
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

131 | P a g e

www.ijacsa.thesai.org

Finding Association Rules through Efficient

Knowledge Management Technique

Anwar M. A.

College of Engineering and Computing

Al Ghurair University

Dubai Academic City, UAE

Abstract— One of the recent research topics in databases is Data

Mining, to find, extract and mine the useful information from

databases. In case of updating transactions in the database the

already discovered knowledge may become invalid. So we need

efficient knowledge management techniques for finding the

updated knowledge from the database. There have been lot of

research in data mining, but Knowledge Management in

databases is not studied much. One of the data mining techniques

is to find association rules from databases. But most of

association rule algorithms find association rules from

transactional databases. Our research is a further step of the

Tree Based Association Rule Mining (TBAR) algorithm, used in

relational databases for finding the association rules .In our

approach of updating the already discovered knowledge; the

proposed algorithm Association Rule Update (ARU), updates the

already discovered association rules found through the TBAR

algorithm. Our algorithm will be able to find incremental

association rules from relational databases and efficiently

manage the previously found knowledge.

Keywords- Data Mining; Co-occurrences; Incremental association

rules; Dynamic Databases.

I. INTRODUCTION

At the very abstract level of data mining, it is part of
Artificial Intelligence. One of the data mining techniques for
finding useful information from the database is association
rule. Association rules find the co-occurrences among item sets
in the database. For example in a customer transaction database
we want to find that whenever customer purchases item A, item
B is purchased how many times. These co-occurrences are
found through finding the large item sets. As mentioned in [1]
to find the large item sets, it should be greater than the
minimum support threshold, which is the minimum number of
transactions from the database having that item set.

There are two issues related to association rules.

 Finding the preprocessing algorithm for association
rules

 Update algorithm for association rules. The update
algorithm enables to efficiently update the already
discovered information .So the update algorithm
depends very much on the preprocessing algorithm
used.

Most of the association rules algorithms like Apriori [2],
DHP [5], OCD [9] and [12] find association rules from
transactional databases. In case of association rules from

relational databases TBAR [10] algorithm was developed as a
loosely couple approach.

The most recent algorithms for the update algorithms like
FUP [3], MLUP [4], FUP2 [8], UWEP [7], and SWF [11] etc
find updated association rules from the transactional databases.
In our research we have developed a new update algorithm for
finding the updated information from the relational database on
the basis of the TBAR algorithm. Our performance study
shows that the proposed solution is 2.1 to 2.3 times faster as
compared to TBAR algorithm. We present an efficient
algorithm, ARU, for finding association rules and apply a new
knowledge management technique, to reuse the previously
discovered knowledge from the relational databases. Precisely
rather than finding large item sets from scratch, the large item
sets found through the TBAR algorithm are stored and reused.

In association rules we find the co-occurrences among item
sets through finding the large item sets. An item set is large if it
is above the minimum support threshold .For example in a
database if the minimum support threshold is 5%, then all the
item sets from the database having more than 5% occurrence
will be included in large item sets. So the main problem in
maintenance of association rules is updating the large item sets.
In our prototype system we have been able to update the large
item sets more efficiently as compared to the previous
approach of TBAR.

II. PRELIMANARIES

Let I = {i1, i2, ……,im} be a set of literals, called items. Let
D be a set of transactions, where each transaction T is a set of

items such that T I. Each transaction is associated by an
identifier, called TID. Let X be a set of items. A transaction T

is said to contain X if and only if X T. An association rule is

an implication of the form xy, where x I, y I and XY =

. The rule x y holds in the transaction set D with
confidence c if c% of transactions in D that contain x also
contain y.

The rule x y has support s in the transaction set D if s%

of the transactions in D contains X Y. For a given pair of
confidence and support threshold, the problem of mining
association rules is to find out all the association rules that have
confidence and support greater than the corresponding
thresholds. As there is lot of research for finding the association
rules, given large item sets, our focus will be to find the large
item sets from the updated database. The notion of item must
be redefined in a relational database. An item will be a pair a: v

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

132 | P a g e

www.ijacsa.thesai.org

where a is the attribute and v is the value of a. a fundamental
property of an item in a relational database is that they cannot
contain more than one item per table column if a1:v1 and a2:v2

belong to an item set, then a1a2 which is the consequence of
the First Normal Form (1NF) in databases: a relation is in 1NF
if it’s attribute domain contain atomic values only. This
justifies our distinction between items in transactional and
items in relational databases.

III. SYSTEM OVERVIEW

Our algorithm is based on the TBAR algorithm, which
finds the association rules from the relational database. Our
incremental association rule algorithm is an improvement of
that algorithm to find incremental association rules from the
relational databases. We apply a new Knowledge Management
technique, to find the incremental association rules from
dynamic databases more efficiently as compared to finding the
association rules from the database.

As shown in Figure 1, our algorithm is implemented as the
data integration module to efficiently update the association
rules. The large 1-item sets found through the TBAR algorithm
is saved in the knowledge base .In our algorithm of update we
have reused those large 1-item sets from the knowledge base
and thus saved the CPU time and one scan of the database. As
depicted in [6] we can couple association rule algorithm with
the relational database in a number of ways. In our case we
opted for the loosely coupled approach, as our data mining
application process space is outside the database process space.

Figure 1. The System.

IV. TBAR ALGORITHM

The TBAR algorithm uses the item set tree data structure to
efficiently store all Lks .All Lks are organized on the basis of
levels.

TBAR Algorithm

Set.Init(minsup);

Itemsets=set.Relevants(1);

StoreL1(itemsets); (Step 4.3)

K=2;

While(k<=cols && itemsets >=k)

{

itemsets =set.candidates(K) ;

If(itemsets >0)

Itemsets=set.Relevants(k);

K++;

}
In this case init method creates and initializes the item set

tree. The set.Rrelevants(1) method finds large 1-item sets from
the database. For finding subsequent large item sets it is
checked that the item sets found should be greater than the
number of columns. We first find candidate item sets from the
previous large item sets and then find the subsequent large item
sets from the database until all the large item sets are found
from the database. In step 4.3 the TBAR algorithm has been
modified to store all L1s in the knowledge base for subsequent
reuse of that information.

V. ARU ALGORITHM

The ARU algorithm differs from all other update
algorithms for association rules as it updates the large item sets
in relational databases. So the large 1-item sets are related to a
column in a table rather than a transaction in transactional
databases. In our case we will find the support for each item set
corresponding to a column value in the database.

Inputs

DB=initial database before any updates

db=update portion of the database

DB + db=whole updated portion of the database

L1 DB = large 1-item sets item sets found in DB

attr = attribute in L1 DB

attr.number=attribute number

attr.value=attribute value

attr.count=support of the attribute value

Output

L1 DB+db=large 1-item sets in updated database DB+db

ARU ALGORITHM

If there is any insertion in the database (Step 5.1)

For L1 DB of attribute attr in database

Get the column number attr.number of the 1-item sets L1 DB

For all values attr.value from db for the attribute attr.number

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

133 | P a g e

www.ijacsa.thesai.org

If the value in the db for the attribute attr.number is

also in L1DB

Find support of attr.value in db

Add support of DB and db

If the support of DB and db is large in the updated

database

Update the support count in the large 1-item sets

End If

Else If the value in db is not in L1DB

Find support of attr.value in db

If attr.value is large in db

Find support of attr.value in DB

Add support of DB and db

If the support of DB and db is large in the

updated database

Update the support count of the

attr.value in the large 1-item sets

End If

End if

UL1 DB + db= updated L1 DB + db for attribute attr

End for

Else If no insertions are done in the database

UL1 DB + db= L1 DB for attribute attr

End If

Generate the item set tree for UL1 DB + db.

Generate all other Lk s from L1 stored in item set tree as in

TBAR Algorithm

Generate association rules from all the Lk s found in DB +

db that are above the minimum confidence threshold

End ARU algorithm

The attr in the inputs for our algorithm shows us particular
attributes that are large in the original database DB. In the step
5.1 we will check to see if there are any insertions in the
database, if there are any insertions then all the L1 DB from the
knowledge base are reused to find subsequent Lks in DB + db.
If there are no updates all L1 DB are taken as the final updated
L1s.In subsequent steps these L1s are reused to find all Lks
from the database.

VI. EXPERIMENTAL STUDIES

We have checked our algorithm with the TBAR algorithm
for 1000 tuples with minimum support threshold from 1 to 5.
As shown in Figure 2, ARU algorithm takes much less CPU
utilization as compared to TBAR.

In the scale up experiments, we have checked the
performance of our algorithm TBAR for 2 % minimum support
and with 1000 to 5000 tuples. In Figure 3 it is clear that our
algorithm gives linear results in nature, which means that it can
be adapted to large databases. Our algorithm is 2.1 to 2.3 times
faster than TBAR algorithm.

Figure 2. Effect of change in support.

Figure 3. Scale up experiments.

VII. CONCLUSION

We have presented ARU algorithm, which outperforms the
TBAR algorithm. Our proposed algorithm will be able to
maintain large items sets by reusing the large item sets found
through the initial mining algorithm. Our performance study
shows that the proposed algorithm is 2.1 times to 2.3 times
faster as compared to the TBAR algorithm. We found the
incremental association rules from dynamic databases by
employing a new knowledge management technique for
relational databases. As a further step our knowledge
management technique can be applied to other data mining
techniques. Finding association rules from distributed
databases is also important area of research.

ACKNOWLEDGMENT

The authors wish to acknowledge the financial support
provided by the al Ghurair University.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

134 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] R. Agrawal, T. Imielinski and A. Swami, Mining association rules
between sets of items in large databases, Proceedings of the 1993 ACM
SIGMOD International Conference on Management Of Data,
Washington D.C., May 1993.

[2] Dogan and A. Y. Camurcu. ―Association Rule Mining form an
Intelligent Tutor‖, Journal of Educational Technology Systems, Volume
36, Number 4/2007 – 2008, pp 444 – 447, 2008.

[3] D.W. Cheung, J. Han, V.T. Ng and C.Y.Wong, Maintenance of
Discovered Association Rules in Large Databases: An Incremental
Updating Technique, 1996 International Conference on Data
Engineering, New Orleans, Louisiana, February 1996.

[4] D. W. Cheung, V. T. Ng and B. W. Tam, Maintenance of Discovered
Knowledge: A Case in Multi-level Association Rules, 2nd International
Conference on KDD, Oregon, August 1996.

[5] J.S. Park, M.S. Chen and P.S. Yu, An effective hash-based algorithm for
mining association rules, Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, San Jose, California,
May 1995.

[6] S. Sarawagi, S. Thomas and R. Agrawal, Integrating Association Rule
Mining with Relational Database Systems: Alternatives and
Implications, IBM Research Report, 1998.

[7] N.F. Ayan, A.U. Tansel, and E. Arkun. An Efficient Algorithm to
Update Large Itemsets with Early Pruning. Proc. of 1999 Int. Conf. on
Knowledge Discovery and Data Mining, 1999.

[8] D.Cheung,S.D.Lee and B.Kao.A General Incremental Technique for
Updating Discovered Association Rules.Proc.International Conference
On Database Systems For Advanced Applications,April 1997.

[9] H. Mannila, H. Toivonen and A.I. Verkamo, Improved Methods for
Finding Association Rules, Department of Computer Science, University
of Helsinki, Helsinki, Finland, December 1993 (Revised February 1994).

[10] TBAR: An efficient association rule mining for relational databases
(1998).

[11] Chang-Hung Lee, Cheng-Ru Lin, and Ming-Syan Chen, Sliding-
Window Filtering: An Efficient Algorithm for Incremental Mining,
ACM CIKM 2001.

[12] Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association rule
mining — a general survey and comparison. SIGKDD Explorations,2
(1):58—64, July 2000.

AUTHORS PROFILE

Dr. Muhammad Abaidullah Anwar is working as Assistant Professor and
Deputy Dean of College of Engineering and Computing in Al Ghurair
University, UAE. He received his Doctorate of Engineering with
specialization in Object-oriented Databases from Kyushu Institute of
Technology, JAPAN in 2001. Since 2001, he has been affiliated with
renowned universities in GCC and Pakistan. He has published many
papers in International proceeding and journals.

