
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

33 | P a g e
www.ijacsa.thesai.org

Performance Comparison between Naïve Bayes,

Decision Tree and k-Nearest Neighbor in Searching

Alternative Design in an Energy Simulation Tool

Ahmad Ashari

Department of Computer Science

and Electronics

GadjahMada University

Yogyakarta, Indonesia

Iman Paryudi

Institute of Software Technology and

Interactive Systems

Vienna University of Technology

Vienna, Austria

A Min Tjoa

Institute of Software Technology and

Interactive Systems

Vienna University of Technology

Vienna, Austria

Abstract—Energy simulation tool is a tool to simulate energy

use by a building prior to the erection of the building. Commonly

it has a feature providing alternative designs that are better than

the user’s design. In this paper, we propose a novel method in

searching alternative design that is by using classification

method. The classifiers we use are Naïve Bayes, Decision Tree,
and k-Nearest Neighbor.

Our experiments hows that Decision Tree has the fastest

classification time followed by Naïve Bayes and k-Nearest

Neighbor. The differences between classification time of Decision

Tree and Naïve Bayes also between Naïve Bayes and k-NN are

about an order of magnitude. Based on Percision, Recall, F-

measure, Accuracy, and AUC, the performance of Naïve Bayes is

the best. It outperforms Decision Tree and k-Nearest Neighbor
on all parameters but precision.

Keywords—energy simulation tool; classification method; naïve

bayes; decision tree; k-nearest neighbor

I. INTRODUCTION

Energy simulation tool is a tool to simulate energy use by a
building prior to the erection of the building. The output of
such simulation is a value in kWh/m2 called energy
performance. The calculation of the building energy
performance must be carried out by developers as part of
requirements to get permit to build the building. The building
can only be built if the energy performance is below the
allowable standard.

In order to get building energy performance below the
standard, architects must revise the design several times. And
in order to ease the design work of the architects, an energy
simulation tool must have a feature that suggests a better
alternative design.

Since the alternative design search is actually a
classification problem, hence in this paper we propose a novel
method to search alternative design by using classification
method. The classification methods used in here are Decision
Tree, Naïve Bayes, and k-Nearest Neighbor. We will then
compare the performance of these three methods in searching
alternative design in an energy simulation tools.

The rest of the paper is structured as follows: Section 2
describes the classification methods we use in this study.

Section 3 explains the data preparation followed by the
experiment in Section 4. The result and its discussion are
presented in section 5 and 6 respectively. Section 7 concludes
the paper.

II. CLASSIFICATION METHOD

Classification is the separation or ordering of objects into
classes [1]. There are two phases in classification algorithm:
first, the algorithm tries to find a model for the class attribute as
a function of other variables of the datasets. Next, it applies
previously designed model on the new and unseen datasets for
determining the related class of each record [2].

Classification has been applied in many fields such as
medical, astronomy, commerce, biology, media, etc. There are
many techniques in classification method like: Decision Tree,
Naïve Bayes, k-Nearest Neighbor, Neural Networks, Support
Vector Machine, and Genetic Algorithm. In this paper we will
use Decision Tree, Naïve Bayes, and k-Nearest Neighbor.

A. Decision Tree

A decision tree is a flow-chart-like tree structure, where
each internal node denotes a test on an attribute, each branch
represents an outcome of the test, and leaf nodes represent
classes or class distributions [3].

The popular Decision Tree algorithms are ID3, C4.5,
CART. The ID3 algorithm is considered as a very simple
decision tree algorithm. It uses information gain as splitting
criteria. C4.5 is an evolution of ID3. It uses gain ratio as
splitting criteria [4].

CART algorithm uses Gini coefficient as the test attribute
selection criteria, and each time selects an attribute with the
smallest Gini coefficient as the test attribute for a given set [5].

The advantage of using Decision Trees in classifying the
data is that they are simple to understand and interpret [6].
However, decision trees have such disadvantages as [4]:

1) Most of the algorithms (like ID3 and C4.5) require that

the target attribute will have only discrete values.

2) As decision trees use the “divide and conquer” method,

they tend to perform well if a few highly relevant attributes

exist, but less so if many complex interactions are present.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

34 | P a g e
www.ijacsa.thesai.org

B. Naive Bayes

Naïve Bayesian classifiers assume that there are no
dependencies amongst attributes. This assumption is called
class conditional independence. It is made to simplify the
computations involved and, hence is called "naive" [3]. This
classifier is also called idiot Bayes, simple Bayes, or
independent Bayes [7].

The advantages of Naive Bayes are [8]:

 It uses a very intuitive technique. Bayes classifiers,
unlike neural networks, do not have several free
parameters that must be set. This greatly simplifies the
design process.

 Since the classifier returns probabilities, it is simpler to
apply these results to a wide variety of tasks than if an
arbitrary scale was used.

 It does not require large amounts of data before
learning can begin.

 Naive Bayes classifiers are computationally fast when
making decisions.

C. k-Nearest Neighbor

The k-nearest neighbor algorithm (k-NN) is a method to
classify an object based on the majority class amongst its k-
nearest neighbors. The k-NN is a type of lazy learning where
the function is only approximated locally and all computation
is deferred until classification [9].

k-NN algorithm usually use the Euclidean or the Manhattan
distance. However, any other distance such as the Chebyshev
norm or the Mahalanob is distance can also be used [10]. In
this experiment, Euclidean distance is used. Suppose the query
instance have coordinates (a, b) and the coordinate of training
sample is (c, d) then square Euclidean distance is:

x2 = (c – a)2 + (d – b)2 (1)

III. DATA PREPARATION

In classification method, training set is needed to construct
a model. This training set contains a set of attributes with one
attribute being the attribute of the class. Then the constructed
model is used to classify an instance.

For this experiment, there are more than 67 millions of raw
data available. This data comes from combination of 13
building parameters with each parameter has 4 possible values
(413 data).

The parameters and the values used in each parameter are
as follows:

1. Wall U-value: 0.1; 0.15; 0.2; 0.25 W/m2K

2. Wall Height: 2.5; 3.0; 3.5; 4.0 m

3. Roof U-value: 0.1; 0.15; 0.2; 0.25 W/m2K

4. Floor U-value: 0.1; 0.15; 0.2; 0.25 W/m2K

5. Floor Area: 70; 105; 140; 175 m2

6. Number of Floors: 1; 2; 3; 4

7. Window U-value: 0.1; 0.7; 1.3; 1.9 W/m2K

8. South Window Area: 0; 4; 8; 12 m2

9. North Window Area: 0; 4; 8; 12 m2

10. East Window Area: 0; 4; 8; 12 m2

11. West Window Area: 0; 4; 8; 12 m
2

12. Door U-value: 0.1; 0.7; 1.3; 1.9 W/m2K

13. Door Area: 2; 4; 6; 8 m2

Since the data is very big, representative training set must
be selected. Besides that the training set must be as small as
possible. With the above considerations in mind, 5 candidate
training sets created. They are with different number of data.
The candidate training sets are:

 Training set 1: 2827 data

 Training set 2: 4340 data

 Training set 3: 5405 data

 Training set 4: 6819 data

 Training set 5: 8630 data

To select the best training set, an experiment using the three
classifiers is carried out. The experiment is done by means of
Weka data mining software. For this experiment we use 10-
fold cross validation. The results are depicted in Fig. 1, 2, and
3.

Fig. 1. k-NN performance on different training sets.

Fig. 1 shows performance of k-NN methods using the five
training sets. The classifier shows the best performance when
using training sets 1 and 2. However, k-NN performance has
better precision when using training set 2 than training set 1.
Fig. 2 shows performance of Naïve Bayes classifier using the
same training sets. Naïve Bayes performs best when using
training set 2. This is shown by the highest correctly classified
instance and precision, and the lowest incorrectly classified
instance.

Meanwhile Fig. 3 shows no performance difference on
Decision Tree when using the training sets. From this result,
training set 2 is chosen as the working training set.

http://en.wikipedia.org/wiki/Lazy_learning

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

35 | P a g e
www.ijacsa.thesai.org

Fig. 2. Naïve Bayes performance on different training sets.

Fig. 3. Decision Tree performance on different training sets.

IV. EXPERIMENT

To carry out the experiment, a simple energy simulation
tool using the three classifiers (Naïve Bayes, Decision Tree,
and k-NN) is developed. For the Decision Tree we use C4.5
algorithm and for k-NNwe use k = 11.We did an experiment
using 10 data and for each data, a classification time and
performance values are recorded. We should mention here that
the time we use is classification time only (without training
time). The reason is that K-NN is lazy learner that does not
need training. Hence to be fair, the time we use here is only
classification time.

Except classification time, the output of the experiment is a
confusion matrix. Using confusion matrix, performance
parameters of a classifier can be calculated. The performance
parameters include: precision, recall, accuracy, F-measure, and
area under the curve (AUC).

We use AUC in this experiment because Provost et al.,
1998 in [11] state that simply using accuracy results can be
misleading. They recommended when evaluating binary
decision problems to use Receiver Operator Characteristic
(ROC) curves, which show how the number of correctly
classified positive examples varies with the number of
incorrectly classified negative examples. This is supported
byEntezari-Maleki, Rezaei, Minaei-Bidgoli [12]who state that

ROC curve is a usual criterion for identifying the prediction
power of different classification methods, and the area under
this curve is one of the important evaluation metrics which can
be applied for selecting the best classification method.

An ROC graph isactually two-dimensional graph in which
True Positive Rate (TPR) is plotted on the Y axis and False
Positive Rate (FPR) is plotted on the X axis [13]. It depicts
relative trade-offs between benefits (true positives) and costs
(false positives). One point in ROC space is better than another
if its TPR is higher,FPR is lower, or both[14]. ROC
performance of a classifier is usually represented by a value
which is the area under the ROC curve (AUC). The value of
AUC is between 0 and 1.

The experiment steps are as follows:

1) Enter user data. Values of all 13 parameters are

entered. The application then calculates the energy

performance. For instance the energy performance of the user

data is X W/m2. The energy performance is calculated using

the following formulas:
Le = 1.0 * (wa – wina – da) * wuv + 1.0 * wina *
winuv + 1.0 * da * duv (2)

Lu = 0.9 *ra * ruv (3)

Lg = 0.5 * fa * fuv (4)

tl = Le + Lu + Lg (5)

TL = 0.024 * tl * 3235 (6)

Lv = 0.33 * 0.6 *fa * wh * 0.8 (7)

VL = 0.024 * Lv * 3235 (8)

IG = 0.024 * 4 * fa * nof * 208 (9)

SG = 356 * (swa * 0.75) * 0.9 * 0.67 * 0.9 + 150 *
(nwa * 0.75) * 0.9 * 0.67 * 0.9 + 210 * (ewa * 0.75) *
0.9 * 0.67 * 0.9 + 210 * (wwa * 0.75) * 0.9 * 0.67 *
0.9 (10)

EP = (TL + VL) – 1.0 * (IG + SG) (11)

where:

Le = exterior loss

wa = wall area

wina = window area

da = door area

wuv = wall u-value

winuv = window u-value

duv = door u-value

Lu = unheated space loss

ra = roof area

ruv = roof u-value

Lg = ground loss

fa = floor area

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

36 | P a g e
www.ijacsa.thesai.org

fuv = floor u-value

tl = thermal loss

TL = transmission loss

wh = wall height

VL = ventilation loss

IG = internal gain

nof = number of floors

SG = solar gain

swa = south window area

nwa = north window area

ewa = east window area

wwa = west window area

EP = energy performance

2) Setting classes of the training set. Every data in the

training set having energy performance less than or equal to X

W/m2 is set to class Good, and those having energy

performance greater than X W/m2 is set to class Bad.Note that

the attributes of training set are: Wall U-value, Wall Height,

Roof U-value, Floor U-value, Floor Area, Number of Floors,

Window U-value, South Window Area, North Window Area,

East Window Area, West Window Area, Door U-value, Door

Area, Energy Performance, Class.

3) Create working data.The working data is created by

querying on the raw data. Since there are 13 parameters,

there will be 13 queries. The condition on each query is taken

from the value of the respective parameter on the user

data.The queries are done one after another. It means that the

data resulted from a query will be queried again by the next

query.This is done 13 times.Note that the attributes of working

data are:Wall U-value, Wall Height, Roof U-value, Floor U-

value, Floor Area, Number of Floors, Window U-value, South

Window Area, North Window Area, East Window Area, West

Window Area, Door U-value.

4) Classification. Data from working data is taken one by

one. This data is then classified against the training set using

one of the three classifiers (Naïve Bayes, Decision Tree, k-

Nearest Neighbor). The classification time is recorded

starting from the beginning until the end of the classification.

After the classification, the energy performance of this data is

calculated. Note that the data resulted in this step has the

following attributes: Wall U-value, Wall Height, Roof U-

value, Floor U-value, Floor Area, Number of Floors, Window

U-value, South Window Area, North Window Area, East

Window Area, West Window Area, Door U-value, Door Area,

Energy Performance, Class, Classification time.

5) Create confusion matrix. Count True Positive (TP),

False Positive (FP), True Negative (TN), False Negative (FN).

A data is included in TP if it has energy performance less than

or equal to X W/m2 and class Good. A data is included in TN

if it has energy performance greater than X W/m2 and class

Bad. A data is included in FP if it has energy performance

greater than X W/m2 but has class Good. Meanwhile a data is

included in FN if it has energy performance less than or equal

to X W/m2 but has class Bad.

6) Select alternative design. Of all data included in TP,

the one having the best energy performance will be selected as

the alternative design.

V. RESULT

The classification times of the three classifiers that are used
to classify 10 data are shown in Fig. 4.This figure shows that
Decision Tree has the fastest classification time followed by
Naïve Bayes and k-Nearest Neighbor. The differences between
classification time of Decision Tree and Naïve Bayes also
between Naïve Bayes and k-NN are about an order of
magnitude.

Fig. 4. Classification times of k-NN, Naïve Bayes, and Decision Tree.

The average precisions and recalls for k-NN, Naïve Bayes,
and Decision Tree are: 0.819 and 0.543; 0.799 and 0.794; 0.779
and 0.663 respectively(Fig. 5 and 6). Since F-measure is the
harmonic mean of precision and recall, hence to know which
classifier is the best in terms of precision and recall, we can
calculate the F-measure value (Fig. 7). The average F-measure
value of Naïve Bayes is the biggest among the three, that is
0.780. Decision tree has average F-measure of 0.676 and k-NN
of 0.543. Therefore we can say that Naïve Bayes is the best in
terms of precision and recall followed by Decision Tree and k-
NN.

Fig. 5. Classification precision of k-NN, Naïve Bayes, and Decision Tree

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

37 | P a g e
www.ijacsa.thesai.org

Fig. 6. Classification recall of k-NN, Naïve Bayes, and Decision Tree

Fig. 7. F-measure of k-NN, Naïve Bayes, and Decision Tree

Naïve Bayes is again the best in accuracy (Fig. 8). Naïve
Bayes is the most accurate classifier compared to Decision
Tree and k-NN with the average accuracy of 0.737.
Meanwhile the average accuracies of Decision Tree and k-NN
are 0.589 and 0.567, respectively.

The last parameter for comparing classifier performance is
area under the curve (AUC). In this parameter Naïve Bayes is
also the biggest among the three classifiers (Fig. 9). The AUC
of Naïve Bayes is 0.605, followed by Decision Tree 0.585 and
k-NN 0.570.

Fig. 8. Classification accuracy of k-NN, Naïve Bayes, and Decision Tree

Fig. 9. Area under the curve (AUC) of k-NN, Naïve Bayes, and Decision

Tree

VI. DISCUSSION

As stated in the previous section, the experiment we carried
out reveals that Naïve Bayes outperforms Decision Tree and k-
NN. It is the best in all performance parameters but precision,
they are: recall, F-measure, accuracy, and AUC. This result is
similar to previous studies.

When comparing Naïve Bayes and Decision Tree in the
classification of training web pages, Xhemali,Hinde, and
Stone[15] find that the accuracy, F-measure, and AUC of
Naïve Bayes are 95.2, 97.26, and 0.95 respectively. This is
better than Decision Tree whose accuracy, F-measure, and
AUC are: 94.85, 95.9, 0.91, respectively.

Li and Jain [16] investigate four different methods for
document classification: the naive Bayes classifier, the nearest
neighbour classifier, decision trees and a subspace method.
Their experimental results indicate that the naive Bayes
classifier and the subspace method outperform the other two
classifiers on the data sets. Their experimental results show
that all four classification algorithms perform reasonably well;
the naïve Bayes approach performs the best on test data set1,
but the subspace method outperforms all others on test data
set2.

Other studies in references [17] - [20] also obtain the same
results when comparing performance of Naïve Bayes and
Decision Tree.

A Naive Bayes classifier is a simple classifier. However,
although it is simple, Naive Bayes can outperform more
sophisticated classification methods. Besides that it has also
exhibited high accuracy and speed when applied to large
database [3]. Moreover, it is very fast for both learning and
predicting. Its learning time is linear in the number of examples
and its prediction time is independent of the number of
examples [21].Naïve Bayes classifier is also fast, consistent,
easy to maintain and accurate in the classification of attribute
data [15]. And from computation point of view, Naïve Bayes
is more efficient both in the learning and in the classification
task than Decision Tree [22].

The reason for good performance of Naïve Bayes is
described by Dominggos and Pazzani [23]as follows:“Naïve
Bayes is commonly thought to be optimal, in the sense of

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

38 | P a g e
www.ijacsa.thesai.org

achieving the best possible accuracy, only when the
independence assumption holds, and perhaps close to optimal
when the attributes are only slightly dependent. However, this
very restrictive condition seems to be inconsistent with the
Naïve Bayes’ surprisingly good performance in a wide variety
of domains, including many where there are clear dependencies
between the attributes.” In a study on 28 datasets from the UCI
repository, they find that Naïve Bayes was more accurate than
C4.5 in 16 domains. They further statethat: “the Naïve Bayes
is in fact optimal even when the independence assumption is
grossly violated, and is thus applicable to a much broader range
of domains than previously thought. This is essentially due to
the fact that in many cases the probability estimates may be
poor, but the correct class will still have the highest estimate,
leading to correct classification”. Finally they come to
conclusion that “the Naïve Bayes achieves higher accuracy
than more sophisticated approaches in many domains where
there is substantial attribute dependence, and therefore the
reason for its good comparative performance is not that there
are no attribute dependences in the data”.

Frank, Trigg, Holmes, and Witten[24] explain why naive
Bayes perform well even when the independence assumption is
seriously violated: “most likely it owes its good performance to
the zero-one loss function used in classification. This function
defines the error as the number of incorrect predictions. Unlike
other loss functions, such as the squared error, it has the key
property that it does not penalize inaccurate probability
estimates as long as the greatest probability is assigned to the
correct class. There is evidence that this is why naive Bayes’
classification performance remains high, despite the fact that
inter-attribute dependencies often cause it to produce incorrect
probability estimates”.

Meanwhile Zhang [25] explains the reason of good
performance of Naïve Bayes as follows:“In a given dataset,
two attributes may depend on each other, but the dependence
may distribute evenly in each class. Clearly, in this case, the
conditional independence assumption is violated, but naive
Bayes is still the optimal classifier. Further, what eventually
affects the classification is the combination of dependencies
among all attributes. If we just look at two attributes, there may
exist strong dependence between them that affects the
classification. When the dependencies among all attributes
work together, however, they may cancel each other out and no
longer affect the classification”. Therefore, he argues that “it is
the distribution of dependencies among all attributes over
classes that affect the classification of naive Bayes, not merely
the dependencies themselves”.

Similar to the result of our study, previous studies also
show that k-Nearest Neighbor is worse than both Naïve Bayes
and Decision Tree. In their study to classify arid rangeland
using Decision Tree and k-Nearest Neighbor, Laliberte, Koppa,
Fredrickson, and Rango[26] obtain that the overall accuracy of
Decision Tree (80%) is better than that of k-Nearest Neighbor
(78%). Pazzani,Muramatsu, and Billsus[27] find that in
identifying interesting web sites, the naive Bayesian classifier
has the highest average accuracy with 20 training examples:
77.1 (standard deviation 4.4). In contrast, backprop is 75.0
(3.9), k-Nearest Neighbor is 75.0 (5.5), and ID3 is 70.6 (3.6).
The only study which shows that k-NN outperforms Decision

Tree and Naïve Bayes is by Horton and Nakai[28]. However,
they do not have a solid answer as to why k-NN performs
better on this task.

The performance of k-NN in this and previous studies is the
worst among the three classifiers. Since k-NN uses number of
nearest neighbor k as one of the parameter in classifying an
object, then this value might affect the performance of the
classifier. In their study using k-NN to classify credit card
applicants, Islam,Wu, Ahmadi, Sid-Ahmed[29] find that the
best performance of k-NN is when k=5. Using this k value, k-
NN outperforms Naïve Bayes. Using bigger and smaller k
value, the k-NN performance is worst. Meanwhile, Batista and
Silva [30] study three parameters affecting the performance of
k-NN, namely number of nearest neighbors (k), distance
function, and weighting function. They find that for all
weighting function and distance function, the performance
increases as k increases up to a maximum between k = 5 and k
= 11. Then, for higher values of k, the performance decreases.
Based on this study, we use k = 11 in this experiment. And the
reason why we choose the upper boundary is because larger k
values help reduce the effects of noisy points within the
training data set [29].The choice is also based on our
experiment onk-NN performance with different k values. The
k values we use are: 11, 21, 31, 41, and 51. The experiment
use 10-fold cross validation. The result is shown in Fig. 10.
The figure shows thatk-NN reaches the best performance when
we use k = 11. For k values greater than 11, the performance
decreases. Since we have not tested the k values smaller than
11, hence it is worth trying to use those values in the future
work.

Beside low performance, another weakness of k-NN is slow
runtime performance and large memory requirements [31].
The k-NN classifier requires a large memory to store the entire
training set [32]. Hence, the bigger the training set, the bigger
memory requirement and the larger distance calculations must
be performed. This causes the classification is extremely slow.
This is the reason why the classification time of k-NN in our
experiment is very big, the worst among the three classifiers.

Fig. 10. k-NN performance on different k values.

The fast classification time by Decision Tree is due to the
absence of calculation in its classification process. The tree
model is created outside the application, using Weka data
mining tool. And the model is converted into rules before
being incorporated into the application. Classification by way

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

39 | P a g e
www.ijacsa.thesai.org

of following the tree rules is faster than the ones that need
calculation as in the case of Naïve Bayes and k-NN.

VII. CONCLUSION

A novel method to search alternative design in an energy
simulation tool is proposed. A classification method is used in
searching the alternative design. There are three classifiers
used in this experiment namely Naïve Bayes, Decision Tree,
and k-Nearest Neighbor. Our experiment shows that Decision
Tree is the fastest and k-Nearest Neighbor is the slowest. The
fast classification time of Decision Tree because there is no
calculation in its classification. The tree model is created
outside the application that is using Weka data mining tool.
And the model is converted into rules before being
incorporated into the application. Classification by way of
following the tree rules is faster than the ones that need
calculation as in the case of Naïve Bayes and k-NN.
Meanwhile k-Nearest Neighbor is the slowest classifier
because the classification time is directly related to the number
of data. The bigger the data, the larger distance calculations
must be performed. This causes the classification is extremely
slow.

Although it is a simple method, Naïve Bayes can
outperform more sophisticated classification methods. In this
experiment, Naïve Bayes outperforms Decision Tree and k-
Nearest Neighbor. Dominggos and Pazzani[23] state that the
reason for Naïve Bayes’ good performance is not because there
are no attribute dependences in the data. In fact Frank,Trigg,
Holmes, and Witten[24] explain that its good performance is
caused by the zero-one loss function used in the classification.
Meanwhile Zhang [25] argues that it is the distribution of
dependencies among all attributes over classes that affect the
classification of naive Bayes, not merely the dependencies
themselves.

ACKNOWLEDGMENT

ImanParyudi would like to thank Directorate of Higher
Education, Ministry of Education and Culture, Republic of
Indonesia for the scholarship awarded to him.

REFERENCES

[1] G. K. Gupta, Introduction to Data Mining with Case Studies. Prentice
Hall of India, New Delhi, 2006.

[2] P-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining.

Addison Wesley Publishing, 2006.

[3] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan-Kaufmann Publishers, San Francisco, 2001.

[4] O. Maimon and L. Rokach, Data Mining and Knowledge Discovery.

Springer Science and Business Media, 2005.

[5] X. Niuniu and L. Yuxun, “Review of Decision Trees,” IEEE, 2010.

[6] V. Mohan, “Decision Trees: A comparison of various algorithms for

building Decision Trees,” Available at:
http://cs.jhu.edu/~vmohan3/document/ai_dt.pdf

[7] T. Miquelez, E. Bengoetxea, P. Larranaga, “Evolutionary Computation

based on Bayesian Classifier,” Int. J. Appl. Math. Comput. Sci. vol.
14(3), pp. 335 – 349, 2004.

[8] M. K. Stern, J. E. Beck, and B. P. Woolf, “Naïve Bayes Classifiers for

User Modeling,” Available at:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.118.979

[9] Wikipedia, “k-Nearest Neighbor Algorithm,” Available at:

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

[10] V. Garcia, C. Debreuve, “Fast k Nearest Neighbor Search using GPU,”

IEEE, 2008.

[11] J. Davis and M. Goadrich, “The Relationship Between Precision-Recall

and ROC Curves,” Proceedings of the 23
rd

 International Conference on
Machine Learning, Pittsburgh, 2006.

[12] R. Entezari-Maleki, A. Rezaei, and B. Minaei-Bidgoli, “Comparison of

Classification Methods Based on the Type of Attributes and Sample
Size,” Available at: http://www4.ncsu.edu/~arezaei2/paper/JCIT4-

184028_Camera%20Ready.pdf

[13] Wikipedia, “Receiver Operating Characteristics,” Available at:
http://en.wikipedia.org/wiki/Receiver_operating_characteristic

[14] T. Fawcett, “ROC Graphs: Notes and Practical Considerations for

Researchers,” Kluwer Academic Publishers, Netherland, 2004.

[15] D. Xhemali, C. J. Hinde, and R. G. Stone, “Naïve Bayes vs. Decision
Trees vs. Neural Networks in the Classification of Training Web Pages,”

International Journal of Computer Science Issue, Vol. 4(1), 2009.

[16] Y. H. Li and A. K. Jain, “Classification of Text Document,” The
Computer Journal, Vol. 41(8), 1998.

[17] R. M. Rahman and F. Afroz, “Comparison of Various Classification
Techniques,” Journal of Software Engineering and Applications, Vol. 6,

2013, 85 – 97.

[18] Z. Nematzadeh Balagatabi, “Comparison of Decision Tree and Naïve
Bayes Methods in Classification of Researcher’s Cognitive Styles in

Academic Environment,” Journal of Advances in Computer Research.
Vol. 3(2), 2012, 23 – 34.

[19] L. Dan, L. Lihua, Z. Zhaoxin, “Research of Text Categorization on

WEKA,” Third International Conference on Intelligent System Design
and Engineering Applications, 2013.

[20] J. Huang, J. Lu, C. X. Ling, “Comparing Naive Bayes, Decision Trees,

and SVM with AUC and Accuracy,” Third IEEE International
Conference on Data Mining, 2003.

[21] M. Pazzani and D. Bilsus, “Learning and Revising User Profiles: The

Identification of InterestingWeb Sites,” Machine Learning, Vol. 27, 313
– 331, 1997.

[22] N. B. Amor, S. Benferhat, Z. Elouedi, “Naive Bayes vs Decision Trees

in Intrusion Detection Systems,” ACM, 2004.

[23] P. Domingos, M. Pazzani, “Beyond Independence: Conditions for the

Optimality of the Simple Bayesian Classifier,” Available at:
http://www.ics.uci.edu/~pazzani/Publications/mlc96-pedro.pdf

[24] E. Frank, L. Trigg, G. Holmes, I. A. Witten, “Naïve Bayes for

Regression,” Machine Learning, Vol. 000, 1 – 20, 1999.

[25] H. Zhang, “The Optimality of Naïve Bayes,” American Association for
Artificial Intelligence, 2004.

[26] A. S. Laliberte, J. Koppa, E. L. Fredrickson, and A. Rango,

“Comparison of nearest neighbor and rule-based decision tree
classification in an object-oriented environment,” Available at:

http://naldc.nal.usda.gov/download/44074/PDF

[27] M. Pazzani, J. Muramatsu, and D. Billsus, “Syskill & Webert:
Identifying interesting web sites,” Available at:

http://www.ics.uci.edu/~pazzani/RTF/AAAI.html

[28] P. Horton and K. Nakai, “Better Prediction of Protein Cellular
Localization Sites with the k Nearest Neighbors Classifier,” ISMB-97

Proceedings, AAAI, 1997.

[29] M. J. Islam, Q. M. J. Wu, M. Ahmadi, M. A. Sid-Ahmed, “Investigating

the Performance of Naïve- Bayes Classifiers and K- Nearest Neighbor
Classifiers,” Journal of Convergence Information Technology, Vol. 5(2),

2010.

[30] G. E.A.P.A. Batista, D. F. Silva, “How k-Nearest Neighbor Parameters
Affect its Performance,” Simposio Argentino de Inteligencia Artificial

(ASAI 2009), 95 – 106, 2009.

[31] S. D. Bay, “Nearest Neighbor Classification from Multiple Feature
Subsets,” Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.9040&rep=
rep1&type=pdf

[32] Y. Lee, “Handwritten Digit Recognition Using K Nearest-Neighbor,

Radial-Basis Function, and Backpropagation Neural Networks,” Neural
Computation Vol. 3, 440 – 449, 1991

