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Abstract—This paper reviews the concept of image 

mosaicking and presents a comparison between two of the most 

common image mosaicing techniques. The first technique is based 

on normalized cross correlation (NCC) for registering 

overlapping 2D images of a 3D scene. The second is based on 

mutual information (MI). The experimental results demonstrate 

that the two techniques have a similar performance in most cases 

but there are some interesting differences. The choice of a 

distinctive template is critical when working with NCC. On the 

other hand, when using MI, the registration procedure was able 

to provide acceptable performance even without distinctive 

templates. But generally the performance when using MI with 

large rotation angles was not accurate as with NCC. 

Keywords—mosaicing; normalized cross correlation; mutual 
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I. INTRODUCTION  

Mosaicing refers to the process of combining multiple 
photographic images with overlapping fields to produce a 
single image of the whole scene. Mosaicing, also known as 
panographic photography or image stitching, has an extensive 
research literature [1-3] and several commercial applications 
[4-6].The automatic construction of large and high-resolution 
image mosaics is an active area of research in the fields of 
photogrammetry, computer vision, image processing, medical 
image, robot vision and computer graphics [7,8]. The most 
traditional application is the construction of large aerial and 
satellite photographs from collections of images. 

The report is organized as follows. An overview of image 
mosaicing is provided in section II. Details about image 
registration are presented in section III. Section IV 
demonstrates the matching process. The methodology is 
presented in section V. A brief discussion about optimization 
is presented in section VI. Quality assessment is illustrated in 
section VII. Section VIII introduces the experimental results. 
Finally, section IX concludes the work. 

II. IMAGEMOSAICING 

Mosaicing, combines overlapping images to produce one 
composite image for a scene [1], as shown in Fig.1. The first 
part of an image mosaicing operation consists of identifying 
correspondences between some features present in both 
images, in order to determine the geometric transformation 
necessary to align the two images. This alignment operation is 
called image registration. After alignment, a composite image 
is created by merging or averaging pixel values of the 

overlapping portions and retaining pixels where no overlap 
occurs. 

 

III. IMAGE REGISTRATION 

Image registration is the process of overlaying two or more 
images of the same scene taken at different times, from 
different viewpoints, and/or by different sensors. The 
registration process requires computational methods for 
determining point-by-point correspondences between two 
images of a scene. Registration may be used to fuse 
complementary information in the images or to estimate the 
geometric and/or intensity difference between the images [10]. 

From corresponding positions in two images, a 
transformation function can be determined to get 
correspondences between the remaining points in the images. 
The aim of registration is find the transformation parameters 
that maximize a similarity metric or minimize dissimilarity 
metric between the images to be registered. The optimization 
problem can be formulated as follows: 

  ̂                       (1) 

whereU and V are the first and second images to be 
registered, T is the transformation,   is the search space, S is 
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Fig. 1. Illustration of mosaicing (from [9]). (a-c) Input images. 

(d) Resulting mosaic. 

(d) 
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the similarity measure and  ̂  is the optimal solution. These 
concepts are illustrated in Fig. 2. 

 

 

 

 

 

 

 

 

 

The success of the registration often requires that the 
search space is relatively small with respect to the input data. 
Large   increases the probability of getting trapped in a local 
minimum. 

Transformations can be rigid, depending only on 
translation and rotation. In that case a transformation can be 
represented as 

                        (2) 

whereR is a 2×2 rotation matrix with one degree of 
freedom, and t is a2×1 translation vector. More generally, 
Rcan incorporate additional degrees of freedom, and the 
resulting affine transformation represents a composition of 
rotation, dilation, and shear. For either case, the transformation 
can be represented in homogeneous form using a single matrix 
M as 

          
 

    

where the single matrix Mis 3×3 and X is 3×1. 

The majority of registration methods consist of the 
following four steps: feature detection, feature matching, 
transform model estimation, and image resampling and 
transformation [3]. 

Feature detection refers to the detection of salient and 
distinctive locations in the images, such as intensity edges, 
corners, line intersections, etc. These features are called 
control points (CPs) in the literature. In the matching step, the 
correspondences between the features detected in the input 
image and those detected in the reference image are 
established. A detailed discussion for this crucial stage is 
presented in the next section. 

The next step is to estimate transform model parameters, as 
needed in (3), using the detected correspondences. The final 
step is to perform that transformation, using an appropriate 
resampling technique (such as nearest neighbor, linear or 
cubic interpolation) to represent the transformed image. 

IV.  (DIS)SIMILARITY METRICS FOR MATCHING 

Physically corresponding features can be quite dissimilar in 

appearance due to imaging conditions.  

To identify correspondences, two major categories of 

matching methods are often used: area based methods and 

feature based methods. 

A. Area (Intensity) Based Methods 

Area based measures rely on computations between 
“windows” of pixel values in the two images. Two such 
methods are normalized cross correlation and mutual 
information. As described here, these methods provide 
measures of image similarity, because larger values result for 
corresponding points. Area based examples of dissimilarity 
include sum of squared difference, and sum of absolute 
difference [12]. 

An advantage of these techniques is that they can be 
applied to image data directly, and do not require higher-level 
structural analysis. But they have the disadvantage of 
sensitivity to intensity changes, introduced for instance by 
noise, varying illumination, and/or by using different sensor 
types. 

An approach to enhance dealing with intensity changes is 
to use the zero-mean normalized cross correlation (NCC); also 
called cross covariance. It is defined as 

         
∑          ̅              ̅    

√∑          ̅     √∑              ̅     

           

 

Where x and y are the pixel coordinates while i and j refer 
to the shift at which the NCC coefficient is calculated. The 
resulting matrix NCC contains correlation coefficients with 
values between -1.0 and 1.0.Note that  refers to the input 
image after being transformed by (3). 

Mutual information (MI) is another popular matching 
metric used for image registration [13,14]. It is based on 
information-theoretic concepts, andcan be considered a 
measure of the statistical dependency between the data sets. 
This metric requires the computation of joint histograms as 
shown in Fig.3. In the figure,      is the number of pixels with 

color iin I and with color j in J. The values   and    are the 

marginal values, i.e., histograms of I andJ. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Registration process (from [11]). 

Fig. 3. Joint histogramfor images I and J. 
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To define the MI between two images, we regard them as 
random variables X and Y and their intensity values at certain 
coordinates in the images as the joint outcome of a random 
experiment. MI is defined in terms of entropy as follows: 

                  |  
                     

 

    

where        ∑                   represents the 
entropy of random variable X and       is the probability 
density, as estimated by a histogram. Then  
          ∑ ∑                         represents the 
joint entropy between the two random variables X and Y. 

In information theory, entropy is considered to be a 
measure of the uncertainty in a variable. For illustration, 
example probability distributions and their associated entropy 
values are shown in Fig. 4. Flatter distributions represent 
higher levels of uncertainty in the output of an experiment. 

Typically, the joint probability distribution of two images 
is estimated as a normalized joint histogram of the intensity 
values. The marginal distributions are obtained by summing 
over the rows or over the columns of the joint histogram. The 
normalized joint histogram is calculated by counting the 
number of pixels having an intensity value i in the first image 
and an intensity value j in the second image at the same 
location and denoting it by nij. At each location in the first 
image, the pixel intensity value i will be examined and its 
corresponding value j in the same position in the second image. 
This will increase the counter nijby one. This process is 
repeated for each pixel. To obtain the normalized joint 
histogram, all values of nijshould by divided by the sum of 
these values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Registration is achieved by adjustment of the relative 
position and orientation until the MI between the images is 
maximized. Some studies have shown the use of MI can give 
good performance even for multimodal situations [13].In such 
cases, intensity values are not linearly related so the cross 
correlation is not likely to succeed. 

B. Feature Based Methods 

These methods are preferred when the local structural 
information is more significant than the information carried by 
the image intensitiesal one. Features should be distinctive, 
distributed well over the images, and efficiently detectable in 
both images. These features can be based on regions, lines, 
and points.  

Feature detection from regions relies on the ability to 
extract a useful subset of an image, possibly by applying a 
thresholding operation to a high-contrast image. Examples of 
region features are centroid, area, and elongation. 

Line features can result from edge detection followed by 
line fitting. Common edge detection methods, such as the 
Canny technique or the Laplacian of Gaussian, result in a set 
of points in the image. A line-fitting algorithm such as the 
Hough transform can result in a set of lines, and their 
properties can be used as features for matching.  

Point features often rely on the detection of intensity edges 
or corners in an image. Fig. 5 shows corner correspondences 
that have been detected in two images [9]. 
 

 

 

 

V. METHODOLOGY 

This section illustrates the problem of creating an image 
mosaic from two overlapping 2D images of the same 3D scene. 
The NCC and MI similarity measures are used for registration, 
and the results are compared.The steps are summarized in Fig. 
6. 

A. Image Preprocessing 

If image involves more than one color band, e.g. RGB, 
typically only one band is taken into consideration while 
performing the matching process. But after finding the optimal 
transformation parameters, all color bands will be processed 
during the transformation (alignment) stage to produce a color 
mosaic. 

B. Matching 

Given the two images, the task is to find correspondences 
between them. This is done by performing registration using 
two area-based similarity measures, NCC and MI. The 
position at which either NCC or MI is maximized will be 
stored. 

To accommodate rotation, this process will be repeated at 
several rotation angles of the original image. This search 

Fig. 4. Examples of probability distributions with 

associated entropy values. Figure 9: Types of minima 

Fig. 5. Corner correspondences between two images (from [9]). 

i 
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i 

p(i) p(i) 
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Entropy=2.11 Entropy=0 

Entropy=3 Entropy=2.99 

http://en.wikipedia.org/wiki/Information_theory
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interval can be reduced using an optimization technique which 
will be illustrated in the next section. 

Applying this matching process over the whole image 
consumes a lot of time especially for large images. This 
process can be accelerated using small template(s) taken from 
each of the images. The matching process will be carried out 
using these templates. The template-matching process that 
finds the correspondence produces more reliable matches if 
the selected templates are locally unique [15]. A template that 
is relatively homogeneous may easily lead to false matches.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
C. Transformation 

After using image templates to determine the geometric 
transformation Tthat is needed, the entire input image is 
transformed using (3).This process is sometimes called 
alignment. 

D. Interpolation 

Typically, a transformation T will require the computation 
of new pixel values using several pixels from the original 
image. This step can be performed by averaging pixel values 
locally, although other techniques such as spline-fitting have 
also been employed.  

VI. OPTIMIZATION 

Optimization techniques often rely on the maximization or 
minimization of an objective (cost) function[16].Many 
optimization techniques can suffer from finding solutions that 
correspond to a local optimum of the objective function, 
instead of the solution that is the best overall. 

For optimizating functions of n variables, many algorithms 
work by doing a sequence of 1D optimizations. For the case of 
1D minimization, as illustrated in Fig. 7, it is possible to 
subdivide a given range [a,c]iteratively in an attempt to find 
the optimum solution. 

Pseudocodefor the process is givenin Fig. 8.Line search 
techniques proposed in the literature differ in the way of 
calculating the value of the intermediate point b. For example, 

in the golden search method, b is either (
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)times the distance between aandb. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the problem of image registration, the only method that  

 

 

In the problem of image registration, the only method that 
guarantees a globally optimum solution is an exhaustive In the 

Fig. 6. Flow chart of image mosaicing system. 

Fig. 7. Subdividing process for 1D optimization. 
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% Line search algorithm stops when reaching a prespecified 
tolerance (TOL) or maximum number of iterations K 

                                  

 

       

   

 

Fig. 8. Pseudocode for basic line search. 

Input image 
Reference 

image 

Matching by maximizing 

NCC or MI 

Alignment using calculated 

transform parameters 
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problem of image registration, the only method that guarantees 
search over the entire image. Although computationally 
demanding, such a global search is often used if only 
translations are to be estimated. In case of transformations 
with more degrees of freedom or in case of more complex 
similarity measures, more sophisticated optimization 
algorithms are required [12]. 

VII. QUALITY ASSESSMENT 

Different metrics can be used to measure the quality of the 
mosaicing result [17]. Mean square error (MSE) and peak 
signal-to-noise ratio (PSNR) are commonly used. They are 
applied on the overlapping region O: 

 

     
∑ (                )
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A reconstruction error (E) measuring the mean of the 
absolute intensity differences between two successive images 
on the overlapping area (O) has also been used [18]. It is 
defined as 

  
 

| |
∑ |                |

       

 

 

    

Exposing one image to changes in luminance or noise 
greatly affects these parameters. This means that low PSNR or 
high MSE or high E does not always mean poor registration.  

CVLab [19] has suggested an evaluation methodology for 
the comparison of image mosaicing algorithms. The idea is to 
compare mosaics to their ground truth versions. This work was 
inspired by the work of in the performance evaluation of 
stereo reconstruction algorithms [20].  

VIII. EXPERIMENTAL RESULTS 

Mosaicing techniques using NCC-based and MI-based 
similarity measures were implemented using Java, and were 
applied to two different image pairs to investigate their 
strengths and shortcomings. The first image pair, shown in Fig. 
9(a-b), is from a football field. The images contain some 
obvious distinctive parts against a background that is largely 
homogenous. The second image pair is from remote sensing. 
For these experiments, only rigid transformations, translation 
and rotation, were considered. 

The first two images overlap by nearly 8%. Templates for 
matching were obtained by applying a thresholding operation, 
and they are shown in Fig. 10.  Because the two templates are 
fairly small in size, searching for the optimal translations and 
is relatively fast. But repeating this process for many possible 
rotation angles is computationally intensive, especially for the 
MI-based technique. In order to reduce the computation time, 
a line search (as described previously) was applied to the 
rotation-angle search space. 

The second image pair is shown in Fig. 11(a-b).The two 
images overlap by nearly 25%.Templates for matching were 
obtained in this case, as shown in Fig. 12, through a cross 
correlation using binary templates that were extracted from the 
two images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 9. Thresholding operation on first image pair. (a-b) First and 

second images. (c-d) Binary images. 

(c) (d) 

Fig. 10. Template selection. (a-b) Selected objects from binary images. (c-

d) Corresponding templates. 

(a) (b) 

(d) (c) 

Fig. 11. Thresholding operation on second image pair. (a-b) First and 

second images. (c-d) Binary images. 

 

(a) 

(c) d) 

Fig. 12. Template selection. (a-b) Selected objects from the two 

thresholdedimages. (c-d) Corresponding templates. 

b) 

(a) (b) 

(c) (d) 
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TABLE I.  SOME RESULTS FOR DIFFERENT ROTATION ANGLES. 

 

Mosaicing results for different rotation angles are shown in 

Table I. The two input images are displayed in the first 

column, the two chosen templates are in the second column 

and the third column contains the resulting mosaics. Values of 

NCC, MI, and PSNR for the overlapping areas are displayed 

under each result. A number of experiments were carried out 

to test the performance of the mosaicing process under non-

modeled variations such as intensity manipulation, shearing, 

and Gaussian noise addition. The resulting mosaics after 

applying these operations for zero rotation angles are shown in 

Table II. 
To clearly compare the performance of the two techniques, 

graphs showing the computed rotation angles from each 
technique at each case versus the actual rotation angles are 
plotted in Figs.14 to 21. 

From Fig. 13and Fig. 17, it can be seen that registration 
using MI may have a considerable amount of error at large 
rotation angles, while the performance of the NCC-based 
technique was better. If there is a substantial difference in 
luminance between the two images, these errors increase. For 
example, the MI-based technique successfully deduced the 
correct angle when the actual rotation angle was -30 in the 
second test set before increasing the brightness of one image. 
After changing the luminance, the MI-based test yielded an 
angle of 71

o
, as shown in Fig. 18. On the other hand, NCC 

succeeded in finding angles very close to the correct ones. 

Adding Gaussian noise (with a variance of 12) also 
affected the resulting mosaics and produced some errors as 
shown in Fig.19. The errors in the case of NCC-based were 
around 5

o
 while for the case of MI, errors were fairly large at 

some large rotation angles. The same scenario happened after 
applying shearing with factors of 0.15 and 0.35 as shown in 
Fig.20. Shearing caused almost all computed angles to be 
incorrect by about 5

o
, plus some dramatic errors in the case of 

MI-based at large rotation angles. 

Althought it seems that the NCC-based technique is 
superior to the MI-based technique, especially at large rotation 
angles, there are some situations that the NCC-based 
technique could not handle and MI-based performance was 
much better.  

One of these situations corresponds to the case that the 
chosen templates do not have distinctive details (i.e. nearly 
homogenous texture). Table III shows some results of the 
mosaicing techniques based on templates that are not 
distinctive. Even at small rotation angles such as 10

o
, the 

NCC-based technique could not extract accurate registration 
parameters, as shown in Fig. 21. However, the MI-based 
technique succeeded. 

 

Test Image 1: Horizontal and vertical translation and zero rotation 

 

 

NCC-based result  

NCC=0.997, MI=1.84, 

PSNR=29.45 

  
MI-based result 

NCC=0.997, MI=1.84, 
PSNR=29.45 

Test Image 1: Horizontal and vertical translation and 10o rotation 

 

 

NCC-based result 

NCC=0.996, MI=1.85, 

PSNR=29.06 

  
MI-based result 

NCC=0.996, MI=1.85, 

PSNR=29.06 

Test Image 1: Horizontal and vertical translation and 50o rotation 

  
NCC-based result  

NCC=0.996, MI=1.85, 

PSNR=29.1 

 

 
MI-based result  

NCC=0.996, MI=1.185, 

PSNR=29.1 

 

(b) 
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TABLE II.  RESULTS OF SOME EXPERIMENTS. 

 

Table I, continued 

 

 

Test Images 2: Horizontal and vertical translation and zero rotation 

  
NCC-based result 

NCC=0.999, MI=2.66, 
PSNR=35.46 

  
MI-based result 

NCC=0.999, MI=2.66, 

PSNR=35.46 

Test Images 2: Horizontal and vertical translation and 10o rotation 

  
NCC-based result 

NCC=0.999, MI=2.69, 
PSNR=35.22 

  
MI-based result 

NCC=0.993, MI=2.35, 
PSNR=27.69 

Test Images 2: Horizontal and vertical translation and 50o rotation 

  
NCC-based result  

NCC=0.996, MI=2.33, 

PSNR=30.13 

 

 

MI-based result 

NCC=0.967, MI=1.52, 
PSNR=20.91 

 

Intensity Adjustment 

NCC-based result MI-based result 

NCC-based result MI-based result 

Noise Addition 

NCC-based result MI-based result 

NCC-based result MI-based result 

Shearing 

NCC-based result MI-based result 

NCC-based result MI-based result 

 
 
 

  

(d) 
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Fig. 13. Computed rotation angles versus actual rotation angles for test 
image 1. 

 

Fig. 14. Computed rotation angles versus actual rotation angles for test 
image 1 after intensity adjustment. 
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Fig. 15. Computed rotation angles versus actual rotation angles test 
image 1 after noise addition. 

 

Fig. 16.  Computed rotation angles versus actual rotation angles for 

test image 1 after shearing. 

 

Fig. 17. Computed rotation angles versus actual rotation angles for test 

image 2. 

 

Fig. 18. Computed rotation angles versus actual rotation angles for test 

image 2 after intensity adjustment. 

 

Fig. 19. Computed rotation angles versus actual rotation angles for test 

image 2 after noise addition. 

 

Fig. 20. Computed rotation angles versus actual rotation angles for 

test image 2 after shearing. 

 

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

Actual Rotation Angle

D
ed

uc
ed

 R
ot

at
io

n 
A

ng
le

 

 

NCC-based

MI-based

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 
 

 

 

 
 

 

 

 
 

 

 

 
 

  

100 

150 

-100 

-100 

-100 

-100 

100 

100 

100 

100 

-100 

-100 

100 

100 

-100 

-100 

-100 
-100 

100 

100 

-100 

-100 

100 

100 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 4, No. 11, 2013 

102 | P a g e  

www.ijacsa.thesai.org 

TABLE III.  RESULTS BASED ON INDISTINCTIVE TEMPLATES. 
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Fig. 21. Computed rotation angles versus actual rotation angles based 
on indistinctive templates. 

 

 

 

Horizontal and vertical translation and zero rotation 

  
NCC-based result 

 
 

MI-based result 

Horizontal and vertical translation and 10o rotation 

NCC-based result MI-based result 

 

 

 

 

 

 

 

 

 

 

IX. CONCLUSION 

This paper has provided a comparative evaluation of the 
performance of template-based mosaicing techniques using 
two common similarity measures:normalized cross correlation 
(NCC) and mutual information (MI). Their performance has 
been tested at different rotation angles and under some un-
modeled distortions and intensity variations. 

The results indicate that NCC-based and MI-based 
mosaicing techniques have very close performance in many 
cases, but NCC-based performance is usually better for large 
rotation angles. 

To provide faster results, small registration parameters 
were obtained using small image templates. When working 
with NCC-based mosaicing, steps should be taken to ensure 
that these templates are distinctive. Otherwise, the system may 
fail to provide reliable rotation angles. In the results shown 
here, the MI measure was less sensitive to the choice of image 
templates.  
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