
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

171 | P a g e

www.ijacsa.thesai.org

Mutual Exclusion Principle for Multithreaded Web

Crawlers

Kartik Kumar Perisetla

Department of Computer Science and Engineering

Lingaya’s Institute of Management and Technology

Maharishi Dayanand University

Faridabad, India

Abstract— This paper describes mutual exclusion principle for

multithreaded web crawlers. The existing web crawlers use data

structures to hold frontier set in local address space. This space

could be used to run more crawler threads for faster operation.

All crawler threads fetch the URL to crawl from the centralized

frontier. The mutual exclusion principle is used to provide access

to frontier for each crawler thread in synchronized manner to

avoid deadlock. The approach to utilize the waiting time on

mutual exclusion lock in efficient manner has been discussed in

detail.

Keywords- Web Crawlers; Mutual Exclusion principle;

Multithreading; Mutex locks.

I. INTRODUCTION

Web crawlers are programs that exploit the graph structure
of the World Wide Web. The most important component of a
search engine is an efficient crawler. World Wide Web is
growing very rapidly; it is pertinent for search engines to opt
for efficient and fast crawler processes to provide good results
on search. Crawlers are also called as robots or spiders.
Crawlers employed by search engines usually operate in
multithreaded manner for high speed operation. When started
multithreaded crawlers initialize a data structure, usually
queue that holds the list of URLs to be visited by that crawler
thread. These queues are filled constantly by a program
employed within URL server which constantly monitors the
count in each queue so that load on each crawler thread is
balanced. The Load Balancing aspect is important to ensure
efficient utilization of resources i.e. crawler threads. [1, 3]

Each thread start with a URL usually called a seed from
their queue maintained in their local address space; they fetch
the web page corresponding to that URL from World Wide
Web, parse the page, extract the metadata and add links in this
page to the frontier set which consists of the unvisited URLs.
The data extracted consisting of body text, title, link text
called as metadata are added into the metadata server. This
metadata is further used by indexers for ranking the pages thus
crawled. This ranked page set is then used by search engines
as search results.

II. PROBLEM FORMULATION

A. Problem statement and comparison model

Traditional crawlers operate with a URL queue. The main
drawback in this case is that each of them maintains a URL

queue in local address. Initially, each thread holds 50 URLs to
be visited. And each of them is to be monitored by single URL
server program for adding new URLs to the queue as URLs
are popped by crawler. Consider scenario where crawlers are
operating in multithreaded manner and they access centralized
URL frontier to fetch URL. Due to this, there might be cases
of infinite waiting for crawler threads. To avoid such
conditions and to provide synchronization among threads,
mutual exclusion lock is used. Our focus is on comparison of
operation model of multithreaded crawlers with
synchronization lock and multithreaded crawlers without
synchronization lock. We will analyze the behavior of these
models and draw a conclusion based on performance.

B. Experiment model

We are considering a thread generator program capable of
generating multiple crawler threads at a specified rate. Each
crawler thread is capable of accessing the same centralized
URL frontier, a database. The rate at which thread is generated
can be easily controlled within the experimental setup to
record observations. We will refer a model as “Non-mutex”
when multiple threads operate without synchronization lock
and we will refer a model as “Mutex” when multiple threads
operate with synchronization lock to access shared resource.
HTTP (Hypertext transfer protocol) is widely used for transfer
of hypertext over the internet. Each thread fetches the page as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

172 | P a g e

www.ijacsa.thesai.org

a result of HTTP request and HTTP response actions. Each
web server, according to robot exclusion protocol has a file
named “robot.txt” that specifies which of the pages that are
changed since robots last visited. But here we are ignoring that
file meant for robots. In order to indicate the benefits of
mutual exclusion lock in terms of performance we have also
implemented the thread generator program without the mutual
exclusion lock, hence in this case it is possible for more than
one crawler thread to access the URL frontier at the same
time. [5]

III. MUTUAL EXCLUSION LOCKS FOR CRAWLER THREADS

We are considering a thread generator program generates
the crawler threads at a specific rate that can be tuned to
different values so as to record the observations for the
experiment. Mutual Exclusion principle states that multiple
processes or threads intending to access the same resource will
access it mutually exclusively, that is only one at a time. This
can be achieved by using a binary semaphore as mutual
exclusion lock, ‘mutex’. Mutual exclusion for crawler threads
applies in similar manner. When a crawler thread need to
access the shared resource i.e. URL frontier, it check for the
availability of the mutex lock. If it is in released state then it
locks it and access the frontier. By that time if any other
crawler threads need to access frontier it must wait until the
lock is released by thread that holds the lock. Only one thread
can access the URL frontier at a time hence providing
controlled access and avoiding deadlock. Each thread fetches
the URL to be visited from the URL frontier and establishes
the connection with the web server. [6]

 Pseudo code for mutex locks implementation:

IV. CRAWLER ARCHITECTURE

A. Structure

Crawler thread is the thread generated by a program.
Thread runs in background mode in operating system. Crawler
thread is responsible for fetching the web pages from
worldwide web over HTTP. For non-mutex model, each
crawler thread holds data structure for holding the raw data
fetched from single source.

For mutex model, each crawler thread holds holds data
structure probably a stack to hold raw data from multiple
sources as discussed in latter sections. Also, in mutex model
the thread generator program is responsible for providing the
mutex lock to all crawler threads generated by it.

The data structure to hold the raw data is filled when
HTTP response is received and it is flushed when the raw data

is pushed into the raw fetched data store or the database for
parsing. The threads generated by thread generator can be
called as connections as each represent a connection with the
web server. For example: 50 Crawler threads per sec.

B. Operation

As each thread is created it fetches a URL to be visited
from the URL frontier, sends a HTTP request to the web server
and waits for the HTTP response containing raw text of the
page requested.

Figure 2. Mutithreaded Crawlers using the Mutual exclusion lock

By the time this thread is fetching the URL from frontier,
all other threads wait for mutex lock to be released. Once the
thread release the lock, another thread which was waiting for
the lock acquires it. The next thread which gets this lock is
dependent on how operating system manages the priority for
providing the lock to next waiting thread.

The raw text thus received from HTTP response i.e. raw
data is added to the ‘raw fetched data store’. And then this
thread repeats its action from fetching the URL. All threads
will terminate when there is no URL in URL frontier. The raw
data fetched is to be processed to extract metadata and links
from pages. Further processing is done by the ‘filter’ process. It
reads the page extract title, outer text of the page, link text and
adds it to the metadata store. Extracts links within the page and
add them to the URL frontier. [7]

C. Pseudo Code

The pseudo code for crawler thread is shown below. This
gives an insight on operations performed by crawler thread and
sequence of those operations.

Description of each procedure is described as:

init: This procedure is called as soon as crawler thread is
created. Purpose of this method is to initialize the thread with
required data structures.

fetch_url: This is responsible for fetching URL from the
URL frontier by using the mutex lock.

navigate_url: This is responsible for sending HTTP
request and receiving the HTTP response for a URL.

while(mutex.isLocked())

//wait here until lock is released

Mutex.lock()

{//acquire the lock

//do processing here}

Mutex.ReleaseLock()

//release the lock

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

173 | P a g e

www.ijacsa.thesai.org

D. Crawler Algorithm

 Assuming that mutex represents the mutual exclusion lock
at database level that provide synchronized access to crawler
threads.

1. Check the locked status of mutex lock.

LockStatus=CheckMutexLockStatus[mutex]

2. If LockStatus=MUTEX_LOCKED then wait for lock
top open by going to step 1. If
LockStatus=MUTEX_OPEN then goto step 3.

3. Access the URL Frontier to pick next URL which is to
be fetched and crawled to extract metadata.

nextURL=getNextURL()

4. Release the mutex lock so that it can be accessed by
other threads

ReleaseMutexLock(mutex)

5. Fetch the raw web page and populate in appropriate
data structure:

rawData=fetchRawPage(nextURL)

6. Repeat step 1, 2 to acquire lock. Once the lock is
acquired, push the rawData to database:

pushRawPage(rawData)

7. Release the mutex lock :

ReleaseMutexLock(mutex)

8. Repeat steps 1 to 7 until URL frontier is empty.

V. PARSER

A. Structure

Once the raw page data is pushed into the database the
next step is to parse that data and extract meaningful metadata
from it. This metadata acts fundamental information for search
engine. The kind of elements parsed from raw data to generate
metadata may vary as per the search engine requirements. In
general the elements which are parsed to extract metadata are
hyperlinks, title, Meta tag, headings, etc. For experiment a
multithreaded parser was developed that can also generate
parser threads at variable rate to extract information of raw
pages and push them into database so that it can be readily
used by the search engine.[8]

B. Pseudo Code

The pseudo code for Filter/Parser is shown below.

Description of each procedure is described as:

filter: This procedure is called as soon as filter process is
initiated. Purpose of this method is to initialize the thread with
required data structures.

extract_meta_data(new_raw): This procedure is
responsible for extracting meta data from the page and adding
it to raw fetched meta data store.

extract_links(new_raw): This procedure is responsible
for extracting all URLs from the page and add them to URL
frontier.

C. Parser Algorithm

Assuming that mutex represents the mutual exclusion lock
at database level that provide synchronized access to parser
threads.

1. Check the locked status of mutex lock.

LockStatus=CheckMutexLockStatus[mutex]

filter()

{

new_raw=pop(raw_data_store)

new_meta=extract_meta_data(new_raw)

push(meta_data_store,new_meta)

extract_links(new_raw)

}
extract_meta_data(new_raw)

{

//Extracts and returns the Metadata of the
page
}
extract_links(new_raw)

{

for each url in new_raw

{

push(url_frontier,url)

}
}

init()

{ fetch_url()

}

fetch_url()

{ while(mutex.closed())

{ }

mutex.lock()

new_url=pop(url_frontier)

mutex.release()

If new_url is Nothing then

{exit}

navigate_url(new_url)

}

navigate_url(new_url)

{send_http_request(n_url)

get_http_response(raw)

push(raw_data_store,raw)

fetch_url()

}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

174 | P a g e

www.ijacsa.thesai.org

2. If LockStatus=MUTEX_LOCKED then wait for lock
top open by going to step 1. If
LockStatus=MUTEX_OPEN then goto step 3.

3. Access the raw page data from database:

rawData=GetRawPageData()

4. Release the mutex lock so that it can be accessed by
other threads

ReleaseMutexLock(mutex)

5. Parse the page and extract metadata from it:

metaData=ExtractMeta(rawData)

6. Repeat step 1, 2 to acquire lock. Once the lock is
acquired, push the metaData to database:

pushMetadata(metaData)

7. Release the mutex lock :

ReleaseMutexLock(mutex)

8. Repeat steps 1 to 7 until URL frontier is empty

VI. OBSERVATIONS

A. Time factor

Consider let T be the combined time to fetch a page from
the web, extract metadata and links from it. Now this T is
composed of two components: time to fetch the page from
web and time to parse the web page to extract links and
metadata. Let tf be the time to fetch the page and tp is the time
to parse the page to extract data from it. Then we can write T
as:

T = tf + tp

A set of 2000 URLs is serving as the URL frontier at the

beginning of the experiment. We performed our experiment
for both crawling using mutex lock and crawling without
mutex lock. Crawler threads are only responsible for fetching
the web pages not parsing the pages. A ‘Filter’ program is
used to parse the fetched web pages, extract links and
metadata from them. Since we are using same URL frontier
set for both mutex based and non-mutex based crawling, the
‘Filter’ program takes same constant amount of time to parse
pages for both the cases. tf includes the time to fetch the URL
from frontier, time to send HTTP request and time to obtain
the HTTP response. tf can be written as:

tf = trequest + tresponse

Where trequest is the time taken by request to reach the
server and tresponse is the time taken for response to reach the
crawler. Above equation holds good for models where the
parser can directly get the raw data from the crawler thread for
parsing. For models where the parser threads write the raw
page data fetched from a URL to the centralized database, the
equation can be written as:

tf = trequest + tresponse +tpushToStore

tpushToStore is the time to acquire the mutex lock, write the
raw data and to release the lock. trequest can be further broken

down into tpickurl and thttprequest. tpickurl is time spent waiting for
mutex lock, acquire mutex lock for database, access next URL
and release the mutex lock. thttprequest is the time taken to create
HTTP request and send it to respective endpoint. tresponse
depends on several factors like speed of the internet
connection, load on the web server serving that page and many
other factors. The only parameter we can control is trequest. This
is the only factor that can be controlled to minimize the tf.

B. Time Minimization

The minimization of trequest was performed in this
experiment within the variable rate crawler thread generator.
Generator provides provision to set rate at which the crawler
thread will be generated. Once the page is crawled, its raw
source is pushed into database with other relevant information
specific to URL resource. The parser threads are responsible
for parsing the raw page and extract useful metadata from it
that can be fed to the search engine. These threads too are
executed in multithreaded manner where synchronization
between thread is done through mutex lock at database level.
Based on observations recorded by generating crawler threads
at variable rates, a graph is plotted for tpickurl against threading
rate and is shown below:

C. Utilizing mutex lock waiting time in crawler thread

Consider the case when a crawler thread holds the mutex
lock and other threads are waiting for the lock to read the next
URL from the frontier. Here we are considering the mutex
model where mutex lock is used for synchronization. Under
normal operation conditions the probability of majority of
threads waiting for mutex lock is high. This totally depends on
the tf, the time to fetch the raw page. It was observed that
majority of threads have similar tf. Thus they end up fetching
the page in same time and spend most of time waiting for
mutex lock to fetch next URL. The waiting time for crawler
thread can be utilized by employing that time for fetching raw
data for subsequent URLs. We name this approach as
extended crawling. The change required in crawler thread is
that rather than picking a single URL from the frontier it picks
collection of URLs whose raw data is to be fetched. This
collection of URLs is pushed onto a stack STK[URL]. Once
raw page data for a URL is fetched crawler checks for
availability of mutex lock. If lock is held by any other thread

Figure 3. Graph for tpickurl vs. thread generation rate

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

175 | P a g e

www.ijacsa.thesai.org

then current thread pushes the raw fetched data onto a stack
STK[RAW] and pops the next URL from the STK[URL].
Then crawler fetches the raw page data for this next URL
popped. So this way the waiting time is utilized for fetching
raw data for collection of URLs. In this model each thread will
push the raw data to database in short bursts whenever the
mutex lock is acquired by the thread.

The proposed algorithm for utilizing the waiting time for
extended crawling can be written as:

1. Check the locked status of mutex lock

 LockStatus=CheckMutexLockStatus[mutex]

2. If LockStatus=MUTEX_LOCKED then goto step3. If

 LockStatus=MUTEX_OPEN then goto step 7

3. Pop the URL from STK[URL] to fetch the page while

 the mutex lock is held by other threads:

nextURL=STL[URL].Pop()

 4. Fetch the raw page data using the URL popped in

 previous step:

 rawData=HTTPFetch(nextURL)

 5. Push the fetched raw data onto STK[RAW]:

 STK[RAW].Push(rawData)

 6. Repeat Step 1 to acquire the lock.

 7. Pop the fetched raw page data form top of stack

 STK[RAW] and write it to database:

 rawData==STK[RAW].Pop()

 CommitToDatabase(rawData)

 8. Repeat step 7 until stack is empty. Once stack is empty

 repeat steps 1 to 6.

Consider the variation of tf, trequest + tresponse and tpushToStore

with thread generation rate for a single thread. The dark
shaded region shows the time spent in sending the request and
fetching the page in the waiting time for the mutex lock by
crawler thread. The dark black line shows the variation of total
time to fetch the page (tf). The light shaded region shows the
variation of tpushToStore with thread generation rate. In case the
mutex waiting time would not have utilized, the region under
dark line (tf) will be light shaded which mainly consists of
time spent waiting on lock after the page is fetched. The
following graph shows that large portion of tf, i.e. waiting time
on mutex lock is utilized for fetching raw pages for subsequent
URLs.

D. Utilizing mutex lock waiting time in parser thread

Consider tp, this factor is highly variable based on the amount

of elements on crawled page. Higher the number of elements

on the crawled page, higher the parsing time. tp can be broken

down into tparse and tpushMetadata. tparse is the time taken to parse

the raw page and fill the appropriate data structures.

The table shows the observations for trequest + tresponse and
tpushToStore at different number of crawler threads:

TABLE I. Variation of trequest + tresponse and tpushToStore with thread

generation rate

Parser

Threads

trequest +

tresponse (sec)
tpushToStore (sec)

10 1 0.5

40 2 0.75

70 3 1

100 4 1.25

130 5.1 1.5

160 6 1.75

tpushMetadata is the time spent waiting for mutex lock, acquire
mutex lock, save changes in database, commit the changes and
release the mutex lock. Under normal operation conditions the
probability of majority of threads waiting for mutex lock is
high. The reason is that most of threads might finish parsing
operation at same time and they wait for lock if it is acquired
by other thread. The waiting time for a parser thread can be
utilized by employing that time for parsing subsequent raw
pages by picking up another raw page data and parsing it. We
name this approach as extended parsing.

The change required in parser thread will be that rather
than fetching raw page data for single page the parser will
fetch collection of raw page data from the database and push
collection onto a stack STK[RAW]. Once the parser finishes
parsing raw page and if the mutex is locked then parser can
pop raw page data for other pages held in stack and start
parsing them. The parsed metadata set can be pushed on the
stack STK[META] for pages parsed while waiting for mutex
lock. Once the lock is acquired by the thread, it can write all
parsed metadata which is held on stack to the database and
release the lock. In this model each thread will push parsed
metadata to database in short bursts whnever the mutex lock is
acquired. This way the waiting time for mutex lock can be
utilized for parsing the raw page.

The proposed algorithm for utilizing the waiting time for
extended parsing can be written as:

Figure 4. Graph for tp vs. thread generation rate

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

176 | P a g e

www.ijacsa.thesai.org

1) Check the locked status of mutex lock

2) LockStatus=CheckMutexLockStatus[mutex]

3) If LockStatus=MUTEX_LOCKED then goto step3. If

LockStatus=MUTEX_OPEN then goto step 7.

4) Pop the raw page data from STK[RAW] to extract

metadata from the page while the mutex lock is held by other

threads:

5) rawData=STL[RAW].Pop()

6) Parse the page and extract metadata from it:

7) metaData=ExtractMeta(rawData)

8) Push the extracted metaData onto STK[META]:

9) STK[META].Push(metadata)

10) Repeat step 1 to acquire the lock.

11) Pop the metadata from top of stack STK[META] and

write the metadata to database:

12) metadata= STK[META].Pop()

13) CommitToDatabase(metadata)

14) Repeat step 7 until stack is empty. Once stack is empty

repeat steps 1 to 6.
Consider the variation of tparse, tpushMetadata and tp with thread

generation rate for a single thread. The dark shaded region
shows the time spent in parsing the raw pages in the waiting
time for the mutex lock by filter thread. The dark black line
shows the variation of total time for parsing (tp). The light
shaded region shows the variation of tpushMetadata with thread
generation rate. In case the mutex waiting time would not have
utilized, the region under dark line (tp) will be light shaded
which mainly consists of time spent waiting on lock after
parsing is complete. The following graph shows that large
portion of tp, i.e. waiting time on mutex lock is utilized under
the parsing for subsequent set of raw pages.

Figure 5. Graph for tp vs. thread generation rate

The table shows the observations for tparse and tpushMetadata at
different number of parser threads:

TABLE II. Variation of tparse and tpushMetadata with thread generation rate

Parser

Threads
tparse (sec) tpushMetadata (sec)

10 2.2 1

40 3.7 2.2

70 6.2 4

100 10.2 7

Parser

Threads
tparse (sec) tpushMetadata (sec)

130 15 11

160 18 14

VII. RESULTS

The experiment was conducted on Windows XP sp-2
operating system equipped with 512MB RAM, 512 kbps
ADSL broadband connection. We are calculating time tf, the
time to fetch the fetch the page. The variation of tpickurl with
thread generation rate has been discussed. Also, the
experiment results involving utilization of mutex waiting time
for parsing raw pages indicates the gravity of the approach. It
can be deduced from the graph that multithreaded crawlers
works efficiently only with the usage of mutual exclusion
lock.

We can observe that for lower rate values, small increase
in rate brings down tpickurl by large amounts. For larger rate
values, large increase in rate brings small change in tpickurl.

Also, it presents new approach to utilize mutex waiting
time for parsing operation. This leads to increased
performance of the crawler, parser and efficient utilization of
resources.

VIII. FUTURE SCOPE

The future work will focus on minimizing the time
incurred in acquiring the lock, writing data to database and
releasing the lock. This time is represented as grey section in
graphs shown in this document.

This may be accomplished by interacting with operating
systems at a lower level to speed up the locking and releasing
the mutex lock. Also, we will cover the aspects that will
enhance the performance by providing an efficient
synchronization model across crawler and parser threads.

IX. CONCLUSION

This paper presented a new approach for implementing
multithreaded crawlers using mutual exclusion locks, which
results in performance improvement as compared to traditional
crawlers.

The approach of utilizing mutex waiting time proves
efficient if employed for parsing or other useful operations
within crawler threads.

REFERENCES

[1] Lawrence Page, Sergey Brin. The Anatomy of a search Engine.
Submitted to the Seventh International World Wide Web Conference
(WWW98). Brisbane, Australia

[2] Budi Yuwono, Savio L.Lam, Jerry H. Ying, Dik L. Lee. A World Wide
Web Resource Discovery System. The Fourth International WWW
Conference Boston, USA, December 11-14, 1995.

[3] Gautam Pant, Padmini Srinivasan, Filippo Menczer. Crawling the Web.

[4] Allan Heydon, Marc Najork. Mercator: A Scalable, Extensible Web
Crawler

[5] Muhammad Shoaib, Shazia Arshad. Design and Implementation of web
information gathering system

[6] Joo Yong Lee, Sang Ho Lee. Scrawler: A Seed by Seed Parallel Web
Crawler.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 3, No. 9, 2012

177 | P a g e

www.ijacsa.thesai.org

[7] Boldi P., Codenotti B., Santini M., and Vigna S. UbiCrawler: a scalable
fully distributed web crawler. Software Pract. Exper., 34(8):711–726,
2004

[8] S.chakraborti, M.van den Crawling: A new approach to topic-specific
web resource discovery”. In the 8th International World Wide Web
Conference, 1999

AUTHORS PROFILE

Kartik Kumar Perisetla received his Bachelors
degree in Computer Science from Lingaya’s Institute of
Management and Technology. He is currently working as
Software Engineer. His research interest include Grid
Computing, Machine Learning and Web Crawling

