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Abstract—There has been a continuous increase in the demands 

for Global Navigation Satellite System (GNSS) receivers in a wide 

range of applications. More and more wireless and mobile 

devices are equipped with built-in GNSS receivers; their users’ 

mobility behavior can result in challenging signal conditions that 

have detrimental effects on the receivers’ tracking and 

positioning accuracy. A major error source is the multipath 

signals, which are signals that are reflected off different surfaces 

and propagated to the receiver's antenna via different paths. 

Analysis of the received multipath signals indicated that their 

characteristics depend on the surrounding environment. This 

paper introduces a machine-learning pattern recognition 

algorithm that utilizes the aforementioned dependency to classify 

the multipath signals’ characteristics and identify the 

surrounding environment. The identified environment is utilized 

in a novel adaptive tracking technique that enables a GNSS 

receiver to change its tracking strategy to best suit the current 

signal condition. This will lead to a robust positioning under 

challenging signal conditions. The algorithm is verified using real 

and simulated Global Positioning System (GPS) signals with 

accurate multipath models. 

Keywords-component; GPS; GNSS; machine learning; pattern 

recognition; PCA; PNN; multipath. 

I. INTRODUCTION 

A Global Navigation Satellite System (GNSS) [1, 2] is a 
radio navigation system that employs spread spectrum 
techniques to transmit ranging signals and navigation data. The 
ranging signals are used by a GNSS receiver to identify the 
visible GNSS satellites and measure the distance between the 
visible GNSS satellites and the GNSS receiver. The measured 
distances are used with the navigation data to solve the 
navigation equation to determine the user’s 3-diemntional 
position and velocity.   Examples of GNSS systems are the US 
Global Positioning System (GPS), the Russian GLONASS, and 
the European Galileo Navigation System.   

GNSS receivers perform three main functions: signal 
acquisition, signal tracking, and navigation message decoding. 
Signal acquisition identifies the visible satellites and provides 
rough estimates of the Doppler frequency, fd, and the ranging 
code delay, τ. Signal tracking applies closed loop tracking 
techniques to provide continuous accurate estimates of the 
carrier phase, the Doppler frequency, the Doppler rate, and the 

code delay. Those estimates are used to measure the distance 
between the GNSS satellite and the receiver.  

GNSS receivers can give positioning accuracy up to a few 
millimeters when the receiver is stable and has a clear view of 
the sky, where the Line-of-Sight (LOS) signal is received with 
strong power. However, in environments like urban, suburban, 
and indoor, the received signals suffer from attenuation and 
multipath errors because of the surrounding objects [3]. In 
addition, the user’s mobility behavior can subject the receiver 
to changing and unstable signals dynamics. This leads to 
deterioration in the tracking and positioning accuracy.  

Multipath signals are a major error source. They appear 
when the GNSS satellite signals are reflected off different 
surfaces and propagated to the receiver's antenna via different 
paths. This leads to the reception of several versions of the 
same signal, which causes tracking errors. Analysis of the 
received signals indicated that their characteristics depend on 
the surrounding environment [4, 5, 6, 7, 8]. Urban, sub-urban 
and indoor environments generate different characteristics, 
which include multipath signals' parameters like the number 
and duration of echoes and signals power, and LOS signal's 
parameters like amplitude fluctuation, Doppler shift and rate. 
Different tracking strategies are needed for each environment 
to mitigate multipath errors and maximize the tracking 
performance. 

There have been numerous tracking strategies that are 
optimized for specific signal condition or environment. For 
example, conventional tracking techniques [1, 2] are used with 
strong signals. Kalman Filter based techniques are used with 
weak signals [3, 9]. Tightly-coupled GNSS with Inertial 
Navigation System (INS) techniques are used with weak 
interrupted signals or blocked signals [10]. Open-loop batch 
processing, and combined batch and sequential processing 
techniques are used in high dynamic applications [11]. Particle 
Filter-based techniques are used for tracking in multipath 
environments [12, 13, 14].  

A GNSS receiver is usually tuned to one tracking 
technique, and there have been no methods that enable a 
receiver to change its tracking strategy based on the 
surrounding environment.  This paper introduces a machine-
learning pattern recognition algorithm to identify the 
surrounding environment, and hence enable the implementation 
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of a tacking strategy selector that adaptively changes the 
tracking strategy to best suit the current signal condition.  

The LOS and multipath signals’ patterns of each possible 
environment are represented by a class. The introduced 
algorithm is structured into several channels, each of which is 
tuned to one of the classes. The channels are trained on sets of 
patterns from each class, and then they are used to classify new 
unclassified patterns. The proposed pattern recognition 
algorithm performs two main functions, which are feature 
extraction and pattern classification. Feature extraction is the 
process of learning the distinctive characteristics of the data 
and removing redundant data. This is done to get a compact 
and robust representation of the distinctive features of each 
class, thus reducing the processing overhead and memory 
requirements without degrading the classification performance. 
Feature extraction, which is used in image and face recognition 
[15, 16, 17, 18, 19, 20, 21, 22, 23], is performed using a 
Principal Component Analysis (PCA) approach. Pattern 
classification is the process of building neurons that capture the 
dominant features shared by different realizations of each class, 
and then classifying new patterns into one of the classes. 
Neurons are computational units that are connected by 
weighted links. Pattern classification has many applications, 
like radar detection and remote sensing [24, 25, 26]; it is 
performed here using a multi-layer feedforward Probabilistic 
Neural Network (PNN) approach [27, 28, 29, 30, 31,32]. 

The proposed tracking strategy selector module utilizes 
both closed loop tracking techniques and open loop tracking 
techniques to accommodate various patterns. Open loop 
tracking techniques are activated in unstable or rapidly 
changing signal conditions, while closed loop tracking 
techniques are activated in relatively stable or light multipath 
environments. In addition, based on the environment 
classification, the activated technique adjusts its parameters to 
achieve reliable tracking performance.   

The rest of this paper is organized as follows. Section II 
presents some signals patterns that appear in urban and 
suburban environments. Section III presents the proposed 
pattern recognition algorithm. Section IV discusses the 
adaptive tracking concept. Section V presents some testing and 
results to verify the algorithm performance. Section VI 
concludes the paper. 

II.LOS AND MULTIPATH PATTERNS 

The received GNSS signal consists of the LOS signal and 
NMP multipath signals. The down-converted sampled received 
GPS C/A signal can be expressed as 

 

 

 

                                                                                           

Where, A is the signal amplitude. d is the navigation data. 
C is the ranging code. fIF is the intermediate frequency (IF). fd 
is the Doppler shift. α is the Doppler rate. θn is the phase. τ is 
the code delay. n is the measurement noise. Ψm is the 
attenuation in the multipath signal amplitude relative to the 

LOS signal amplitude. τm is the multipath signal delay. Φm is 
the multipath phase advance relative to the LOS signal. 

The received signal is processed by the receiver to generate 
the integrated signal, which has the form 

 

 

 

                                                                                             

Where, Λ is a reference amplitude that is used to express 
any amplitude relative to it, e.g. the LOS amplitude is A = γ0 Λ. 
γm = γ0 Ψm. R(.) is the auto-correlation function. τeu is the code 
delay estimation error at time instance u. feu is the Doppler shift 
estimation error. θeu is the phase estimation error. Δ is a code 
delay relative to the estimated code delay of the LOS signal. Ti 
is the integration time.  

The attenuation of the LOS signal and the number and 
distribution of the multipath signals depend on the surrounding 
environment. Elaborate studies exploring the effects of urban 
and suburban environments on real signals were presented in 
[4, 5, 6, 7, 8]. Identifying the distribution of the LOS and 
multipath signals will enable adjusting the tracking strategy or 
the tracking parameters to obtain the best attainable tracking 
performance under various signal conditions. The software 
provided in [33] is used to generate received signal patterns 
that typically appear in urban and suburban environments. 
Some of these patterns are shown in Figs. 1-3. Each figure 
shows two plots: a 3-dimensional (3-D) plot that expresses the 
pattern in time, delay, and power; and a 2-D plot that is a 
rotated version of the 3-D plot.  

Fig. 1 shows a pattern generated in a suburban environment 
when a user is walking at a speed of 4 miles/hour. The pattern 
exhibits a strong LOS signal with light multipath signals that 
have weak power compared to the LOS signal. Fig. 2 shows a 
pattern generated in a suburban environment when a car is 
moving at a speed of 20 miles/hour. The LOS signal here is 
weaker than the LOS signal shown in Fig. 1, and the multipath 
signals are not much weaker than the LOS signal. The pattern 
exhibits changing characteristics over 5 seconds, and it can be 
divided into several sub-patterns. For example, from 0-2 
seconds the LOS signal is stronger than the multipath signals, 
around 2 seconds the LOS signal appears to be completely 
blocked, from 2-3.5 seconds the LOS signal is weaker than the 
multipath signals, and around 3.5 seconds there are no 
multipath signals. Fig. 3 shows a pattern generated in an urban 
environment when a car is moving at a speed of 20 miles/hour. 
This pattern also exhibits changing characteristics. The LOS 
signal either suffers from complete blockage, or frequent 
interruption over a short period of time. The multipath signals 
in this urban environment are denser than the suburban cases.  

 The distribution of the surrounding objects and their shape 
and height directly contribute to the multipath signals (echoes) 
distribution. Indoor patterns are usually characterized by weak 
or blocked LOS signals. Obviously, different patterns will need 
different tracking strategies to achieve optimized tracking 
performance, and hence optimized positioning accuracy.   

          (1) 

            (2) 
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Figure 1.  Multipath pattern in a pedestrian suburban environment. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Multipath pattern in a car suburban environment. 

 
Figure 3.  Multipath pattern in a car urban environment. 

III. MULTIPATH PATTERN RECOGNITION (MPR) 

3-D patterns can be constructed from different parameters, 
like amplitude and phase. Each 3-D pattern is represented by a 

2-D matrix, where each entry contains the value of a parameter 
at a code delay and a time instance. For example, a matrix that 
expresses the amplitude pattern over Np code delays and NPNN 
time instances is 

 

 

 

 

A PNN maps an input feature vector to an output class. The 
feature vector describes the similarities and differences 
between the features of the pattern in question and the 
dominant features of the training patterns. The process of 
learning the dominant features of the training patterns, and 
removing redundant data, is feature extraction.  

Feature extraction is performed using PCA. In PCA, an 
eigen-decomposition is performed on the covariance matrix of 
the training patterns. The eigenvalues are sorted in a decreasing 
order, and then the eigenvectors that are associated with the 
largest eigenvalues, i.e. the dominant eigenvectors, are 
retained. A reduced-size pattern matrix is reconstructed with 
the dominant eigenvectors. The training patterns are divided 
into Ncl classes, where the characteristics of each class are 
selected based on the desired identification criteria. The criteria 
can be chosen to characterize the reflected signals (e.g. dense 
reflected signals, occasionally blocked LOS signal), a specific 
surrounding objects (e.g. trees, buildings), or a specific 
environment (e.g. urban, suburban). The classes should have 
distinctive characteristics relative to each other. The criteria 
and the number of steps, NPNN, can be adjusted and optimized 
to fit the classification objective. The following will use the 
pattern matrix Ωγ to explain the proposed algorithm.  

Assume that there are a total of Ntr training patterns from all 
the Ncl classes. The PCA decomposition on the training 
matrices Ωγ

k
 where k = 1, …, Ntr, is done as follows: 

Each Ωγ
k
 matrix is converted into one vector, by reading the 

matrix column by column. 

The Ntr vectors are joined in one matrix, where each row 
contains one vector. So, a matrix of size Ntr (Np  NPNN) is 
obtained; define it as Ώγ. 

The mean pattern is calculated. This is the mean of each 
column of Ώγ. A row vector, Ωγ

m
, of size (Np NPNN) is obtained.  

The mean pattern is subtracted from each row in Ώγ to get a 
matrix defined as ξγ. 

Eigen patterns (or eigen images) are patterns that 
characterize the similarities and differences between the 
training patterns. The eigen patterns are obtained using the 
training set, ξγ, and they are used in the classification process of 
unclassified patterns. Eigen patterns are the eigenvectors of the 
following covariance matrix: σˆtr = ξγ

H
  ξγ. Where, σˆtr  has a 

size of (Np NPNN) . (Np NPNN), and it will produce (Np NPNN) 
eigenvectors. It can be an intractable task to decompose a 
matrix of large size, so an alternative approach is used for 
decomposition. This is possible because the algorithm only 
needs a maximum of Ntr eigenvectors (those with the largest 
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eigenvalues), and not all the (Np NPNN) eigenvectors. Getting 
the eigen patterns is done as follows: 

 An alternative covariance matrix of size Ntr . Ntr is 
found as σtr = ξγ  ξγ

H
. 

 The eigenvectors and eigenvalues of the covariance 
matrix σtr are calculated. The eigenvectors are a set of 
orthonormal vectors.  

 The eigenvectors are sorted based on the associated 
eigenvalues. The NEtr dominant eigenvectors are 
chosen, where NEtr ≤ Ntr. The chosen eigenvectors are 
appended to one matrix, defined as Ґtr, which will have 
a size of  Ntr NEtr. 

 The eigen patterns are obtain as λtr = ξγ
H  

Ґtr, where, λtr 
has a size of (Np NPNN) . NEtr. Those eigen patterns are 
orthonormal vectors, and they span NEtr-dimensional 
subspace, instead of the original (Np NPNN) space.  

The contribution of each eigen pattern in representing each 
training pattern is calculated by projecting the training patterns 
into the pattern space. This results in the following PCA 
weights: Wtr = λtr

H
 ξγ

H
. Where, Wtr has a size of NEtr . Ntr. Each 

column represents the projection of one training pattern into the 
pattern space, and each entry in a column represents the 
contribution of each eigen pattern in expressing the associated 
training pattern. 

This process accomplishes two goals: expressing the 
patterns in terms of the dominant eigenvectors, i.e. the features 
that distinctly characterize the patterns; and, reducing the size 
of the training patterns. 

The concept of classification of a new unclassified pattern 
is to find the class that best describes that pattern. The 
classification is based on finding the class with the minimum 
Euclidean distance to the projection of the new pattern. To 
classify a new pattern, Ωγ

n
, it is first projected into the training 

pattern space as follows:  

1) Ωγ
n
 is converted into one vector, by reading the matrix 

column by column. A vector Ω  γ  
n
 is obtained.  

2) The mean pattern, Ωγ
m
, is subtracted from Ω  γ  

n
 to get a 

vector  Ω  γ
n
.  

3) Ω  γ
n
 is projected into the training pattern space (i.e. the 

PCA weights are calculated) as Wp = λtr
H
 (Ω γ

n
)

H
. Where.  Wp 

has a size of  NEtr . Ntr. 

4) The feature vector of the new pattern can be obtained as  

Ω  γ
p 
= λtr Wp. 
The classification is done using PNN. The introduced PNN 

is a fully connected network that consists of four layers: input 
layer, pattern layer, summation layer, and output layer. Fig. 4 
illustrates the PNN layers and their connections. The input 
layer has a number of units equal to the number of variables 
used in the classification process.  

The training patterns are stored in the pattern layer, and 
they are used to construct the probability density function of 
each class. The summation layer employs a Bayesian approach 
to calculate the probability that a new unclassified pattern 
belongs to each class.  

The output layer uses a competitive transfer function to 
choose the maximum probability and generate an output that 
indicates the class that the new pattern belongs to it. The 
introduced MPR algorithm is designed with a flexibility to 
learn new patterns, and adapt the performance based on new 
training data. Adding new patterns requires recalculating the 
weights Wtr. 

The number of training patterns available for each class is 
defined as Nc, where c = 1,…, Ncl. The eigen patterns for each 
class are defined as λtri

c
, where c is the class index, and i = 1, 

…, Nc. The PDF for each class is estimated using the Parzen's 
estimator [24] as follows 

               

Where, L is the λtr vector length, and σc is a smoothing 
factor.  

The PCA weight matrix, Wtr, is divided into Ncl matrices, 
where each matrix contains the weights of one class. Define 
those matrices as Wtr

c
, where c is the class index. Each matrix 

has a size of NEtr.Nc. Define each column vector of Wtr
c
 as 

Wtri
c
, where i = 1, …, Nc. Another PDF, for each class, can be 

estimated as 

 

 

Similarly, the PCA weights matrix relating the unclassified 
pattern to each class, Wp, is divided into Ncl matrices, defined 
as Wp

c
, where c is the class index, and p is the new pattern to 

be classified. Each column vector is defined as Wpi
c
, where, i = 

1, …, Nc. The summation layer of the PNN calculates the 
probability that the unclassified pattern belongs to each class. 
This is done as follows. The distance between each training 
pattern in each class and the unclassified pattern is found as 

 

 

The probability that the unclassified pattern belongs to a 
class c is calculated as 

 

 

Where, c = 1, … , Ncl. The output layer of the PNN uses a 
decision function based on gp

c
 to classify the unclassified 

pattern. Fig. 5 outlines the steps of pattern recognition. 

 

Figure 4.  Illustration of the PNN layers and their connections. 

                                              

                                                                                                (3)       

            (4) 

                                                         (5) 

                              (6) 
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Figure 5.  Illustration of the steps of pattern recognition. 

More than one pattern maybe needed to identify the 
surrounding environment. This is because similar patterns can 
be generated from different environments, and also some 
environments can generate several distinctive patterns at 
different times. The pattern recognition algorithm is modified 
to avoid misclassification of the environment. Each 
environment has its own class, and each class consists of Nsc 
subclasses, where each subclass defines patterns with 
distinctive features. Training patterns are collected for each 
subclass. In the classification step, instead of collecting one 
pattern to identify the environment, Npe patterns are collected 
over separate times. Each pattern is classified separately, and 
then the class that most of the patterns are classified to it is 
chosen, and its corresponding environment is identified as the 
current surrounding environment. Fig. 6 outlines this approach 
of environment classification. Another approach to identify the 
environment is to collect statistics from the unclassified 
patterns and include them in the classification process. On 
average, an urban environment has higher number of reflected 
signals than a suburban environment, and indoor signals are 
weaker and can incur longer blockage times. 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Illustration of the steps of environment recognition. 

IV. ADAPTIVE TRACKING STRATEGY SELECTION 

Signal acquisition can be done under strong and weak 
signal conditions, and in low and high dynamics environment 
[3]. Following a signal acquisition, the receiver obtains rough 
estimates of the code delay, the Doppler shift, and the Doppler 
rate. A closed-loop tracking is initialized using the acquisition 
output, and then it works to refine the parameters estimates and 
continuously track changes in the code and carrier parameters. 
Closed-loop tracking techniques are based on generating error 

signals proportional to the current errors in the estimated 
parameters. Those error signals are fed back to the tracking 
algorithm to readjust the estimated parameters and maintain 
locks on the code and carrier parameters. A sudden large error 
in the estimated parameters due to sudden changes in the signal 
dynamics or the signal condition can cause loss of lock on the 
signal, and the tracking can no longer continue its operation. In 
this case, an acquisition process has to be re-initiated to 
reacquire the signal. If the signal is in an unstable environment, 
like continuous changes in dynamics, frequent signal blocking, 
or dense multipath environment, then closed-loop tracking will 
not be able to achieve lock on the signal. An open-loop 
tracking can provide the solution to tracking in such cases.  

Open-loop tracking performs an acquisition-like process on 
the received signal, but with a smaller search range in the code 
delay and Doppler shift. The search range is adjusted based on 
the signal dynamics and condition. For example, in dense 
multipath reflected signals, high dynamics will require larger 
search range than low dynamics.    

The output of the introduced MPR algorithm is fed to a 
tracking strategy selector, which uses the output to decide on a 
tracking strategy and tune the filters parameters to best suit the 
signal condition. The tracking algorithms previously introduced 
for weak signals [3], weak interrupted signals [10], and 
multipath tracking [14] are used as basis for closed loop 
tracking. The acquisition algorithms previously introduced for 
weak signals and high dynamics in [3] are used as basis for 
open loop tracking. An extra module is added to each algorithm 
to detect changes in the environment by detecting changes in 
the carrier to noise ratio C/N0, the signal dynamics, the number 
of detected multipath signals, or loss of lock. Detecting 
changes in the signal conditions will invoke a rerun of the MPR 
algorithm to identify the new signal pattern and/or the 
environment.   

V. TESTING AND RESULTS 

Real and simulated GPS C/A signals are used to assess the 
performance of the algorithm. Urban and suburban multipath 
patterns are generated using the models in [4, 5, 6, 7, 8] and the 
software in [33], while indoor and outdoor patterns are 
simulated. The real GPS data were provided by the University 
of New South Wales, Australia. The real GPS data had strong 
LOS signal and no multipath signals. It is processed to add few 
multipath non-varying signals, and then it is used to generate 
some of the training patterns for strong outdoor signals. 
Hardware and software simulators are used as sources for the 
simulated GPS signals. The hardware simulator’s GPS data 
were provided by the PLAN group at the University of 
Calgary, Canada. The software simulator’s GPS data are 
generated as in [3, 14]. The simulated GPS signals are used 
with the multipath patterns to get a variety of signals conditions 
to be used in the verification process.   

Pattern recognition depends on the set of patterns used to 
train the algorithm. The classes are chosen to serve the 
underlying target application. The parameters chosen to 
identify the patterns should be enough to describe each class, 
and should express the differences between the classes. The 
target application in this paper is adaptive tracking, and so the 
first test is setup to serve that application. The classes are 
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chosen to accommodate various tracking strategies.  Six classes 
are selected for the test. The classes are as follows: 

1) SL-CM: Slow varying LOS signal power with very few 

non-varying multipath reflected signals. 

2) SL-DM: Slow varying LOS signal power with very 

dense multipath reflected signals. 

3)  FL-VM: Fast changing LOS signal power with various 

scenarios for multipath reflected signals. 

4) BL-VM: LOS signal with occasional blockage, and with 

various scenarios for multipath reflected signals. 

5) BL-DM: Blocked or very weak LOS signal with dense 

multipath reflected signals. 

6) BL-LM: Blocked or very weak LOS signal with few 

multipath reflected signals. 
A total of 150 training patterns are generated. The 

integration time, Ti, used here is 5 milliseconds, and each 
pattern spans 1 second. The patterns are divided into the six 
aforementioned classes, where each pattern is allocated to the 
most appropriate class. To test the classification performance, 
25 new patterns are generated, where none of them were used 
in the training process. The probability that each unclassified 
pattern, p, belongs to one of the classes is calculated as in (6). 
Those probabilities are normalized as follows: 

 

 

Tables I and II show 11 of the classifications results. Each 
column contains the result for one unclassified pattern, and 
each row contains the results for each class type. The pattern 
with the slow varying LOS signal with non-varying few 
multipath signals was classified with probability 1 to its class, 
SL-CM, which means it did not show any similarities to any of 
the other classes. The number and density of multipath 
reflected signals can vary from very light to very dense, and 
there is no actual boundary to classify any possible multipath 
density pattern into only two classes, However, the 
classification results indicate how light or how dense a pattern 
is. This is clear in the results in the last four columns of table II. 
This indicates that the probability of each class can be used to 
draw further conclusions about a pattern.  

Environment identification test is also conducted. Four 
environments are defined: Outdoor, indoor, urban, and 
suburban. The outdoor is defined here as an environment that 
has very few surrounding objects. Urban and suburban 
environments structures differ from one place to another. In 
this test, a suburban environment is a one with wide streets, 
trees, and low-rise buildings with large separation between 
them. Urban environment is a one with less wide streets, dense 
and high-rise buildings. Training patterns are recorded for each 
environment and divided into subclasses, where the patterns for 
each subclass are chosen to have distinctive features relative to 
each other.  

The outdoor environment is assigned two subclasses, where 
one subclass has strong LOS signal and no multipath signals, 
and the second subclass has strong LOS signal and few non-
varying multipath signals.  

The indoor environment is assigned two subclasses, where 
one subclass has light multipath signals and the other has dense 
multipath signals. Those two subclasses are characterized by 
weak power for all the signals.  

TABLE I.  PATTERN RECOGNITION CLASSIFICATION RESULTS 

  Unclassified Pattern Type 

Class  SL-CM SL-DM SL-DM FL-VM FL-VM 

SL-CM 1.0 0.017 0.015 0.009 0.012 

SL-DM 0.0 0.755 0.762 0.146 0.146 

FL-VM 0.0 0.193 0.189 0.648 0.687 

BL-VM 0.0 0.035 0.034 0.142 0.11 

BL-DM 0.0 0.0 0.0 0.03 0.008 

BL-LM 0.0 0.0 0.0 0.025 0.006 

TABLE II.  PATTERN RECOGNITION CLASSIFICATION RESULTS 

 Unclassified Pattern Type 

Class BL-VM BL-VM BL-DM BL-DM BL-LM BL-LM 

SL-CM 0.012 0.012 0.0 0.0 0.0 0.0 

SL-DM 0.254 0.269 0.0 0.0 0.0 0.0 

FL-VM 0.15 0.14 0.082 0.093 0.074 0.069 

BL-VM 0.564 0.562 0.033 0.039 0.029 0.028 

BL-DM 0.011 0.009 0.542 0.524 0.38 0.322 

BL-LM 0.009 0.007 0.343 0.344 0.517 0.437 

The urban environment is assigned four subclasses as 
follows: (1) LOS signal with dense multipath signals; (2) LOS 
signal with light multipath signals; (3) blocked LOS signal with 
dense multipath signals, and (4) occasionally blocked LOS 
signal with occasionally disappearing multipath signals.  

The suburban environment is assigned six subclasses as 
follows: (1) a subclass that characterizes the effect of trees; (2) 
LOS signal with light multipath signals; (3) LOS signal with 
dense multipath signals; (4) blocked LOS signal with light 
multipath signals; (5) blocked LOS signal with dense multipath 
signals; and (6) LOS signal with no multipath signals.  

A total of 500 patterns are used for training. Twelve sets of 
unclassified patterns are tested, where each set had Npe = 5 
patterns. Each set represents patterns of one environment, and 
each environment type had 3 sets of patterns; define this 
number of sets as Nenv (Nenv=3).  

Table III shows a summary of the results. This summary is 
calculated by averaging the results obtained from each 
environment’s three sets of patterns.                                  

TABLE III.  SUMMARY OF ENVIRONMENT CLASSIFICATION RESULTS 

The first row of the results in table III is the average of the 
maximum probability that a subclass has generated at each of 
the Npe patterns, and each of the Nenv sets, i.e., 

 

Environment Outdoor Indoor Urban Suburban 

Psc 1 0.95 0.8 0.75 
Pcl 1 1 0.95 0.9 

Classification percent  100 100 100 100 

                                                                (7) 

                                     (8) 
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The second row of the results is the average of the 
summation of Pp

c
 in (7) of the subclasses that belong to the 

correct environment, i.e.,  

 

 

 

The third row is the percent of correct classification taken 
over the Npe patterns of each of the Nenv sets. As shown, the 
results of this test generated 100 percent correct environment 
classification. 

The definition of environments is application dependent. 
The selection of subclasses depends on the structure of the 
selected environments. The MPR algorithm is very flexible in 
that the training patterns can be changed to suit the desired 
classification. 

VI. CONCLUSIONS 

This paper introduced a novel machine-learning pattern-
recognition algorithm to identify the surrounding environment 
from the characteristics of the multipath reflected signals. The 
algorithm employed feature extraction and pattern 
classification functionalities to identify the distinctive features 
of the training patterns and classify new unclassified patterns 
into predefined classes. The predefined classes can be chosen 
based on the desired classification criteria. The algorithm has 
the flexibility to work with new classes. New environments or 
signal conditions can be added by simply adding new training 
patterns from those environments. Testing results indicated the 
ability of the algorithm to correctly classify multipath patterns 
and reliably identify the surrounding environment. This 
algorithm opens the door for the implementation of adaptive 
tracking techniques that adjust their tracking strategy based on 
the surrounding environment or the signal condition. Adaptive 
tracking techniques can play a major role in providing highly 
accurate and reliable positioning in wireless and mobile 
applications.     
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