ijacsa.thesai.org 

3) Confusion matrix: The confusion matrix, a 

comprehensive representation of the model's classification 

performance, revealed ConvADD's robustness in classifying 

AD-related categories, as shown in Fig. 6. The model 

demonstrated exceptional precision, recall, and F1-score 

across MD, MOD, NOD, and VMD classes. With an accuracy 

of 98% and a macro average F1 score of 99%, ConvADD 

showcased its proficiency in discerning intricate nuances 

across various AD-related categories. 

 
Fig. 6. Confusion matrix for ConvADD's classification performance. 

The model's exceptional performance metrics across 

accuracy, loss function minimisation and confusion matrix 

analyses underscore its efficacy in precise AD detection 

without resorting to dataset balancing techniques. ConvADD's 

ability to capture intricate patterns indicative of AD pathology 

stands as a testament to its robustness and potential in clinical 

applications for AD diagnosis and prognosis. 

D. Discussion 

In evaluating various models for Alzheimer's Disease 

classification using MRI images, a thorough analysis emerges, 

highlighting ConvADD's noteworthy performance compared to 

established methodologies. ConvADD boasts superior 

accuracy at 98.01%, outshining the majority of models, 

including ADD-Net (97.05%), ADD-Net with 

SMOTETOMEK (92.88%), AlexNet (92.20%), ResNet-50 

(93.10%), and Inception ResNet-50 (79.12%). This 

pronounced accuracy underscores ConvADD's efficacy in 

precisely discerning between different disease stages and 

healthy states. Moreover, ConvADD exhibits exceptional 

precision and recall at 98% across classes, indicative of its 

balanced identification of both positive and negative instances 

within the dataset. In contrast, models like Inception ResNet-

50 display substantially lower recall scores, signifying their 

limitation in correctly identifying true positive instances, 

especially in classifying the mild cognitive impairment stage. 

ConvADD's robust performance across multiple metrics 

reaffirms its potential as a reliable diagnostic tool for 

Alzheimer's disease, transcending the limitations observed in 

other widely employed models. 

V. LIMITATIONS AND FUTURE DIRECTIONS 

A. Model Limitations 

Despite ConvADD's promising performance, several 

limitations warrant consideration. One notable aspect is the 

model's reliance on existing datasets, which may exhibit biases 

or inadequacies inherent in the data collection process. Dataset 

limitations, such as sample size, heterogeneity, or lack of 

diversity across demographics, may affect ConvADD's 

generalizability. Additionally, ConvADD's performance might 

vary when applied to datasets acquired from different imaging 

modalities or from varied scanning devices due to inherent 

variability in image quality and resolution. 

Another limitation lies in the interpretability of ConvADD's 

decisions. Like many deep learning models, ConvADD 

operates as a complex, black-box system, making it 

challenging to discern the reasoning behind its classifications. 

This opacity could hinder its acceptance in clinical settings, 

where interpretability and explainability are critical. 

Furthermore, ConvADD's performance might fluctuate 

when dealing with extremely noisy or ambiguous images, 

where identifying distinct pathological features becomes 

challenging. The model's ability to handle rare or atypical cases 

also needs careful consideration, as these instances might be 

underrepresented in training datasets, potentially affecting 

ConvADD's accuracy in such scenarios. 

B. Future Prospects 

Addressing the identified limitations opens avenues for 

future research in Alzheimer's Disease detection using 

ConvADD. One direction involves enhancing dataset quality 

and diversity, ensuring inclusivity across different 

demographic groups, disease stages, and imaging protocols. 

Augmenting datasets with more diverse samples, including rare 

and atypical cases, can further refine ConvADD's learning 

process, boosting its adaptability and robustness. 

Another promising avenue involves advancing explainable 

AI techniques tailored for ConvADD, enabling the model to 

provide insights into its decision-making process. Methods 

such as attention mechanisms or saliency maps could elucidate 

the regions or features in the MRI images that significantly 

influence ConvADD's classifications, enhancing its 

interpretability and fostering trust among clinicians and 

practitioners. 

Additionally, fine-tuning ConvADD or integrating transfer 

learning approaches on larger, more varied datasets or multi-
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modal imaging data may fortify the model's capability to 

handle diverse image qualities and pathological manifestations. 

Exploring ensemble models or incorporating domain 

knowledge from neuroscience could further enrich ConvADD's 

understanding of complex disease patterns. 

Moreover, deploying ConvADD in a real clinical setting 

for prospective validation studies could ascertain its 

performance, assess its practicality, and validate its utility as an 

auxiliary diagnostic tool. These studies could illuminate 

ConvADD's efficacy in aiding clinical decision-making and 

patient management, ensuring its seamless integration into the 

clinical workflow. 

Continued research in these directions could not only 

surmount current limitations but also propel ConvADD toward 

becoming an indispensable, accurate, and clinically relevant 

tool for Alzheimer's disease diagnosis and monitoring. 

VI. CONCLUSION 

In conclusion, the ConvADD architecture stands as a 

pioneering convolutional neural network tailored explicitly for 

Alzheimer's Disease (AD) detection through MRI images. Its 

design, characterised by adapted conventional blocks and deep 

layers, exhibits superior discernment of AD pathology even 

with smaller datasets, marking a paradigm shift in AD 

detection frameworks. 

Our contributions are substantial: the inception of 

ConvADD prioritises accuracy without relying on dataset 

balancing techniques, ensuring robust performance across 

varying dataset sizes. Comparative analyses underscore 

ConvADD's exceptional performance metrics against 

established state-of-the-art models, reaffirming its efficacy in 

AD detection. 

The ConvADD model's performance, as depicted in the 

loss function, accuracy, and confusion matrix, demonstrates 

consistent advancements across epochs. With accuracy 

hovering around 98.01% and a robust F1-score of 98%, 

ConvADD showcases its reliability and proficiency in 

detecting different stages of AD, depicting precision in 

classifying distinct dementia types. 

Comparison with existing models highlights ConvADD's 

superiority, particularly over ADD-Net with SMOTETOMEK 

and ADD-Net, showcasing its potential to outperform models 

leveraging data balancing techniques. The ConvADD 

architecture's strength lies in its ability to capture the 

multifaceted manifestations of AD, surpassing the limitations 

of classification-focused models. 

While ConvADD exhibits promise, limitations in dataset 

biases, interpretability, and handling ambiguous images 

warrant further exploration. Future directions encompass 

refining dataset quality, enhancing interpretability, and 

integrating domain knowledge to fortify ConvADD's 

capabilities. Prospective validation studies in clinical settings 

will ascertain its utility and integration into clinical workflows. 

In essence, ConvADD emerges as a transformative tool, 

poised to redefine AD detection. Its adaptability, accuracy, and 

potential to discern intricate disease features position it as a 

pivotal advancement in the realm of AD diagnostics, promising 

precision and early detection critical for effective therapeutic 

interventions and patient care. 
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