
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

89 | P a g e
www.ijacsa.thesai.org

Developing Parallel Application on Multi-core

Mobile Phone

DhuhaBasheer Abdullah

Computer Science Dept.

Computer Sciences and Mathematics College

Mosul University

Mosul, Iraq

Mohammed M. Al-Hafidh

Computer Science Dept.

Computer Sciences and Mathematics College

Mosul University

Mosul, Iraq

Abstract—One cannot imagine daily life today without mobile

devices such as mobile phones or PDAs. They tend to become

your mobile computer offering all features one might need on the

way. As a result devices are less expensive and include a huge

amount of high end technological components. Thus they also

become attractive for scientific research. Today multi-core

mobile phones are taking all the attention. Relying on the

principles of tasks and data parallelism, we propose in this paper

a real-time mobile lane departure warning system (M-LDWS)

based on a carefully designed parallel programming framework

on a quad-core mobile phone, and show how to increase the

utilization of processors to achieve improvement on the system’s
runtime.

Keywords—Mobile phone; Parallel programming; Multi-core

processor; Lane detection

I. INTRODUCTION

Mobility is a key term in the world of today. No matter
where you are or what you are doing you are surrounded by a
world of mobile devices. No longer are we confined to work at
a desktop terminal, we can now work and communicate from
virtually any location. This new mode of interaction has been
made possible by the advances in the world of
miniaturization[1]. We can now work and communicate by
using a myriad of devices such as: Laptops, Ultra Mobile
PC’s, PDA’s and mobile phones. Even though we may be
surrounded by these devices, the question must be raised: are
we using them to their fullest potential? One possible solution
to this lies within the area of parallel processing, without
realizing the true potential of embedded multi-core
architecture, we are not making full use of this now
technology[2].

Multi-core architectures for personal computers is an
important field in our everyday computing , many frameworks
and APIs focusing on parallel programming have been
proposed for multi-core processors,that achieve speedup and
maximum processor utilization.

However, very little researches have been proposed in the
area of multi-core architecture for mobile phones
primarilybecause this is a relatively new concept and not many
end-products have embraced such architecture. The recent
release of multi-core mobile phones optimized for both
performance and power consumption, such as Samsung
Galaxy SII and SIII[3], has revolutionized mobile computing

and opened up the door to new research paradigms, especially
for real-time processing.

Now we can consider complex algorithms for potential
implementation that previously regarded as impractical for
deployment on mobile phones platforms. For instance,
performing certain computation on big data matrices on
mobile phone was very difficult in the past, due in part to its
memory constraints but primarily to the processing power of
the mobile phone. It is desirable to be able to use complex
algorithms whenever possible because they generally yield
more accurate results. Fortunately, the recent release of multi-
core mobile phones has empowered us to do exactly that, as
true parallelism can now be achieved [4].

II. CONTRIBUTION

In this paper, we consider animplementation oflane
departure warning systems, relying on the principles of task
and data parallelism, we propose in this paper a parallel
programming approach on quad-core mobile devices to detect
road lanes and warn the driver if the car is departing the lane,
that has the following properities:

1) Implementing parallel algorithm on multi-core

mobile phone.

2) Show how to increase the utilization of processors to

achieve improvement on the system’s runtime.

III. RELATED WORK

On the parallel programming front, making a task
parallelizable and run on multiple cores can be a grueling
process. Challenging issues include thread synchronization,
data race, and starvation.

Many attempts have been made by researchers and
programmers alike to design a high-level framework that
provides an abstraction layer for programmers to use. Such
framework allows the programmers to fully focus on
application development without unnecessary worry about
parallel programming. The ParLab at Berkeley, UPCRC at
Illinois, and the Pervasive Parallel Laboratory at Stanford
propose a two-layer framework, consisting of the productivity
layer where domain experts, assumed to have limited
experience with parallel programming, can focus on
application development, and the efficiency layer where
computer scientists with strong background in parallel

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

90 | P a g e
www.ijacsa.thesai.org

programming can focus on improving the efficiency of the
application [5].

Similar to the aforementioned framework, programming
models such as algorithmic skeletons have also been proposed,
aiming to benefit from multi-core architectures while
decoupling the hassle of thread management from common
programming. Skandium and Calcium [6] provide high-level
parallel programming libraries based on the thread pool and
ExecutorService frameworks in JAVA. Users only need to
provide a threshold for threads and a set of initial parameters.

Daniel C. Doolan, and Laurence T. Yang in year 2006.
They considered the problem of matrix multiplication to show
and demonstrates that mobile devices are capable of parallel
computation using Mobile Message Passing Interface
(MMPI). MMPI allows parallel programming of mobile
devices over a Bluetooth network [7].

PanyaChanawangsa, and Chang Wen Chen in year 2012.
They demonstrate how proper utilization of a dual-core mobile
processer can achieve tremendous speedup in mobile
application [4].

Massimo Bertozzi, and Alberto Broggi in year 1998.They
describes the Generic Obstacle and Lane Detection system
(GOLD), a stereo vision-based hardware and software
architecture to be used on moving vehicles to increment road
safety [8].

Mars Lan, MahsanRofouei, Stefano Soatto and Majid
Sarrafzadeh in year 2009. They built a SmartLDWS, that
employs a novel lane detection algorithm that is both robust
and scalable to overcome poor camera quality and limited
processing power faced by most smartphones [1].

IV. PARALLEL PROCESSING

Parallel Processing refers to the concept of speeding-up the
execution of a program by dividing it into multiple fragments
that can execute simultaneously, each on its own processor. A
program being executed across N processors might execute n
times faster than it would using a single processor [9].

A. The benefit of using Parallel Processing

In the earliest computers, only one program ran at a time.
A computation-intensive program that took one hour to run
and a tape-copying program that took one hour to run would
take a total of two hours to complete their task. An early form
of parallel processing allowed the execution of both programs
simultaneously. The computer would start an input/output
operation, and while it was waiting for the operation to
complete, it would execute the processor-intensive program.
The total execution time for the two jobs would be a little over
an hour [10][11].

V. DEPENDENCIES

Understanding data dependencies is fundamental in
implementing parallel algorithms. No program can run more
quickly than the longest chain of dependent calculations
(known as the critical path), since calculations that depend
upon prior calculations in the chain must be executed in order.
However, most algorithms do not consist of just a long chain

of dependent calculations. There are usually opportunities to
execute independent calculations in parallel.

Let Pi and Pj be two program fragments. Bernstein's
conditions describe when the two are independent and can be
executed in parallel. For Pi, let Ii be all of the input variables
and Oi the output variables, and likewise for Pj. P i and Pj are
independent if they satisfy:

 Ij ∩ Oi = Φ

 Ii ∩ Oj = Φ

 Oi ∩ Oj = Φ

Violation of the first condition introduces a flow
dependency, corresponding to the first statement producing a
result used by the second statement. The second condition
represents an anti-dependency, when the second statement (Pj)
would overwrite a variable needed by the first expression (Pi).
The third and final condition represents an output dependency:
When two statements write to the same location, the final
result must come from the logically last executed
statement[12][13].

VI. SPEEDUP

The speedup of code explains how much performance gain
is achieved by running our program in parallel on multiple
processors.A simple definition is that it is the length of time it
takes a program to run on a single processor, divided by the
time it takes to run on a multiple processors.Speedup generally
ranges between 0 and p, where p is the number of processors
[14]. Speedup is defined by the following formula:

Total Speedup = Ts/ Tp (1)

Ts : is the runtime without parallelism.

Tp : is the runtime with parallelism.

VII. MULTITHREADING AND PROCESSOR UTILIZATION

Since a mobile phone is considered a general-purpose
device, application-level parallelism is the best we can
achieve. Without explicitly using multiple threads, speedup
from a multi-core architecture will not be obvious. In this
paper, we propose a general guideline for breaking down a
global task into multiple subtasks and later demonstrate how
to apply this idea on a mobile lane detection system.

The first step towards parallelizing a task is to determine
the optimal number of threads to use. Limiting thread
contention is crucial for application speedup. Spawning too
many threads than necessary not only disrupts other
applications, but may also result in a longer execution time of
the application due to the overhead associated with context-
switching. A processor core can handle only one thread at a
time. For efficiency purposes, a simple rule is to spawn as
many threads as the number of cores available, thereby
delegating one thread to each core and eliminating the need for
time-slicing. A simulation was conducted by spawning
different numbers of threads to execute certain tasks. A

http://en.wikipedia.org/wiki/Data_dependency
http://en.wikipedia.org/wiki/Parallel_algorithm
http://en.wikipedia.org/wiki/Critical_path_method
http://en.wikipedia.org/w/index.php?title=Anti-dependency&action=edit&redlink=1

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

91 | P a g e
www.ijacsa.thesai.org

dramatic improvement in execution time can be seen when we
increase the number of worker threads from 1 to4. However,
since there are only four available cores, increasing the
number of threads do not enhance but aggravates the
performance, resulting in a slightly longer execution
time[15][16].

VIII. PROPOSED MOBILE LANE DETECTION SYSTEM

Transportation safety is an issue of ever increasing
concern. In the U.S. alone, more than 30,000 casualties
suffered from traffic crashes in 2009, according to the
National Highway Traffic Safety Administration. A
considerable number of car accidents occurred as a
consequence of the drivers failing to keep the vehicles within
the designated lane. In the wake of such tragedies, attempts to
incorporate an Intelligent Vehicle Assistant System into
automobiles have been made by adopting various computer
vision approaches.

While LDWS has been installed on many trucks and
othercommercial vehicles in both Europe and North America
and has shown to significantly reduce preventable accidents, it
still often remains as an option even for the luxury passenger
vehicles. Cost is often cited as one of the main reasons
impeding a wide-spread adoption of LDWS. On the other
hand, the professional skill required to install such a system, to
calibrate the camera, and to integrate it into vehicle’s
electronics should not be overlooked, either[1].

In order to bring LDWS to the mainstream market, we
propose Mobile-LDWS,to make the system available for
everyone. The system acquires images of the road and
intelligentlylabels the lane marks. The heading of the vehicle
as well as its position with respect to the road boundaries can
thus be determined.If the system believes the vehicle is about
to depart from the current lane, it triggers an alarm to alert the
driver.Other applications of lane detection include
autonomous driving for cruise control as well as robot
navigation.

A. Development Platform

The system was developed on Android 4.1.2 (Jelly Bean).
Released in September 2012. The phone’s most outstanding
feature is its processor – a superscalar quad-core 1.4 GHz Arm
Cortex-A9 with 2 GB RAM [3]. Optimized for high
performance and low power consumption, the Galaxy SIII is
indeed an ideal platform for this system.

B. Data Acquisition

The proposed lane detection system uses the phone camera
as the means of sensing. It captures raw image frames at the
rate of 30 frames per second (fps) and feeds them to the
preprocessing module. The phone is attached onto the car
windshield by an off-the shelf GPS mount. It should be placed
in such a way that the camera is able to see the road clearly
while precaution should be taken during this step so that the
device does not obstruct the driver’s view (Figure 1).

Fig. 1. The M-LDWS on a Samsung GalaxySIII in action on an off-the-shelf

GPS mount.

Android’s camera API allows programmers to process the
preview frames directly. This feature enables us to overcome
the storage constraint, as we can process those frames and
display the detected lane boundaries on the phone screen
without having to record any of them. The frame data come in
the form of byte arrays whose default format is YCbCr, to get
the three base colors (read , green , blue), we convert the
frame format from YCbCr to ARGB8888. Finally, each pixel
values are stored in an image matrix. Now we can implement
the basic matrix and linear algebra operations.

C. Lane Detection

The lane detection algorithm is based on the assumptions

that the lanes are defined by a clearly painted white line.
To detect a line we first must find out the most important

features of it, which are color and shape. We first used the
color feature to detect a line. Since the color of the road lane is
white, we perform an operation to extract white color and
change it to green, based on the following:

 255, if r(x,y) >val, g(x,y) >val, b(x,y) >val

g(x,y) =

 0 , otherwise

Where :

r(x,y) is the red value of the pixel in the position (x,y).

g(x,y) is the green value of the pixel in the position (x,y).

b(x,y) is the blue value of the pixel in the position (x,y).

val is a predefined value.
In the next step, the shape feature will be used to detect the

lines, and perform a vertical edge detection filter to extract the
lines (Figure 2).

D. Lane Departure Warning

The next step is to find out if the vehicle is in the lane or it
is about to depart it. If the system believes the vehicle is about
to depart from the current lane, it triggers an alarm to alert the
driver. This can be done by scanning a specific region in the
image for any lines that have been detected.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

92 | P a g e
www.ijacsa.thesai.org

Read the image

YCbCr to ARGB

Color filtering

Vertical edge

detection filter

Area of interest

Line

Detected

Make alert

View image

If the result of the detection process is true, that means that
the vehicle is departing the current lane so the system alert the
driver.

E. Proposed Parallel Framework

The next step is to determine if data parallelism is possible
and appropriate. For many image processing tasks, data comes
in the form of image matrices, or on the lower level 2-
dimensional arrays. In many cases, they can be split up into
smaller independent chunks and processed concurrently,
reducing the execution time while producing the same output
as when processed sequentially. For the image edge detection,
we can split up the image matrix into smaller sub-matrices
(matrix slicing) and slide an edge detection convolution mask
over each sub-matrix concurrently. However, if the size of
data to be processed is not significantly large, employing data
parallelism will not yield much speedup as a result of thread
overhead. In the case of this application, since the image are
large, data parallelism is well worth a try. Generally speaking,
given k processor cores, we should divide the input data of
size n into n/k smaller chunks anddistribute them across k
cores with each core running a single thread. Figure (3).

 Yes No

Fig. 2. The proposed serial lane detection system

Fig. 3. Matrix slicing

The parallel computation requires several steps that are not
required in the sequential version of the application (Figure4).
One of the first main differences is that we need to determine
the number of threads suitable for the phone hardware. Since
Samsung Galaxy SIII has four cores, four threads are ideal for
execution the task in hand. So that the image must be split in
to four same size blocks called sub-image, then send each sub-
image to one of the four cores we have. Once this operation
has been completed each core can compute its own section of
the image. The final stage is to gather all the results back in to
one image. The result of the computation can then be available
for the next steps.

To gain full control of task management, we also make use
of theFutureTask class , allowing to track the progress of the
submitted tasks and block until all of them have been
completed. The four tasks are eventually submitted to an
ExecutorService, which takes care of thread pool creation and
assigns a submitted task to an available thread. More
importantly, by using the ExecutorService, memory
consistency is guaranteed, thus eliminating the trouble of
thread synchronization.

IX. EXPERIMENTAL RESULTS

The system tested on image size (320×240), The results are
shown in (Table (1)). Time results represents the average
runtime of hundred frames.

TABLE I. EXPERIMENTAL RESULTS

Method Run time

Serial 11043ms

Parallel 6506ms

From the time results in (Table (I)), we can calculate the

speedup as below:

Total speedup = 11043/6506=1.69

This means that the reduction in the overall processing
time is 41.08%.Figure (5) shows lane detection results.

CORE

CORE

CORE

CORE

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

93 | P a g e
www.ijacsa.thesai.org

Fig. 5 Lane detection results

Yes No

Fig. 4 Modified lane detection system with the proposed parallel framework

X. CONCLUSIONS

In this paper, we have demonstrated how to achieve
speedup in a mobile lane detection system written entirely in
JAVA by using the proposed parallel programming approach,
based on the idea of task and data parallelism. Running on a
quad-core Samsung Galaxy SIII. The proposed system shows
significant reduction in the overall processing time and good
speedup.

REFERENCES

[1] M. Lan, M. Rofouei, S. Soatto, M. Sarrafzadeh,” SmartLDWS: A

Robust and Scalable Lane Departure Warning System for the
Smartphones”, Proceedings of the 12th International IEEE Conference

on Intelligent Transportation Systems, St. Louis, MO, USA, October 3-
7, 2009.

[2] D. Doolan, S. Tabirca, L. Yang,” MMPI a Message Passing Interface for

the Mobile Environment”, Proceedings of MoMM2008, Linz, Austria,
2008.

[3] Samsung I9305 Galaxy S III Full Specifications,
http://www.gsmarena.com/samsung_i9305_galaxy_s_iii-5001.php

[4] P. Chanawangsa, C. Chen, “A New Smartphone Lane Detection System:

Realizing TruePotential of Multi-core Mobile Devices”, MoVid’12,
2012, pp.19-24.

[5] B. Catanzaro, et al., “Ubiquitous Parallel Computing form Berkeley,

Illinois, and Stanford”, IEEE Computer Society, 2010, pp. 41-55.

[6] T. Panagiotis, “Evaluating Skandium’s Divide-and-Conquer Skeleton”,
Master Thesis, School of Information, University of Edinburgh, 2010.

[7] T. Yang, D. Doolan, “Mobile Parallel computing”, Proceedings of The

Fifth International Symposium on Parallel and Distributed Computing,
IEEE International,2006.

[8] M. Bertozzi, A. Broggi, “GOLD: A Parallel Real-Time Stereo Vision

System for Generic Obstacle and Lane Detection”, IEEE Transaction on
image processing, VOL.7,NO. 1, JANUARY 1998.

[9] J. Nancy, J. Richard, A. James, “PARALLEL PROCESSING: THE
NEXT GENERATION OF COMPUTERS”, National Energy

Technology Laboratory,2011.

[10] M. Sasikumar, D. Shikhare, P. Prakash, Introduction To Parallel
Processing, Prentice-Hall of India Private Limited, 2006.

[11] C. Evangelinos, C. Hill,” Cloud Computing for parallel Scientific HPC

Applications: Feasibility of running Coupled Atmosphere-Ocean
Climate Models on Amazons EC2.”, ratio, vol. 2, no. 2.40, pp. 2–34,

2008.

[12] J. Hennessy, D. Patterson,”Computer Architecture: A Quantitative
Approach”, Morgan Kaufmann Publishers, SF, CA, 1996.

[13] H. Dietz, “Linux Parallel Processing HOWTO”, v980105, 5 January

1998.

[14] D. Marshall, Parallel Programming with Microsoft Visual Studio,
Microsoft Corporation by: O’Reilly Media, 2011.

[15] D. Abdullah and M. Al-Hafidh, “ The True Powers of Multi-core
Smartphone”, IJCSI, , Vol. 10, Issue 4, No 2, July 2013.

[16] H. Guihot, Pro Android Apps Performance Optimization, Apress, 2012.

Read the image

YCbCr to ARG

B
Image slicing

Submit threads

Edge

detection

Color

filtering

Color

filtering

Color

filtering

Color

filtering

Edge

detection

Edge

detection

Edge

detection

Form the result

image

 Area of interest

 Wait for results

Getting results

Line

Detected

Make alert

View image

http://www.gsmarena.com/samsung_i9305_galaxy_s_iii-5001.php
http://www.google.iq/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22M.+Sasikumar%22
http://www.google.iq/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22Dinesh+Shikhare%22
http://www.google.iq/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22P.+Ravi+Prakash%22

