
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

174 | P a g e

www.ijacsa.thesai.org

Scalable and Flexible heterogeneous multi-core

system

Rashmi A Jain,

Electronics engineering department

G.H.Raisoni College of Engineering Nagpur

(M.S.) India

Dr. Dinesh V. Padole

Electronics engineering department

G.H.Raisoni College of Engineering

Nagpur (M.S.) India

Abstract—Multi-core system has wide utility in today’s

applications due to less power consumption and high

performance. Many researchers are aiming at improving the

performance of these systems by providing flexible multi-core

architecture. Flexibility in the multi-core processors system

provides high throughput for uniform parallel applications as

well as high performance for more general work. This flexibility

in the architecture can be achieved by scalable and changeable-

size window micro architecture. It uses the concept of execution

locality to provide large-window capabilities. Use of high

memory-level parallelism (MLP) reduces the memory wall.

Micro architecture contains a set of small and fast cache

processors which execute high locality code. A network of small

in-order memory engines use low locality code to improve

performance by using instruction level parallelism (ILP).

Dynamic heterogeneous multi-core architecture is capable of

reconfiguring itself to fit application requirements. Study of

different scalable and flexible architectures of heterogeneous

multi-core system has been carried out and has been presented.

Keywords-Flexible Heterogeneous Multi Core system (FMC);

instruction level parallelism, thread-level parallelism; and memory-

level parallelism; scalable; chip multiprocessors (CMP).

I. INTRODUCTION

A multi-core system is a single computing component. It
has two or more processors which are independent of each
other and each is called as a core. Each core reads and
executes program instructions.

Fig. 1 Uni-core systems

The multiple cores can run multiple instructions at the
same time that causes increase in overall speed of program
execution. Multiple-core processors are also called as single-
chip multiprocessors or more simply chip multiprocessors
(CMP).

They appear similar to a traditional symmetric multi
processor (SMP) but with all of its processors located on a
single chip. In processors of today, there are typically 2 or 3
levels of on-chip cache

The level 1 (L1) cache is neighboring to the processor
execution core and has the direct access time but the lowest
capacity. Thelevel2 (L2) cache is next in the cache hierarchy
and has longer access times but larger capacity. Finally, there
may be a level3 (L3) cache with even longer access times but
even larger capacity. On multi-core processors, the last-level
cache, which is the level before requiring off-chip main
memory access, is usually shared among more cores.
Typically, this component is the L2 cache or the L3 cache.

Designer integrates the cores onto a single integrated
circuit known as a chip multiprocessor or CMP. Processors
were made with only one core. A many-core processor is also
multi-core processor. In multi-core systems, the term multi-
CPU refers to multiple physically separate processing-units.
The many -core and multi-core are sometimes used multi-core
architectures with a high number of cores tens or hundreds.

Fig. 2 Multi-core systems

A dual-core processor has twice cores a quad-core
processor have four cores, it means it is made by four core a
hexa-core processor have a six cores and similar like an octa-
core processor have eight cores. We propose a micro
architecture capable of running a single thread or many
threads with high performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

175 | P a g e

www.ijacsa.thesai.org

Fig.3 multi-core processor

It may couple cores in a multi-core device tightly or
loosely. For example, cores may possibly or may not be share
caches, and they may apply message passing or shared
memory inter-core communication methods. General network
topologies to interconnect cores consist of bus, ring, two-
dimensional mesh, and crossbar.

Fig. 4 Multi-core Architecture

A. Types of multi-core system

1. Homogeneous multi-core systems-Homogeneous multi-core

systems have only identical cores. Some system use one core

design repeated consistently known as homogeneous multi-

core systems.

2. Heterogeneous multi-core systems-Heterogeneous multi-

core systems have cores which are not identical. It means use a

mixture of different cores known as heterogeneous multi-core

systems.

B. There is two kinds of heterogeneous multi-core processor

1) Fixed heterogeneous multi-core processor-Fixed

heterogeneous architecture in which partitioning remains

static and it only roughly fits application requirements.

2) Flexible heterogeneous multi-core processor-There is

dynamic heterogeneous multi-core architecture capable of

reconfiguring itself and fit application requirement without

programmer interference.

C. Advantages of multi-core system

1) Multitasking: -Each system has two processing cores

for a maximum of twice the operating power and for better

multitasking. Major advantages of multi-core system are

heavy multitasking.

2) Application Support: - New applications are take

advantage of this technology by using a technique known as

Multithreading.

3) Power saving: - Multi-core systems have the ability to

turn off one of their cores when application demand is low to

save power.
Through the rest of the paper we will describe the micro

architecture of our multi-core approach.

II. FLEXIBLE MICRO-ARCHITECTURE (FMC)

The basic of this architecture is a scalable, variable-size
window micro-architecture that uses the concept of execution
locality to provide large-window capabilities.

A). ILP (Instruction-level parallelism)-It calculate the
many operations in a computer program can be performed
simultaneously. B).TLP (Thread level parallelism) -It is a form
of parallelization of computer code across multiple processors
in parallel computing. c). MLP (Memory Level Parallelism) -
In computer architecture the ability to have pending multiple
memory operations. In a lone (one) processor, MLP may be
measured a form of ILP, instruction level parallelism.

Micro-architecture uses ILP by having an effective
instruction window of thousands of instructions spread across
the processing elements, largely overcoming the unhelpful
effects of long-latency memory operations. And it is also uses
TLP for comparable workloads by allowing multiple threads
to automatically allocate the processing elements. It needs to
realize the greatest performance, quite than giving each thread
the same kind of core of its needs. These advantages are
obtained lacking changes to the ISA, compiler or operating
system.

The fundamental property of the FMC is its ability to
Change the instruction window size at runtime. It is able to do
so by with dynamism adding or removing memory engines
from the system. This property allows the processor to get
used to the requirements of the application and activate only
those Memory engines that are lead to improved performance.

Scalable multi-core architecture consists of a set of Cache
Processors, every one with a static partition of memory
engines, and a group of memory engines that can be
dynamically assigned to the different threads. Figure 5 shows
a general view of this micro architecture.

The architecture of FT64-3 processor contains one scalar
core, one stream core, one 512KB shared secondary level
cache and one DDR2 (direct device register) memory
controller. Multiple processors can be connected by network
interface directly. Scalar core can issue multiple instructions
concurrently, and has two float pipelines, independent L1I-
cache and L1Dcache, and also supports data consistency with
other processors. Scalar core is responsible for running as,
processing basic operations, scheduling instruction stream and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

176 | P a g e

www.ijacsa.thesai.org

data streams for the stream core, and also managing
communication with off-chip. The stream core, derived
fromFT64-2processor, serves as an accelerator of scalar core.
Its architecture is close to that Of Imagine stream processor ,
which contains 16 sets of double precision FPU (grouped as 4
cluster),µc(micro controller), Stream Register File (SRF),
Stream Controller(SC) etc. It is responsible for executing
stream instructions received from scalar core, and moves
stream data on demand. Under the control of microcontroller,
4 clusters run by means of SIMD (single instruction multiple
data). After stream data is loaded into SRF, SRF transmits
stream data among clusters, µc etc, and writs results back to
L2Cache.

Fig.5 the micro-architecture of the flexible multi-core micro-architecture

Including a set of Cache Processors, 3 statically assigned
ME (memory engine) per thread, and a dynamic pool of
memory engines.

A. Memory architecture in processor core
 The internal memory of scalar core is composed of

common register file, 8KB Ll I-cache and 8KB Ll D-cache an
it is similar to memory of traditional processor. It has
execution model to uses a MLP (memory level parallelism)
can tolerance latency sensitivity and bandwidth sensitivity.

III. RELATED WORKS

In addition, this design features only two execution modes
that is 1.Small window or 2.Full window.

This makes it flexible chip multiprocessor. In this use the
decoupled nature of this approach but overcome its
limitations. Allow it to scale too many cores and many
threads. The result is a processor with a variable window/issue
size using a simple scalability mechanism.

Variable-size window processor .It uses multiple small
cores, called memory engines. Linked through a system, to
compute memory dependent instructions.

The network introduces (reduce the latency) latency, but
this additional latency has little impact on instructions already
waiting hundreds of cycles due to a cache miss. The memory
engine network (different method for sharing the threads) can
then be shared among threads to build a reconfigurable
heterogeneous multi-core architecture. [1]

They proposed a new micro architecture that significantly
improves performance by overcoming memory latencies while
keeping complexity within reasonable limits. And they
proposed a scalable micro architecture with a variable window
size that can be tuned by adding or removing memory engines.
They proposed a multi-threaded implementation of the micro
architecture, the first heterogeneous multi-core architecture
that adapts dynamically to the requirements of the threads.

Heterogeneous multi core processor can combine qualities
of different architecture; it can reach peak performance as high
as processors with unique architecture, though keeping as
flexible as established general purpose processors at the same
time. In this equivalent stream memory sub-system
architecture for FT64-3 is presented. [2] It is proved that the
LLC (last level cache) miss penalty is a better metric to
achieve scheduling on heter-CMP system.

Hardware performance counters used to monitor the LLC
miss penalty are proposed and implemented in multi-core
Godson-3 RTL and simulator. An algorithm is proposed and
implemented that could recognize the application behaviors
accurately and schedule them to suitable cores. [3]

Additional transistors and slower clocks means multi core
designs and more parallelism required .For established
processor design – increasing transistor density, speeding up
clock rate, and lowering voltage have been blocked by a set of
physical barriers: over heat produced, also much more power
consumed and also much energy leaked, useful signal reduced
by noise. Multi core designs are an accepted reaction to this
condition. [4]

This architecture using many copies of the same core due
to this improved total computational facility on single
chip.Multi-core processors have enhanced performance and
area characteristics than difficult single-core processors. [5]
They propose and evaluate single-ISA heterogeneous multi-
core architectures as a system to reduce processor power
dissipation.

They present a technique for developing dense linear
algebra algorithms that seamlessly scales to thousands of
cores. It can be done with our plan called DPLASMA
(Distributed PLASMA) that uses a new generic distributed
Direct Acyclic Graph Engine (DAGuE).[9]

This architecture using many copies of the same core .Due
to this improved total computational ability on a single chip .
Multi-core processors have improved performance and area
characteristics than complex single-core processors. [5] Assess
single-ISA heterogeneous multi-core architectures as a method
to decrease processor power dissipation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

177 | P a g e

www.ijacsa.thesai.org

IV. SHARING OF SHARED CACHE

The common nature of on chip caches is a property that is
able to be exploited for performance gains. Data and
instructions that be usually accessed by every cores in a shared
method be able to exist rapidly reached by all cores.

This hardware performance feature leads to our first
principle of promoting distribution in the shared cache. An
operating system scheduler can select processes or threads that
share data or instructions and co-schedule them to every run at
the similar time within the same multi core processor so that
they are able to make the most of the shared cache for sharing.

 Fig. 6 Promoting sharing within a shared cache. Thread A and thread B are

share data.

Thread B can be migrated to multi-core processor A so that
the shared data is located within a single shared cache,
resulting in more rapidly access by both threads, leading to
improved performance.

A. Multiprocessor Parallelism

To enhance the number of instructions completed for every
processor clock cycle, parallel instructions can be extracted
from a sequential instruction stream as long as data
dependencies between instructions.

If instructions B and C depend only ahead the result of
instruction A, instruction D depends just upon the result of
instruction B, and instruction E depends only upon the result
of instruction C, then the most obtainable instruction-level
parallelism for this instruction stream is 2.

Fig. 7 Multiprocessor Parallelism

B. Moore’s Law is Impotent

From an arithmetical point of view, performance inside a
processor such as the Intel x86 family, can be calculated by
the number of instructions completed per second (IPS:
instructions per second), and is a result of the following.

 (

)

 (

) (

)

Given N threads .To enhances the value of IPS, and thus
performance, clock frequency can be increased, or IPC can be
increased. Unfortunately, clock frequency now appears capped
and IPC has imperfect potential due to difficulty in extracting
instruction-level-parallelism (ILP) from a single serial
instruction stream. Moore’s Law no longer correlates to
superior clock frequency values. Moore’s Law does offer extra
transistors that can help enhance IPC.

C. Thread-Level Parallelism

TLP describes the situation where there are many,
independent threads of execution, which can be run at the
same time inside a single processor. These multiple threads
can come from either inside a single application or across
multiple applications. This situation is like to the traditional
multiprocessor parallelism where many threads are executed
on many processors. Thread-level parallelism enables the IPC
term in Equation to become the sum of the IPC of each thread,
as exposed in Equation for N threads.-

 (∑
)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

178 | P a g e

www.ijacsa.thesai.org

D. Memory Wall

Another matter limiting performance is the huge and
growing disparity between processor speeds and main memory
speeds in terms of both latency and bandwidth. This disparity
is usually referred to as the memory wall. It will be reducing.

E. Exploiting Multiple Processors

There are many processors, caches, main memory banks,
interconnects, and I/O devices .The operating system is
responsible for the smart management of these common
hardware resources. These hardware performance issues are
usually addressed by the operating system by scheduling and
memory management.

Fig. 8 SMP multiprocessor consists of several uni-core processors connected

by a single shared memory bus.

F. Exploiting Simultaneous Multithreading
In simultaneous multithreading (SMT) processors, several

micro-architectural hardware resources are shared among
many threads of execution, leading to potential interference
between threads. In adding to the processor pipeline resources,
on-chip caches are too shared, which have the L1 instruction,
L1 data, andL2 caches. The operating systems have to
consider how to manage these shared hardware resources, by
memory management and scheduling, in order to maximize
application performance.

G. Exploiting Multiple Cores
On multi-core processors, the major hardware property that

must be considered by the operating system is that there be
able to be on-chip caches shared by many cores. This includes
the L2 cache or, if it is presents the L3 cache. In difference,
the L1 caches are private to each core, dissimilar in SMT
processors. Another hardware property that should be
considered by the operating system is that communication
among cores is quicker than on traditional multi-chipped
multiprocessors because every core is located on the identical
chip, sharing the similar on-chip L2 cache

V. THE DECOUPLED KILO-INSTRUCTION PROCESSOR (D-

KIP)

In the D-KIP, two cores used to implement an application.
The first core, the Cache Processor (CP), is small and fast, and

executes all code depending only on cache accesses (high
locality code). The CP runs forward as fast as possible,
launching all loads with known addresses. Code to depend on
memory accesses (i.e., low locality code) is processed through
a secondary core, the Memory Processor (MP), which is
proposed as a small in-order processor.

Fig. 9 Micro architecture of the D-KIP Processor

It executes low-locality code fetched from an in-order Low
Locality Instruction Buffer (LLIB) that has earlier been filled
in program order through the CP. Processor recovery is
ensured by using checkpoints that are formed dynamically at
the reorder buffer (ROB) output of the CP. Figure 9 shows a
simplified overview of the D-KIP processor.

VI. RESIZABLE WINDOW WITH A SET OF MEMORY ENGINES

MEMORY MANAGEMENT

To partition the buffer into many in order smaller Buffers
and provide each one with its own set of functional units. The
buffers are then allocated round-robin to the cache

Fig.10 Architecture of a single Memory Engine

Processor as they are desired. In this scheme, instead of
having a single memory engine we have a memory Processor
consisting of a set of Memory Engines. Figure no.10 shows
the Architecture of a single Memory Engine. Each of these
memory engines is a copy of the multi-scan engine behavior a
subset of the compressed instruction window.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 12, 2012

179 | P a g e

www.ijacsa.thesai.org

Registers are passed between the engines with the input
and output register files. After each scan the engine checks the
output register file for recently generated registers .These
registers are at that time sent over a network to the input
register file of the next logical memory engine. Memory
management is a critical part in high performance
architectures.

Fig.11 Processor with ME Network

VII. CONCLUSION

We presented a flexible multi-core (FMC) micro
architecture able of with high performance. It high throughput
used for identical parallel applications as well as high
performance. Each core is extremely simple, thus our
approach scales to a large number of cores, allowing for a
capable and easy design. We consider this according to every
method it gives the right path to provide best performance for
workloads consisting of a large variety of applications. FMC
performs this transparently to the programmer.

REFERENCES

[1] Miguel Pericas, Adrian Cristal, Francisco J. Cazorla, Ruben Gonzalez,
Daniel A. Jimene and Mateo Valero “A Flexible heterogeneous Multi-
Core Architectura”.20 Parallel Architecture and Compiler Techniques
2007.

[2] Rakesh Kumar et. Al, “Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power Reduction”, In
Proceedings of the 36th International Symposium on Micro architecture,
December 2003.

[3] Rangyu Deng et. “An Efficient Stream Memory Architecture for
Heterogeneous Multi core Processor 2009.

[4] Shouqing Hao et. Al “Processes Scheduling on Heterogeneous Multi-
core Architecture with Hardware Support” 2011.

[5] George Basilica et. Al “Flexible Development of Dense Linear Algebra
Algorithms on Massively Parallel Architectures with DPLASMA”2011.

[6] H. Akkary, R. Raj war, and S. T. Srinivasan. Checkpoint processing and
recovery: Towards scalable large instruction window processors. 2003.

[7] S. Balakrishnan, R. Raj war, M. Upton, and K. Lai. The impact of
performance asymmetry in emerging multi core architectures. In Proc. of
the Intl. Symp. On Computer Architecture, pages 506–517, June 2005.

[8] R. D. Barnes, S. Ryoo, and W. Mei W. Hwu. Flea-Flicker Multipass
Pipelining: An Alternative to the High-Power Out-of-Order Offense. In
Proc. of the 38th. Annual Intl. Symp. On Micro architecture, December
2005.

[9] Miguel Prices`, Adrian Cristal, Ruben Gonzalez, Daniela. Jimenez and
Mateo Valero “A Decoupled KILO–Instruction Processor “in 2005.

[10] Miguel Prices et all” Chained In-Order/Out-of-Order Double Core
Architecture” in 2006

[11] Francisco Javier Cazorla Almeida “Quality of Service for Simultaneous
Multithreading Processors” in 2005.

[12] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Run ahead Execution:
An alternative to very large instruction windows for out-of-order
processors. In Proc .of the 9th Intl. Symp .on High Performance
Computer Architecture, pages 129–140, 2003.

[13] M. Pericas, A. Cristal, R. Gonzalez, D. A. Jimenez, and M. Valero. A
decoupled kilo-instruction processor. In Proc. of the 12th Intl. Symp. on
High Performance Computer Architecture, February 2006.

[14] H. Zhou. Dual-core execution: Building a highly scalable single-thread
instruction window. In Proc. of the 14th Intl. Conf .on Parallel
Architectures and Compilation Techniques, September 2005.

[15] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint processing and
recovery: Towards scalable large instruction window processors. 2003.

[16] R.Kumar, V.Zyuban, and D.M.Tullsen. Interconnection in multi-core
architectures: Understanding mechanisms, overheads, an scaling. In Proc
of the 32ndIntl.Symp. On Computer Architecture, June 2005.

[17] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
parallel programming with CUDA. ACM Queue, 6(2):40{53, 2008.

[18] M. D. Lindeman, J. D. Collins, H. Wang, and T. H. Meng. Merge: a
programming model for heterogeneous multi-core systems. In ASPLOS
XIII, 2008.

