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Abstract—Energy simulation tool is a tool to simulate energy 

use by a building prior to the erection of the building.  Commonly 

it has a feature providing alternative designs that are better than 

the user’s design.  In this paper, we propose a novel method in 

searching alternative design that is by using classification 

method. The classifiers we use are Naïve Bayes, Decision Tree, 
and k-Nearest Neighbor. 

Our experiments hows that Decision Tree has the fastest 

classification time followed by Naïve Bayes and k-Nearest 

Neighbor.  The differences between classification time of Decision 

Tree and Naïve Bayes also between Naïve Bayes and k-NN are 

about an order of magnitude.  Based on Percision, Recall, F-

measure, Accuracy, and AUC, the performance of Naïve Bayes is 

the best.  It outperforms Decision Tree and k-Nearest Neighbor 
on all parameters but precision. 

Keywords—energy simulation tool; classification method; naïve 

bayes; decision tree; k-nearest neighbor 

I. INTRODUCTION 

Energy simulation tool is a tool to simulate energy use by a 
building prior to the erection of the building.  The output of 
such simulation is a value in kWh/m2 called energy 
performance.  The calculation of the building energy 
performance must be carried out by developers as part of 
requirements to get permit to build the building.  The building 
can only be built if the energy performance is below the 
allowable standard. 

In order to get building energy performance below the 
standard, architects must revise the design several times.  And 
in order to ease the design work of the architects, an energy 
simulation tool must have a feature that suggests a better 
alternative design.   

Since the alternative design search is actually a 
classification problem, hence in this paper we propose a novel 
method to search alternative design by using classification 
method.  The classification methods used in here are Decision 
Tree, Naïve Bayes, and k-Nearest Neighbor.  We will then 
compare the performance of these three methods in searching 
alternative design in an energy simulation tools.   

The rest of the paper is structured as follows: Section 2 
describes the classification methods we use in this study.  

Section 3 explains the data preparation followed by the 
experiment in Section 4.  The result and its discussion are 
presented in section 5 and 6 respectively.  Section 7 concludes 
the paper. 

II. CLASSIFICATION METHOD 

Classification is the separation or ordering of objects into 
classes [1].  There are two phases in classification algorithm: 
first, the algorithm tries to find a model for the class attribute as 
a function of other variables of the datasets. Next, it applies 
previously designed model on the new and unseen datasets for 
determining the related class of each record [2].   

Classification has been applied in many fields such as 
medical, astronomy, commerce, biology, media, etc.  There are 
many techniques in classification method like: Decision Tree, 
Naïve Bayes, k-Nearest Neighbor, Neural Networks, Support 
Vector Machine, and Genetic Algorithm.  In this paper we will 
use Decision Tree, Naïve Bayes, and k-Nearest Neighbor. 

A. Decision Tree 

A decision tree is a flow-chart-like tree structure, where 
each internal node denotes a test on an attribute, each branch 
represents an outcome of the test, and leaf nodes represent 
classes or class distributions [3]. 

The popular Decision Tree algorithms are ID3, C4.5, 
CART.  The ID3 algorithm is considered as a very simple 
decision tree algorithm. It uses information gain as splitting 
criteria. C4.5 is an evolution of ID3. It uses gain ratio as 
splitting criteria [4]. 

CART algorithm uses Gini coefficient as the test attribute 
selection criteria, and each time selects an attribute with the 
smallest Gini coefficient as the test attribute for a given set [5]. 

The advantage of using Decision Trees in classifying the 
data is that they are simple to understand and interpret [6].  
However, decision trees have such disadvantages as [4]:  

1) Most of the algorithms (like ID3 and C4.5) require that 

the target attribute will have only discrete values. 

2) As decision trees use the “divide and conquer” method, 

they tend to perform well if a few highly relevant attributes 

exist, but less so if many complex interactions are present.  
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B. Naive Bayes 

Naïve Bayesian classifiers assume that there are no 
dependencies amongst attributes. This assumption is called 
class conditional independence. It is made to simplify the 
computations involved and, hence is called "naive" [3].  This 
classifier is also called idiot Bayes, simple Bayes, or 
independent Bayes [7].   

The advantages of Naive Bayes are [8]: 

 It uses a very intuitive technique. Bayes classifiers, 
unlike neural networks, do not have several free 
parameters that must be set. This greatly simplifies the 
design process.  

 Since the classifier returns probabilities, it is simpler to 
apply these results to a wide variety of tasks than if an 
arbitrary scale was used.  

 It does not require large amounts of data before 
learning can begin.  

 Naive Bayes classifiers are computationally fast when 
making decisions. 

C. k-Nearest Neighbor 

The k-nearest neighbor algorithm (k-NN) is a method to 
classify an object based on the majority class amongst its k-
nearest neighbors. The k-NN is a type of lazy learning where 
the function is only approximated locally and all computation 
is deferred until classification [9]. 

k-NN algorithm usually use the Euclidean or the Manhattan 
distance.  However, any other distance such as the Chebyshev 
norm or the Mahalanob is distance can also be used [10].  In 
this experiment, Euclidean distance is used.  Suppose the query 
instance have coordinates (a, b) and the coordinate of training 
sample is (c, d) then square Euclidean distance is: 

 

x2 = (c – a)2 + (d – b)2    (1) 

III. DATA PREPARATION 

In classification method, training set is needed to construct 
a model.  This training set contains a set of attributes with one 
attribute being the attribute of the class.  Then the constructed 
model is used to classify an instance. 

For this experiment, there are more than 67 millions of raw 
data available.  This data comes from combination of 13 
building parameters with each parameter has 4 possible values 
(413 data).   

The parameters and the values used in each parameter are 
as follows: 

1. Wall U-value: 0.1; 0.15; 0.2; 0.25 W/m2K 

2. Wall Height: 2.5; 3.0; 3.5; 4.0 m 

3. Roof U-value: 0.1; 0.15; 0.2; 0.25 W/m2K 

4. Floor U-value: 0.1; 0.15; 0.2; 0.25 W/m2K 

5. Floor Area: 70; 105; 140; 175 m2 

6. Number of Floors: 1; 2; 3; 4 

7. Window U-value: 0.1; 0.7; 1.3; 1.9 W/m2K 

8. South Window Area: 0; 4; 8; 12 m2 

9. North Window Area: 0; 4; 8; 12 m2 

10. East Window Area: 0; 4; 8; 12 m2 

11. West Window Area: 0; 4; 8; 12 m
2
 

12. Door U-value: 0.1; 0.7; 1.3; 1.9 W/m2K 

13. Door Area: 2; 4; 6; 8 m2 

Since the data is very big, representative training set must 
be selected.  Besides that the training set must be as small as 
possible.  With the above considerations in mind, 5 candidate 
training sets created.  They are with different number of data.  
The candidate training sets are: 

 Training set 1: 2827 data 

 Training set 2: 4340 data 

 Training set 3: 5405 data 

 Training set 4: 6819 data 

 Training set 5: 8630 data 

To select the best training set, an experiment using the three 
classifiers is carried out.  The experiment is done by means of 
Weka data mining software.  For this experiment we use 10-
fold cross validation.  The results are depicted in Fig. 1, 2, and 
3. 

 
Fig. 1. k-NN performance on different training sets. 

Fig. 1 shows performance of k-NN methods using the five 
training sets.  The classifier shows the best performance when 
using training sets 1 and 2.  However, k-NN performance has 
better precision when using training set 2 than training set 1.  
Fig. 2 shows performance of Naïve Bayes classifier using the 
same training sets.  Naïve Bayes performs best when using 
training set 2.  This is shown by the highest correctly classified 
instance and precision, and the lowest incorrectly classified 
instance.   

Meanwhile Fig. 3 shows no performance difference on 
Decision Tree when using the training sets.  From this result, 
training set 2 is chosen as the working training set. 

 

http://en.wikipedia.org/wiki/Lazy_learning
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Fig. 2. Naïve Bayes performance on different training sets. 

 
Fig. 3. Decision Tree performance on different training sets. 

IV. EXPERIMENT 

To carry out the experiment, a simple energy simulation 
tool using the three classifiers (Naïve Bayes, Decision Tree, 
and k-NN) is developed.  For the Decision Tree we use C4.5 
algorithm and for k-NNwe use k = 11.We did an experiment 
using 10 data and for each data, a classification time and 
performance values are recorded.  We should mention here that 
the time we use is classification time only (without training 
time).  The reason is that K-NN is lazy learner that does not 
need training.  Hence to be fair, the time we use here is only 
classification time. 

Except classification time, the output of the experiment is a 
confusion matrix.  Using confusion matrix, performance 
parameters of a classifier can be calculated.  The performance 
parameters include: precision, recall, accuracy, F-measure, and 
area under the curve (AUC). 

We use AUC in this experiment because Provost et al., 
1998 in [11] state that simply using accuracy results can be 
misleading. They recommended when evaluating binary 
decision problems to use Receiver Operator Characteristic 
(ROC) curves, which show how the number of correctly 
classified positive examples varies with the number of 
incorrectly classified negative examples.  This is supported 
byEntezari-Maleki, Rezaei, Minaei-Bidgoli [12]who state that 

ROC curve is a usual criterion for identifying the prediction 
power of different classification methods, and the area under 
this curve is one of the important evaluation metrics which can 
be applied for selecting the best classification method.  

An ROC graph isactually two-dimensional graph in which 
True Positive Rate (TPR) is plotted on the Y axis and False 
Positive Rate (FPR) is plotted on the X axis [13].  It depicts 
relative trade-offs between benefits (true positives) and costs 
(false positives).  One point in ROC space is better than another 
if its TPR is higher,FPR is lower, or both[14].  ROC 
performance of a classifier is usually represented by a value 
which is the area under the ROC curve (AUC).  The value of 
AUC is between 0 and 1. 

The experiment steps are as follows: 

1) Enter user data. Values of all 13 parameters are 

entered.  The application then calculates the energy 

performance.  For instance the energy performance of the user 

data is X W/m2.  The energy performance is calculated using 

the following formulas: 
Le = 1.0 * (wa – wina – da) * wuv + 1.0 * wina * 
winuv + 1.0 * da * duv  (2) 

Lu = 0.9 *ra * ruv    (3) 

Lg = 0.5 * fa * fuv             (4) 

tl = Le + Lu + Lg             (5) 

TL = 0.024 * tl * 3235            (6) 

Lv = 0.33 * 0.6 *fa * wh * 0.8           (7) 

VL = 0.024 * Lv * 3235            (8) 

IG = 0.024 * 4 * fa * nof * 208           (9) 

SG = 356 * (swa * 0.75) * 0.9 * 0.67 * 0.9 + 150 * 
(nwa * 0.75) * 0.9 * 0.67 * 0.9 + 210 * (ewa * 0.75) * 
0.9 * 0.67 * 0.9 + 210 * (wwa * 0.75) * 0.9 * 0.67 * 
0.9            (10) 

EP = (TL + VL) – 1.0 * (IG + SG)         (11) 

where: 

Le = exterior loss 

wa = wall area 

wina = window area 

da = door area 

wuv = wall u-value 

winuv = window u-value 

duv = door u-value 

Lu = unheated space loss 

ra = roof area 

ruv = roof u-value 

Lg = ground loss 

fa = floor area 
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fuv = floor u-value 

tl = thermal loss 

TL = transmission loss 

wh = wall height 

VL = ventilation loss 

IG = internal gain 

nof = number of floors 

SG = solar gain 

swa = south window area 

nwa = north window area 

ewa = east window area 

wwa = west window area 

EP = energy performance 

2) Setting classes of the training set. Every data in the 

training set having energy performance less than or equal to X 

W/m2 is set to class Good, and those having energy 

performance greater than X W/m2 is set to class Bad.Note that 

the attributes of training set are: Wall U-value, Wall Height, 

Roof U-value, Floor U-value, Floor Area, Number of Floors, 

Window U-value, South Window Area, North Window Area, 

East Window Area, West Window Area, Door U-value, Door 

Area, Energy Performance, Class. 

3) Create working data.The working data is created by 

querying on the raw data.  Since there are 13 parameters, 

there will be 13 queries.  The condition on each query is taken 

from the value of the respective parameter on the user 

data.The queries are done one after another.  It means that the 

data resulted from a query will be queried again by the next 

query.This is done 13 times.Note that the attributes of working 

data are:Wall U-value, Wall Height, Roof U-value, Floor U-

value, Floor Area, Number of Floors, Window U-value, South 

Window Area, North Window Area, East Window Area, West 

Window Area, Door U-value. 

4) Classification.  Data from working data is taken one by 

one.  This data is then classified against the training set using 

one of the three classifiers (Naïve Bayes, Decision Tree, k-

Nearest Neighbor).  The classification time is recorded 

starting from the beginning until the end of the classification.  

After the classification, the energy performance of this data is 

calculated.  Note that the data resulted in this step has the 

following attributes: Wall U-value, Wall Height, Roof U-

value, Floor U-value, Floor Area, Number of Floors, Window 

U-value, South Window Area, North Window Area, East 

Window Area, West Window Area, Door U-value, Door Area, 

Energy Performance, Class, Classification time. 

5) Create confusion matrix.  Count True Positive (TP), 

False Positive (FP), True Negative (TN), False Negative (FN). 

A data is included in TP if it has energy performance less than 

or equal to X W/m2 and class Good.  A data is included in TN 

if it has energy performance greater than X W/m2 and class 

Bad.  A data is included in FP if it has energy performance 

greater than X W/m2 but has class Good.  Meanwhile a data is 

included in FN if it has energy performance less than or equal 

to X W/m2 but has class Bad. 

6) Select alternative design.  Of all data included in TP, 

the one having the best energy performance will be selected as 

the alternative design. 

V. RESULT 

The classification times of the three classifiers that are used 
to classify 10 data are shown in Fig. 4.This figure shows that 
Decision Tree has the fastest classification time followed by 
Naïve Bayes and k-Nearest Neighbor.  The differences between 
classification time of Decision Tree and Naïve Bayes also 
between Naïve Bayes and k-NN are about an order of 
magnitude. 

 
Fig. 4. Classification times of k-NN, Naïve Bayes, and Decision Tree. 

The average precisions and recalls for k-NN, Naïve Bayes, 
and Decision Tree are: 0.819 and 0.543; 0.799 and 0.794; 0.779 
and 0.663 respectively(Fig. 5 and 6).  Since F-measure is the 
harmonic mean of precision and recall, hence to know which 
classifier is the best in terms of precision and recall, we can 
calculate the F-measure value (Fig. 7).  The average F-measure 
value of Naïve Bayes is the biggest among the three, that is 
0.780.  Decision tree has average F-measure of 0.676 and k-NN 
of 0.543.  Therefore we can say that Naïve Bayes is the best in 
terms of precision and recall followed by Decision Tree and k-
NN. 

 
Fig. 5. Classification precision of k-NN, Naïve Bayes, and Decision Tree 
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Fig. 6. Classification recall of k-NN, Naïve Bayes, and Decision Tree 

 

 
Fig. 7. F-measure of k-NN, Naïve Bayes, and Decision Tree 

Naïve Bayes is again the best in accuracy (Fig. 8).  Naïve 
Bayes is the most accurate classifier compared to Decision 
Tree and k-NN with the average accuracy of 0.737.  
Meanwhile the average accuracies of Decision Tree and k-NN 
are 0.589 and 0.567, respectively. 

The last parameter for comparing classifier performance is 
area under the curve (AUC).  In this parameter Naïve Bayes is 
also the biggest among the three classifiers (Fig. 9).  The AUC 
of Naïve Bayes is 0.605, followed by Decision Tree 0.585 and 
k-NN 0.570. 

 
Fig. 8. Classification accuracy of k-NN, Naïve Bayes, and Decision Tree 

 
Fig. 9. Area under the curve (AUC) of k-NN, Naïve Bayes, and Decision 

Tree 

VI. DISCUSSION 

As stated in the previous section, the experiment we carried 
out reveals that Naïve Bayes outperforms Decision Tree and k-
NN.  It is the best in all performance parameters but precision, 
they are: recall, F-measure, accuracy, and AUC.  This result is 
similar to previous studies. 

When comparing Naïve Bayes and Decision Tree in the 
classification of training web pages, Xhemali,Hinde, and 
Stone[15] find that the accuracy, F-measure, and AUC of 
Naïve Bayes are 95.2, 97.26, and 0.95 respectively.  This is 
better than Decision Tree whose accuracy, F-measure, and 
AUC are: 94.85, 95.9, 0.91, respectively. 

Li and Jain [16] investigate four different methods for 
document classification: the naive Bayes classifier, the nearest 
neighbour classifier, decision trees and a subspace method.  
Their experimental results indicate that the naive Bayes 
classifier and the subspace method outperform the other two 
classifiers on the data sets.  Their experimental results show 
that all four classification algorithms perform reasonably well; 
the naïve Bayes approach performs the best on test data set1, 
but the subspace method outperforms all others on test data 
set2.  

Other studies in references [17] - [20] also obtain the same 
results when comparing performance of Naïve Bayes and 
Decision Tree. 

A Naive Bayes classifier is a simple classifier. However, 
although it is simple, Naive Bayes can outperform more 
sophisticated classification methods.  Besides that it has also 
exhibited high accuracy and speed when applied to large 
database [3]. Moreover, it is very fast for both learning and 
predicting. Its learning time is linear in the number of examples 
and its prediction time is independent of the number of 
examples [21].Naïve Bayes classifier is also fast, consistent, 
easy to maintain and accurate in the classification of attribute 
data [15].  And from computation point of view, Naïve Bayes 
is more efficient both in the learning and in the classification 
task than Decision Tree [22]. 

The reason for good performance of Naïve Bayes is 
described by Dominggos and Pazzani [23]as follows:“Naïve 
Bayes is commonly thought to be optimal, in the sense of 
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achieving the best possible accuracy, only when the 
independence assumption holds, and perhaps close to optimal 
when the attributes are only slightly dependent. However, this 
very restrictive condition seems to be inconsistent with the 
Naïve Bayes’ surprisingly good performance in a wide variety 
of domains, including many where there are clear dependencies 
between the attributes.” In a study on 28 datasets from the UCI 
repository, they find that Naïve Bayes was more accurate than 
C4.5 in 16 domains.  They further statethat: “the Naïve Bayes 
is in fact optimal even when the independence assumption is 
grossly violated, and is thus applicable to a much broader range 
of domains than previously thought. This is essentially due to 
the fact that in many cases the probability estimates may be 
poor, but the correct class will still have the highest estimate, 
leading to correct classification”.  Finally they come to 
conclusion that “the Naïve Bayes achieves higher accuracy 
than more sophisticated approaches in many domains where 
there is substantial attribute dependence, and therefore the 
reason for its good comparative performance is not that there 
are no attribute dependences in the data”. 

Frank, Trigg, Holmes, and Witten[24] explain why naive 
Bayes perform well even when the independence assumption is 
seriously violated: “most likely it owes its good performance to 
the zero-one loss function used in classification. This function 
defines the error as the number of incorrect predictions. Unlike 
other loss functions, such as the squared error, it has the key 
property that it does not penalize inaccurate probability 
estimates as long as the greatest probability is assigned to the 
correct class. There is evidence that this is why naive Bayes’ 
classification performance remains high, despite the fact that 
inter-attribute dependencies often cause it to produce incorrect 
probability estimates”. 

Meanwhile Zhang [25] explains the reason of good 
performance of Naïve Bayes as follows:“In a given dataset, 
two attributes may depend on each other, but the dependence 
may distribute evenly in each class. Clearly, in this case, the 
conditional independence assumption is violated, but naive 
Bayes is still the optimal classifier. Further, what eventually 
affects the classification is the combination of dependencies 
among all attributes. If we just look at two attributes, there may 
exist strong dependence between them that affects the 
classification. When the dependencies among all attributes 
work together, however, they may cancel each other out and no 
longer affect the classification”. Therefore, he argues that “it is 
the distribution of dependencies among all attributes over 
classes that affect the classification of naive Bayes, not merely 
the dependencies themselves”. 

Similar to the result of our study, previous studies also 
show that k-Nearest Neighbor is worse than both Naïve Bayes 
and Decision Tree.  In their study to classify arid rangeland 
using Decision Tree and k-Nearest Neighbor, Laliberte, Koppa, 
Fredrickson, and Rango[26] obtain that the overall accuracy of 
Decision Tree (80%) is better than that of k-Nearest Neighbor 
(78%).  Pazzani,Muramatsu, and Billsus[27] find that in 
identifying interesting web sites, the naive Bayesian classifier 
has the highest average accuracy with 20 training examples: 
77.1 (standard deviation 4.4). In contrast, backprop is 75.0 
(3.9), k-Nearest Neighbor is 75.0 (5.5), and ID3 is 70.6 (3.6).  
The only study which shows that k-NN outperforms Decision 

Tree and Naïve Bayes is by Horton and Nakai[28].  However, 
they do not have a solid answer as to why k-NN performs 
better on this task.   

The performance of k-NN in this and previous studies is the 
worst among the three classifiers.  Since k-NN uses number of 
nearest neighbor k as one of the parameter in classifying an 
object, then this value might affect the performance of the 
classifier.  In their study using k-NN to classify credit card 
applicants, Islam,Wu, Ahmadi, Sid-Ahmed[29] find that the 
best performance of k-NN is when k=5.  Using this k value, k-
NN outperforms Naïve Bayes.  Using bigger and smaller k 
value, the k-NN performance is worst.  Meanwhile, Batista and 
Silva [30] study three parameters affecting the performance of 
k-NN, namely number of nearest neighbors (k), distance 
function, and weighting function.  They find that for all 
weighting function and distance function, the performance 
increases as k increases up to a maximum between k = 5 and k 
= 11. Then, for higher values of k, the performance decreases.  
Based on this study, we use k = 11 in this experiment. And the 
reason why we choose the upper boundary is because larger k 
values help reduce the effects of noisy points within the 
training data set [29].The choice is also based on our 
experiment onk-NN performance with different k values.  The 
k values we use are: 11, 21, 31, 41, and 51.  The experiment 
use 10-fold cross validation.  The result is shown in Fig. 10. 
The figure shows thatk-NN reaches the best performance when 
we use k = 11.  For k values greater than 11, the performance 
decreases.  Since we have not tested the k values smaller than 
11, hence it is worth trying to use those values in the future 
work. 

Beside low performance, another weakness of k-NN is slow 
runtime performance and large memory requirements [31].  
The k-NN classifier requires a large memory to store the entire 
training set [32].  Hence, the bigger the training set, the bigger 
memory requirement and the larger distance calculations must 
be performed.  This causes the classification is extremely slow.  
This is the reason why the classification time of k-NN in our 
experiment is very big, the worst among the three classifiers. 

 
Fig. 10. k-NN performance on different k values. 

The fast classification time by Decision Tree is due to the 
absence of calculation in its classification process.  The tree 
model is created outside the application, using Weka data 
mining tool.  And the model is converted into rules before 
being incorporated into the application.  Classification by way 
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of following the tree rules is faster than the ones that need 
calculation as in the case of Naïve Bayes and k-NN. 

VII. CONCLUSION 

A novel method to search alternative design in an energy 
simulation tool is proposed.  A classification method is used in 
searching the alternative design.  There are three classifiers 
used in this experiment namely Naïve Bayes, Decision Tree, 
and k-Nearest Neighbor.  Our experiment shows that Decision 
Tree is the fastest and k-Nearest Neighbor is the slowest.  The 
fast classification time of Decision Tree because there is no 
calculation in its classification.  The tree model is created 
outside the application that is using Weka data mining tool.  
And the model is converted into rules before being 
incorporated into the application.  Classification by way of 
following the tree rules is faster than the ones that need 
calculation as in the case of Naïve Bayes and k-NN.  
Meanwhile k-Nearest Neighbor is the slowest classifier 
because the classification time is directly related to the number 
of data.  The bigger the data, the larger distance calculations 
must be performed.  This causes the classification is extremely 
slow. 

Although it is a simple method, Naïve Bayes can 
outperform more sophisticated classification methods.  In this 
experiment, Naïve Bayes outperforms Decision Tree and k-
Nearest Neighbor.  Dominggos and Pazzani[23] state that the 
reason for Naïve Bayes’ good performance is not because there 
are no attribute dependences in the data.  In fact Frank,Trigg, 
Holmes, and Witten[24] explain that its good performance is 
caused by the zero-one loss function used in the classification.  
Meanwhile Zhang [25] argues that it is the distribution of 
dependencies among all attributes over classes that affect the 
classification of naive Bayes, not merely the dependencies 
themselves. 
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