
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

47 | P a g e
www.ijacsa.thesai.org

Blind Turing-Machines: Arbitrary Private

Computations from Group Homomorphic Encryption

Stefan Rass

System Security Group, Institute of Applied Informatics

Alpen-Adria Universität Klagenfurt

Klagenfurt, Austria

Abstract—Secure function evaluation (SFE) is the process of

computing a function (or running an algorithm) on some data,

while keeping the input, output and intermediate results hidden

from the environment in which the function is evaluated. This

can be done using fully homomorphic encryption, Yao's garbled

circuits or secure multiparty computation. Applications are

manifold, most prominently the outsourcing of computations to

cloud service providers, where data is to be manipulated and

processed in full confidentiality. Today, one of the most

intensively studied solutions to SFE is fully homomorphic

encryption (FHE). Ever since the first such systems have been

discovered in 2009, and despite much progress, FHE still remains

inefficient and difficult to implement practically. Similar

concerns apply to garbled circuits and (generic) multiparty

computation protocols. In this work, we introduce the concept of

a blind Turing-machine, which uses simple homomorphic

encryption (an extension of ElGamal encryption) to process

ciphertexts in the way as standard Turing-machines do, thus

achieving computability of any function in total privacy.

Remarkably, this shows that fully homomorphic encryption is

indeed an overly strong primitive to do SFE, as group

homomorphic encryption with equality check is already

sufficient. Moreover, the technique is easy to implement and

perhaps opens the door to efficient private computations on

nowadays computing machinery, requiring only simple changes
to well-established computer architectures.

Keywords—secure function evaluation; homomorphic

encryption; chosen ciphertext security; cloud computing

I. INTRODUCTION

Many security systems at some point employ trusted parties
(e.g., trust-centers, smartcards) to perform computations on
secret (confidential) information. Trying to get rid of such
trusted instances in a security system is often difficult (if not
impossible), and one possible solution is to emulate the trusted
party by a collection of instances rather than a single one. Such
distributed computations usually rely on secret-sharing
techniques, capable of function evaluation such that only a
permitted specified set of coalitions can learn any secret
information or results of the computation. The work of
Gennaro[1][2] and [3]made significant contributions to the
theory in this area known as secure multiparty computation
(SMC). Its practical usefulness, however, is somewhat limited,
as it isoften tied to a vast communication effort and intricate
additional security precautions (e.g., pairwise confidential
channels, broadcast channels, etc.). Furthermore, it is a special
case ofthe more general problem known as secure function
evaluation (SFE), in which a single (potentially malicious)
instance is made to compute some function on externally

supplied (potentially encrypted) inputs. This is the area where
this work falls into, and on which we will exclusively
concentrate us in the following.Commoncomputational models
upon which SFE is based are Turing-machines or circuits,
where the appropriateness of each model depends on the details
of the SFE technique. We will base our construction on Turing-
machines, drawing strongly from circuit complexity models to
ease life in cryptographic matters.

Related work: One famous approach to SFE, leaving the
computations with a single not necessarily trusted entity,is
provided by Yao's garbled circuits (GC) [4]. Here, the
computational model are circuits, which are good for hardware-
implementation (as well as theoretical treatment), yet
somewhat difficult to apply in a generic fashion to handle
inputs of arbitrary size. Despite much progress in this direction
[5]-[7] as well as on applications of GC for SMC [8], [9], only
uniform circuits can be set up effectively in practice, in which
case they are essentially equivalent to Turing-machines.
However, there is so far no analogous concept of a garbled
Turing-machine.

Without doubt, the most powerful (and recent) solution to
SFE is fully homomorphic encryption (FHE). In brief, this is
(or can be) a trapdoor one-way automorphism
 where is a ring or a field, and is the key-
space. We denote the encryption of under the key
 as hereafter. The central property of FHE is its
compatibility with arithmetic operations in the sense that for
any two plaintexts and any key , we get
 and
 . That is, arithmetic manipulations done to ciphertexts
identically apply to the underlying plaintexts. It is easy to
imagine that such an encryption enables any kind of data
processing given ciphertexts only, which is exactly what secure
function evaluation means.While it is usually simple to get a
homomorphic property w.r.t. addition or multiplication (e.g.,
standard encryptions such as RSA or ElGamal are
multiplicatively homomorphic; in general group
homomorphic), homomorphy w.r.t. both operations is intricate
and has only recently been achieved [10]. Since this
breakthrough, FHE has evolved into a major research branch of
cryptography, with many interesting results [11]-[18].

Our contribution in this work is to show that despite the
theoretical beauty of FHE, it is nevertheless an overly strong
primitive for secure function evaluation. To this end, we
investigate the weaker notion of public-key encryption with
equality check (PKEET) [19], and show how the functionality

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

48 | P a g e
www.ijacsa.thesai.org

of a basic (single two-way infinite tape) Turing-machine can be
implemented with simple homomorphic encryption that allows
equality checks. We call the resulting computing model a blind
Turing-machine, since it works on encrypted tape content only,
doing its transitions by virtue of equality checks, and
manipulating the tape content using the homomorphic
properties of the encryption in charge. Hence, the TM does not
see (in plaintext) any of the content that it processes.

The rest of this article is organized as follows: we start from
the PKEET system of [19], which is secure under adaptive
chosen ciphertext attacks, and as such cannot be in any sense
homomorphic. To restore the homomorphic property in the
framework of [19], we describe a generic technique (based on
[19]) to construct a homomorphic public-key encryption with
equality check (hereafter abbreviated as HPKEET) from any
additively homomorphic encryption. We prove it secure under
(non-adaptive) chosen ciphertext attacks (stronger notions are
provably unachievable for any homomorphic encryption in
general). Section II formally introduces the respective models,
with the construction of HPKEET and its security analysis to
follow in section III. Blind Turing-machines (BTM) are
introduced in section IV, based on a brief review of how
conventional Turing-machines (TM) are formally defined.
Security and complexity of computations on such blind TM are
studied along a sequence of subsections.

In section VII we report on a practical implementation of
the encryption. Remarks on future work and open problems
follow in section VIII.

II. DEFINITIONS

We write

 to denote a uniformly random draw of an

element from a set . We let denote the length of in bits
(assuming a canonical string representation, if is a group
element). Our treatment in the following is non-uniform. That
is, we consider the complexity of an algorithm as the size, i.e.
the number of gates, of a circuit representing the algorithm. To
handle inputs of varying length, a circuit (e.g., adversary) of
complexity is thus to be understood as a sequence of circuits
(circuit family) , whose size is a function ,
whenever the circuit has input gates. Besides circuit
complexity, section V will heavily rest on time-complexity
considerations. To distinguish the two notions from each other,
we will refer to circuit complexity simply as complexity, as
opposed to time-complexity, always carrying the prefix „time“.
To further clarify which concept is in charge, we will speak of
circuits to mean circuit families and circuit complexity, and
algorithms when we consider time-complexities.

A public-key encryption scheme is a triple of
circuits . The circuit generates the secret and public
key pair, denoted as . Forhomomorphy, assume
that the encryption function is defined on a
cyclic plaintext group , keyspace and
cyclic ciphertext group . Abbreviating the encryption of a

plaintext under the public key by , we require

group homomorphy under identical public keys, i.e.,
 for all .

The function decrypts a ciphertext upon
given the secret key ; denoted as .

Security of an encryption is commonly defined in terms of
indistinguishable ciphertexts under differently strong attack
scenarios. However, an indistinguishability requirement is
obviously useless once we endow an encryption with
comparison facilities for plaintexts that work on ciphertexts
only (as we attempt here). To fix this, we additionally introduce
an authorization function (circuit) that outputs a (secret)
comparison key, hereafter called a token, which enables
comparisons, while any party not knowing the token will be
unable to distinguish any two given ciphertexts. In that sense,
we consider two different kinds of attacker (following the
framework of [19]), both of which are given all system
parameters and public keys:

Type 1 attacker: This one can do ciphertext comparisons,
in which case we can only ensure the cipher to be one-way but
not indistinguishable.

Type 2 attacker: This one does not have the authorization
token to do comparisons, thus security against this (weaker)
attacker can properly be defined in terms of
indistinguishability.

Onewayness under chosen-ciphertext attacks is defined in
the usual way by giving oracle access to to the attacker

 , indicated as , and engaging in the following

experiment
 -
 with the challenger.

Setup phase: the challenger creates .

Query phase: the attacker (adaptively) chooses a number
of ciphertexts and retrieves from the
challenger for .

Challenge phase: challenger chooses a plaintext that has
not been returned in the query phase, and submits

 to the adversary.

Guess phase: attacker outputs a guess .

The advantage of in - is

We call the encryption -OW-CCA1-secure, if an

adversary of complexity and submitting no more

than queries has an advantage
 -

 .

Indistinguishability under chosen-ciphertext attacks is

defined by the following experiment
 -
 . As before,

we assume oracle access to decryptions under :

Setup phase: the challenger creates .

Query phase: the attacker (adaptively) chooses a number
of ciphertexts and retrieves from the
challenger for .

Challenge phase: the attacker generates two messages

 , where and . The

challenger receivers , chooses

 , and returns

 .

Guess phase: attacker outputs a guess .

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

49 | P a g e
www.ijacsa.thesai.org

The advantage of in - is

We call the encryption -IND-CCA1-secure, if an

adversary of complexity and submitting no more

than queries has an advantage
 -

 .

Comparisons can be done by allowing decryptions of either
the plaintext or a hash-value thereof (not revealing the plaintext
as such). To this end, we define a commitment-like hash-
function that acts on the same plaintext group as the encryption
does. For security, we require the discrete logarithm problem to
be difficult on this group. Formally, let generate the
group . We call a -DL group, if

 for all circuits

 of complexity .

A. Asymptotic Security

For generality, we give concrete security statements here in
terms of the security parameters , leaving their obvious
respective asymptotic formulations aside. Throughout the rest
of this work, we confine ourselves to stressing that all
parameters, in the asymptotic formulation, would depend on a
(common) security parameter that usually controls key-
sizes, group structures or similar (consequently, it goes as a
parameter into the key-generation circuit). As an example,
the asymptotic version of -OW-CCA1 security would
read as follows: for every polynomials there is a
negligible function 1 such that the encryption is
 -OW-CCA1 secure. All results and
definitions to follow can be restated in a similar manner.

III. THE ENCRYPTION SCHEME

Our encryption scheme will allow comparisons by attaching
a keyed hash of the inner plaintext to the ciphertext, where the
key for the hash is also encrypted2. Comparisons then need the
permission by the originator of the ciphertext, who must
provide the decryption key to disclose the hash-key. This key is

obtained by an authorization functionAut. The comparison

procedure com then simply compares the “decrypted“ hashes.
To distinguish the components of our HPKEET-encryption

scheme (KeyGen, Enc, Dec, Aut, Com) from that of the
underlying OW-CCA1 and IND-CCA1 secure encryption
 , we use a different notation hereafter. Moreover, we
assume that the plaintext group is such that DL-
commitments to are well-defined; that is, we can
compute for a generator of and some value .
This is trivially satisfied for prime order groups over the
integers (say, if for some prime), and

1
Negligibility of a function is defined in the usual way, by requiring for

every the existence of a constant so that

 as soon as

 .
2
This proposal is as well found in [19], where it is instantiated in an insecure

manner under an adaptive chosen ciphertext attack scenario (CCA2). We

consider a similar instantiation (equally well not IND-CCA2 secure), but

prove it secure in the weaker model of (non-adaptive) chosen-ciphertext

attacks (IND-CCA1).

requires only simple additional measures in elliptic curve
settings.

KeyGen: Create and . Put

 and . Choose two (distinct)
generators of . The system parameters globally known to
all instances are and .

Enc: Given the message , the encryption is

 by choosing an integer and returning

 .

Dec: If the given ciphertext cannot be parsed as an
element

 , return . Otherwise, put

 and verify if

 Output upon a match, and otherwise.

Aut: To authorize a third party to do comparisons, Aut
extracts and returns the token from the secret key
 .

Com: Given a token and two (syntactically correct)

ciphertexts

 , compute

 and output the result of the comparison

 in .

Notice that a trivial instantiation of the above scheme by a
symmetric (e.g., AES) or deterministic (e.g. plain RSA)
encryption would be insecure. Even though comparisons are
easy in that case (ciphertext equality implies plaintext
equality), such a scheme would not be indistinguishable, and
thus fail to achieve the security that we desire against a type 2
attacker.

A. Homomorphy

Let two ciphertexts
 for

 be given, and consider their component-wise product in
 , which is

This is a valid ciphertext if and only if the underlying
encryption is additively homomorphic. Unfortunately,
we cannot instantiate as a Paillier-encryption, since
this works over a composite modulus for which is
not cyclic (in general). An “almost” compatible IND-CCA1
secure encryption, except for its multiplicative homomorphy, is
found in Damgårds version of ElGamal encryption [20].
Changing the multiplicative homomorphic property of
ElGamal encryption into an additive one is easy by encrypting
commitments instead of , if the plaintext space is only of
“tractably small size” (e.g., polynomial size in the security
parameter) to let us recover from efficiently. While this
requirement is easily met in our application to Turing-
machines, we stress that care has to be taken in the encoding of
 in order to avoid trial opening of commitments (and thus

breaking the encryption) during an invocation of Com, if the
token (secret key to decrypt the randomizer) is available

(through an invocation of Aut). We take a closer look at this
now.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

50 | P a g e
www.ijacsa.thesai.org

B. Security Analysis

We start with a (well-known) necessary condition for
security to avoid brute-force plaintext search.

1) Offline Message Recovery
Plaintext discovery by trial encryptions and checking

equality with the given ciphertext is essentially unavoidable,
but can be made infeasible if the plaintexts have high min-
entropy: recall that a random plaintext over a set has
min-entropy , if is the largest number such that

 for all .

Lemma 1. If an encryption function is such that for
any circuit of complexity , we have
 for any given ciphertext , then the

plaintext has min-entropy

 (1)

Where is the complexity of computing an encryption,

and measures how much circuitry is required to string-

compare two ciphertexts.

Proof.If the lemma were wrong, then a circuit can do
encryptions (of complexity) and comparisons (of
complexity) to determine the correct plaintext. From the

geometric distribution, it is easy to obtain the number of trials
until the success probability becomes . Constraining this
number to be less than (assuming the circuitry

to be divided equally into blocks that do encryptions and
comparisons), gives the stated min-entropy bound.

Lemma 1 is a necessary yet insufficient condition for
security. Its asymptotic counterpart (i.e., when
 is the security parameter) is a standard requirement for
security of deterministic or searchable encryption (cf. [21])
against polynomial time-bounded attackers. We establish
security of the encryption as such in the next section, and
postpone a discussion on how to practically assure condition
(1) until section IV.B.

2) Chosen Ciphertext Security
As the encryption comes with comparison facilities, we

modify the OW-CCA1 and IND-CCA1 games appropriately,

by letting the attacker submit Aut-queries besides decryption
requests. To distinguish the experiments concerning HPKEET
from that on the underlying cipher , we denote these

extended versions as
 -
 and

 -
 , i.e.,

security under chosen ciphertexts and equality checks. The

definition of
 -
 is the same as that of

 -
 ,

except for a slight modification in the query phase:

 - query phase: the attacker submits no more

than queries of the giving for (adaptively)
chosen ciphertexts or , for an authorization query.

Obviously, we cannot apply the same change to

 - , so we define this experiment exactly identical to

 - .

By construction, our encryption is a humble application of
 on two stochastically independent quantities and , along
with a product of two commitments thereof. Hence, the
reductions establish only a slight advantage over that in
breaking . Formally, we have

Lemma 2. Let be defined over an
 -DL-group of plaintexts, where is the
maximum complexity of an encryption or decryption, and
 is the total complexity of one exponentiation with
inversion and multiplication in . If is
 -OW-CCA1-secure, then the
corresponding HPKEET scheme is -OW-
CCA1-secure.

Proof.Suppose the existence of an attacker with advantage

 -

 and complexity and making

queries. We construct an attacker that wins
 -

as

follows: given from
 -
 , sets

 and obtains on its own.

It then simulates
 -
 for , answering the -th query

(for) as follows:

 Dec-queries on an incoming HPKEET ciphertext
 are forwarded as decryption challenges

 to the OW-CCA1 challenger, which returns

 . Then, goes on by

decrypting using its own secret key into

 , and returns if

 in

 , and otherwise. We stress that the keypairs
 and for encrypting the payload
and the randomizer are in any case chosen stochastically
independent. Hence, actually acts properly if it
generates by itself, and receives the other
pair from an external source (the OW-CCA1
challenger).

 Aut-queries are answered faithfully by responding with
 .

In the challenge phase, the complexity of is thus
dominated by simulations of half of the decryption of
challenges from , which is .

To ease notation, let us incorporate all information from the

query phase of
 -
 into the circuit , which in the

guess phase of
 -
 computes its output upon a given

ciphertext

 . Observe

that
 , in an information-theoretic sense, does not provide any

information on
 , and uniquely determines from

 .

Therefore, in any
 -
 execution in which at least one

Aut-query has been submitted,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

51 | P a g e
www.ijacsa.thesai.org

for some circuit . Obviously, one could convert from the

inputs
 to

 (and

back) by choosing (or decrypting) the randomizer and doing
(or inverting) the remaining operations. Hence, the complexity

of is bounded from above by , where and
 are the complexities of an encryption/decryption
(maximum thereof), and an exponentiation with inversion and

multiplication in . The advantage of is the probability of

guessing correctly either from
 or alone, or

from both. From the union bound and by assuming that is an
 -DL-group, we get

 extracted from

 extracted from

The complexity of is thus
 .

In the challenge phase of
 -

, upon incoming of

 , can therefore run in place of , to

discover from the OW-CCA1 challenge , with

an advantage
 -

 contradicting the security of

 .

Likewise, we establish IND-CCA1-security of HPKEET by
virtue of the following well-known concrete result on how
indistinguishability implies semantic security.

Lemma 3. If has -indistinguishable

encryptions, and has complexity , then

is -semantically secure where -

semantic security is defined as follows: for every
distribution over messages, every functions
 (of arbitrary complexity) and
every circuit of complexity , there is another circuit
 with complexity so that

Lemma 4. Let be defined over a group of
plaintexts, where bounds the complexity of an
encryption or decryption, and is the complexity of one
exponentiation with inversion and multiplication in . If
 is -IND-
CCA1-secure, then the corresponding HPKEET scheme is
 -IND-CCA1-secure.

Proof.Besides a few modifications that we describe now,
the line of arguments is completely analogous as in the proof of
Lemma 2, except for the important difference that the

adversary is not allowed to issue Aut-queries in
 -
 .

Assume an attacker with -advantage in
 -
 . The

complexity of during the challenge phase is (as before)

 . Upon the incoming challenge

in
 -
 , embeds it in a HPKEET ciphertext

 , for

 . Observe that a unique

value exists for which
 . For

 to be a

valid HPKEET ciphertext, should equal
 , which is

most likely not the case. We can fix this by exploiting the
indistinguishability of encryptions under as follows: as is
 -IND-CCA1-secure,Lemma 3lets
us replace by another circuit that has complexity

 – and delivers the decision

 so that

(2)

Observe that

 for some random ,
which means that this second parameter to – in an
information-theoretic sense – does not provide any additional
information on . So, there is another circuit , no more

complex than , such that

 Now, we can construct an attacker

 that wins the IND-CCA1 game as follows: invokes
on input of the IND-CCA1 challenge , and output whatever
 guesses. Inequality (2) tells that the result of differs
from that of (on a syntactically correct input) with a
probability of less than . Moreover, would by assumption
guess correctly with an advantage of at least . So by the
second triangle inequality, and with the abbreviation

 , we get

where has complexity
 ,taking at most queries, which contradicts the assumed
IND-CCA1-security of .

IV. BLIND TURING-MACHINES

Informally, a blind Turing-machine (BTM) is a normal TM,
having its tape alphabet and transition function encrypted under
a homomorphic public-key encryption with plaintext equality
checking. The transition between states is made by
homomorphic manipulations, and the choice of the current
transition is made upon plaintext comparisons. We describe the
construction over a sequence of subsections to follow.

A. Definitions

We start with a standard two-way infinite tape Turing-
machine , working over a tape alphabet with
 being its state-space (including the halting state), and
being the initial state. The mapping describes the state
transitions in terms of transforming configurations of the TM to
one another. A configuration is a tuple
 , describing the fact that the machine is
currently in state , with symbol under its head, and
with being the words to the left- and right of the
head. The transition function is a finite set

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

52 | P a g e
www.ijacsa.thesai.org

of transformations , i.e.,
moves to state and modifies the tape content toward
and . Without loss of generality, we restrict our attention to
deterministic TM here, as there is no conceptual difference in
the nondeterministic case, except that we work on a transition
relation rather than a function (as will become clear below, the
necessary changes to define blind nondeterministic TM are all
obvious).

We abbreviate configurations as and write as a
shorthand of . A computation of on an initial
configuration is a finite sequence of configurations
 that ends in a halting state
and output configuration . The number of steps is called
the machine's time-complexity, which normally depends on the
size of the input (polynomial mostly, if we are after efficient
algorithms).

Notice that for our purposes, we do not distinguish moving
steps (where only the head is relocated) from substitution steps
(in which the current symbol on the tape is replaced by
something else). Also note that it is difficult to hide the head
movements from the execution environment of the TM (e.g., a
universal TM), yet it is necessary to “decorrelate” the head
movement pattern from the tape content to achieve
confidentiality of the overall computation. Otherwise, the
movement of the TM discloses the tape content length and
perhaps even reveals the current action that is been carried out
(by virtue of some characteristic moving sequences, as would
perhaps be the case for pen-and-paper multiplication or
division by repeated subtraction which reveals the quotient via
counting the number of subtractions, regardless of whether or
not they are encrypted).

In section V, we will look at necessary precautions to
prevent leakage of information from the Turing-machines head
movements alone (quasi as a side-channel to the data as such).
Note that similar concerns may apply to garbled circuits as
well, as the way in which circuit gates (whether or not they are
garbled) are interconnected may already leak partial
information about the circuit's potential functionality. Still, we
emphasize that our main goal in this work is to protect the data
being processed. Hiding the algorithm itself from the execution
environment is subject of future considerations and outside the
scope of this current work.

B. Encoding of States and Tape-Symbols

Take a conventional TM . Let HPKEET
operate on the plaintext space and ciphertext space , and
fix an (invertible) encoding , so that we can
encrypt both, the state and current tape symbol.

Computations are usually done over relatively small
alphabet, say bits) or radix-10 numbers (
). Moreover, the number of states can be expected to
be feasibly small as well (otherwise, the representation of
could not be handled by the universal TM in feasible time).

Hence, if for some security parameter , then
high min-entropy in the sense of (1) can be assured by
sufficiently large and by assigning random and unique
representatives from to each element of , in order to
thwart trial decryptions succeeding in polynomial time.

C. Construction

Our blind TM works over ciphertexts only, and does its
transitions using a proper „encryption“ of the original state
transition function in . To this end, we extend toward

 and define the blind TM as the pair

 . Here, the -accent is used to denote
the „encrypted“counterparts of the respective elements in 's
description. We stress that the description is technically
complete but to this extent insecure, as the head movement
pattern may leak information about the tape content. For the
sake of a complete description at this point, however, we
postpone the necessary details on security to section V. A blind
TM works exactly as a normal TM, but employs HPKEET to
do transitions over encrypted configurations as follows:

1) Encrypted configurations: given a configuration
 of , the respective encrypted configuration

 (under the public key , which we omit in the following

to simplify our notation), is defined as

Where are the encryptions of the tape content under
 in electronic codebook mode.

2) Transition functions: for each pair of consecutive

configurations

of , the transition function for the blind TM is created

from as

Where and , both computed in

 . So, unlike the transition of the TM, a blind TM
encrypts only the “difference” between the current and next
configuration, in order to enforce re-randomization via
homomorphic manipulations on the ciphertexts. Hence,
actually doing a transition is now a two-step process:

a) We invoke Com with the token on the

current (encrypted) configuration of the BTM to match the

states and symbols, and retrieve

b) We create the new configuration from the current

one by computing in

 ,

so as to resemble 's original move via the homomorphic

properties of Enc, which is easily verified to be

Doing tape manipulations by other means than
homomorphic transformations for the sake of stronger IND-
CCA2 security is potentially insecure, as we will discuss in a
little more detail in section V.A.

Based on this construction, it is a trivial matter to decrypt
and recover the tape content by virtue of , and we omit
the details here. However, note that like in a setting of fully

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

53 | P a g e
www.ijacsa.thesai.org

homomorphic encryption, the state transitions require the token
as an “evaluation key”.

V. SECURITY OF BLIND COMPUTATIONS

By construction, an execution of a BTM produces a
sequence of encrypted configurations, enjoying a one-to-one
correspondence to the respective sequence of configurations
arising from an execution of . However, to retain

indistinguishability in experiment
 -

, we ought to

equalize the length of computations on inputs of equal length,
and make the head movements indistinguishable over different
inputs. To this end, we must transform the given Turing-
machine accordingly before turning it into a blind TM.

To equalize the length of computations, we restrict the
time-complexity bound of to time-constructible functions.
We say that a function is time-constructible, if there
is a Turing-machine , which for every input of length
takes exactly steps for its computation on (not
necessarily saying that it computes anything useful). For
example, every polynomial function is time-constructible (but
also exponential functions, sums, products and compositions of
time-constructible functions retain this property).

Furthermore, we must logically decouple the tape content
from the head movement pattern to avoid leakage of
information via tracking what the head of the blind TM does.
Turing-machines whose head movements are a function of the
time only (hence independent of the tape content) are called
oblivious TM. Besides theoretical interest in these for the sake
of constructing circuits, the following well-known theorem will
help to establish security of blind computations:

Theorem 1. (Pippenger and Fischer [22]) Any Turing-
machine that runs in time can be simulated by an
oblivious Turing-machine in time .

A naive yet constructive approach to create an oblivious
TM from a given one is to mark where the head of the tape is
and then scan the tape to locate the head marker in each step.
This yields a suboptimal time bound of for a running
time of on the original TM, and Theorem 1 gives in fact the
optimal bound.

So, given a Turing-machine whose time-complexity is a
time-constructible function, we first transform into an
oblivious Turing-machine , running in time , which is
again time-constructible by some Turing-machine . Then,
we let our blind TM run in parallel to on a second tape,
so as to equalize the length of its computation, while running
the oblivious TM to do the actual computation with head
movements that are independent of the data. This proves the
following (intermediate nevertheless important) statement:

Theorem 2. Let be a Turing-machine, whose time
complexity is a time-constructible function. Then there
exists a functionally equivalent Turing-machine with the
following property: given any two input words of
the same length , a computation of takes
identical head movements on both, and .

We can now turn to the task of lifting security assurances
that hold for HPKEET towards security for an entire
computation on a blind oblivious Turing-machine. Notice that
so far, we considered security only for one message to be

deciphered (as in
 -
) or recognized (from two given

ones, as in
 -
). Security of a computation of a blind

TM, however, requires a slight change to the experiments, in
the sense that the challenge-phase in both games now itself is
repeated a number of times that equals the time-complexity3
of the underlying TM . Omitting the obvious details on the
changes to the experiments here for brevity, let us directly turn
to the respective security conclusions about HPKEET under
many encryptions (each one of which arises along the
emulation of by a blind TM).

Lemma 5. If HPKEET is -IND-CCA1 secure
for a single encryption, then it is -
IND-CCA1-secure for encryptions, when bounds the
complexity of an encryption using HPKEET. Given the
additional hypothesis that all random encrypted plaintexts
have high min-entropy in the sense of Lemma 1, then the
system is also -OW-CCA1-secure for
 encryptions.

Proof (sketch).Indistinguishability is shown by assuming
the existence of a pair of (with probability)
distinguishable -tuples, and constructing hybrids to infer
distinguishability in the single-message case with probability .
To this end, the distinguisher must emulate encryptions of no
more than (fixed) input messages, which enlarges the circuits
(and yields the modified complexity-bounds).

Onewayness is analyzed in a similar fashion, but is slightly
simpler in the details: if a circuit exists that upon input of
ciphertexts ouputs one of the underlying plaintexts with
probability , then a new circuit can be constructed to

correctly answer a single challenge in
 -

 as follows:

 randomly constructs challenges

 (adding
the complexity), and invokes on these
challenges along with the given challenge . With
probability , outputs one plaintext from the

ciphertexts. The chances for this to be are

 ,

contradicting the presumed OW-CCA1-security of HPKEET.

We stress that onewayness is analyzed under the
assumption that plaintext comparisons are possible. Therefore,
we must assume high min-entropy of plaintexts, but cannot –
and in fact do not – rest on a secret encoding (as described in
section IV.B, as this would prevent the constructed machines
from emulating proper encryptions (for the same reason,
security of multiple encryptions fails in the secret key
paradigm). For one-wayness to be assured, however (and
fortunately), we do not need the encoding function in the
technical arguments, since it is easy to generate random
plaintexts whose min-entropy is high, even if these do not lie in
the image of the encoding function that the honest party

3
Note that we do not need the space-complexity here, as we only need to

count (bound) the number of modifications on the tape, which is bounded by

the number of transitions, which is the time-complexity.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

54 | P a g e
www.ijacsa.thesai.org

Fig. 1. Usage scheme of a blind Turing machine

potentially uses. Under the additional min-entropy assumption,
trial decryptions under a complexity bound or better
) are ruled out.

Since a BTM basically produces a sequence of ciphertexts
rather than a single one, it is a simple matter to instantiate the
concrete security parameters of HPKEET based on Lemma 5.
Theorem 3 assumes an oblivious Turing-machine to be
available, which is assured by theorem Theorem 2.

Theorem 3. Let be an oblivious deterministic Turing-
machine with time-complexity . If HPKEET is -
OW-CCA1/IND-CCA1 secure, then the execution of the
BTM constructed from is -OW-
CCA1 secure. Furthermore, if is time-constructible by
another Turing-machine , and if the oblivious BTM
emulates (on two parallel tracks on its tape) the executions
of both, and , stopping not before both executions
terminate, then the execution is also
 -IND-CCA1 secure.

Note that the apparently awkward mix of time-complexities
and circuit complexities that appears in the above statement is
actually meaningful, as the time-complexity merely determines
how many ciphertexts an execution of an algorithm will
provide to the cryptanalytic circuit (being an adversary of type
1). Hence, the circuit complexity is somewhat proportional to
the time-complexity.

A. (In)security of Non-Homomorphic Transitions

Encryptions with equality checks have been designed
earlier [19] under the stronger notion of security against
adaptive chosen ciphertexts (OW/IND-CCA2), which makes
the encryption necessarily no longer homomorphic. Doing a
transition by a humble replacement of the current tape
ciphertext (encrypted symbol) by another is possible, yet

removes the indistinguishability property of computations,
because an (encrypted) symbol will always and necessarily be
replaced by the same symbol, even if the computation itself is
different. As a consequence, distinct plaintexts , even
if they are equally long, can be distinguished by an external
instance upon different sequences of configurations. This can

be done without the Aut-token, so that the computation would
be insecure in our modified IND-CCA1 game (where the
challenge phase includes multiple ciphertexts), and hence be
insecure in an adaptive chosen-ciphertext scenario too.

VI. PUTTING A BLIND TM TO WORK

With the ground prepared in previous sections, we now
give the complete picture of how a blind TM is created and
envisioned to work in a potentially hostile environment. Let
Alice be the honest party who wishes to have her data
processed externally by a service provider (SP), having a public
key . Alice has her own secret/public key pair .
For the sake of practicality, let us assume that Alice uses
Damgårds Version of ElGamal encryption for , which
is multiplicatively homomorphic and known to be CCA1-
secure [20]. To change the multiplicative homomorphic
property into an additive one, Alice encrypts commitments
instead of , so that the HPKEET ciphertexts now take the
form

 . Assuming that the tape

alphabet and number of states of her TM is feasibly small,
recovering from is doable via lookup-tables. This adds
an additional commit/decommit stage– shown dashed – in Fig.
1, where the overall process is sketched, including locations of
type 1 and type 2 adversaries.

To have the SP process her data using a Turing-machine ,
while not learning anything about it, Alice performs the steps
below.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

55 | P a g e
www.ijacsa.thesai.org

1) She constructs an oblivious Turing-machine that

simulates and on a second track/tape (obliviously) runs the

machine that takes exactly steps to terminate for

an input . This is to equalize the length of computations and

head movements, regardless of the actual input. Call the

resulting Turing-machine (again, for simplicity).

2) She constructs a blind Turing-machine (code) from

 as described in section IV. In doing so, she prepares the

tape content (data) in a three steps:

a) Encode each tape symbol and state by the function

(to assure high min-entropy).

b) Compute a commitment to each encoded state and

symbol (to make the multiplicatively homomorphic encryption

additively homomorphic; this step can be omitted if

is additively homomorphic already, hence is shown dashed in

Fig. 1).

c) Encrypt the commitment under the public key .

3) She then sends all information to the service provider,

potentially under the eyes of a type 2 attacker (cf. section II),

against which Theorem 3 assures IND-CCA1 security.

4) She submits the authorization token in

encrypted form (under the public key) to the service

provider. Observe that the encrypted authorization token plays

the role of something like a “license” to execute the given

Turing-program, which would otherwise not be possible.

The service provider executes the (encrypted) code, i.e.,
runs the blind Turing-machine on the encrypted tape content,
and returns the encrypted tape content. While doing so, the SP
may attempt to learn information from the execution of the
BTM or the intermediate tape contents, in which case the SP
becomes a type 1 attacker (cf. section II), against which
Theorem 3assures OW-CCA1 security.

The decryption of the ouput tape content is done as the
encryption, only in reverse order, and by virtue of lookup tables
to „decommit“ the decrypted commitments , if there has
been a commitment stage during the data preparation. The
results are finally available after decoding (function).

TABLE I. COMPLEXITIES (IMPLEMENTATION-RELATED)

Object/Action Complexity

HPKEET

KeyGen

Aut

Com

blind TM
transition selection

Tape manipulation

It is as well imaginable to let the program come from a
different instance (entity in the system) as the data, given that
both instances have agreed on a common encoding. This
scenario would be, for example, useful when a software is

provided by some vendor , and shall be executed on data that
the customer owns, while protecting the intellectual property
of the software vendor. If the execution of the software shall be
outsourced to an SP, then and both submit their
authorization tokens to the SP, while and agree on some
common encoding to have the data compatible with the code.
The SP then acts as usual to compute the results in privacy. The
customer can in that case only receive and decrypt the
results, while being itself unable to execute the program as
 lacks 's authorization (token).

Another variation could be encrypting the data under
someone else's public key, to make the results available to
another (third or fourth) party, which sees neither the input data
nor the code.

VII. PERFORMANCE AND PRACTICAL ASPECTS

Assuming that the universal blind TM can select the proper
transition based on the comparison facility of HPKEET, there
would be no change in the asymptotic complexity of any
function, whether it is computed on a conventional or blind
Turing-Machine. More concretely, however, if a function
 on a value can be computed in
time , then a blind TM can compute the same result in
time , where is a constant time bound needed to
manipulate a state (via homomorphic operations on the
ciphertext). A similar argument can be made for the change in
the space-complexity, since tape symbols are now encoded as
group elements, thus multiplying the required space as well by
a concrete constant factor.

Practically, a blind TM will need more time to complete its
computation than a conventional TM since it has to find the

proper transition based on invocations of Com. However, this
can easily be accelerated if the selection is done by a hash-table
taking the commitment of the current tape symbol (being a

HPKEET ciphertext

) as the key for

hashing. The transition can then be obtained from the hash-
table in roughly steps, as the commitments can
reasonably well be assumed as being uniformly distributed
(hence ideal for hashing).

Table I shows an overview of the actions involved when
computing on ciphertexts, including actions that refer to
HPKEET alone, taking into account that tape symbol
commitments are encrypted, decrypted and compared (with the
obvious changes to the formal descriptions given in section III).

Here, the symbols e, i and m stand for exponentiation,
inversion and multiplication inside the group . The notation
“ ” where refers to executions of the
respective algorithm implementation of the encryption
 underlying HPKEET.

A (not very much optimized) Java implementation of our
HPKEETcryptosystem based on Damgård's version of
ElGamal encryption brought up some runtime estimates on a
3.6 GHz computer with 8 GB RAM and 64 Bit Windows 7, as
shown in Table II. The numbers are based on an average of 100

invocations of Enc, Dec and Com for key lengths of
 bit (according to current
recommendations of the NIST and other bodies). The value for

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

56 | P a g e
www.ijacsa.thesai.org

a transition selection and tape manipulations give a rough
estimate on how much slower a blind TM will run compared to
a conventional TM (i.e., the factor from the first paragraph).

VIII. OUTLOOK AND OPEN PROBLEMS

A practical topic of future work is the implementation of
the concept within a practical computer architecture including
assembler code and hardware. Challenges in such a practical
implementation may concern the realization of other arithmetic
operations such as integer divisions with remainder or logical
manipulations. Results on this will be reported in companion
and subsequent work.

TABLE II. BENCHMARK RESULTS (FOR BEING DAMGÅRD-
ELGAMAL ENCRYPTION)

Key size 256 bit 512 bit 2048 bit

R
u

n
n

in
g

 t
im

e
 [

m
s]

 Enc

Dec

Com

BTM transition selection

BTM tape manipulation

The central contribution here is the insight that (only)
additively homomorphic encryption can be used to construct
Turing-machines that work on encrypted information only, by
virtue of public-key encryption with equality check. Hence, this
work adds a fourth alternative to existing approaches to secure
function evaluation, besides fully homomorphic encryption,
garbled circuits or secure multiparty computation.
Unfortunately, the necessary ingredient of additively
homomorphic encryption that is secure against chosen
ciphertext attacks is surprisingly rare, while non-homomorphic
encryptions under stronger security notions are better known.
Taking a closer look at why we require homomorphy to do
state transitions reveals that the weaker requirement of re-
randomization of ciphertexts is actually sufficient to invalidate
the arguments of section V.A. An interesting open problem is
thus finding encryptions that allow re-randomization of
ciphertexts but are still CCA2-secure (if such encryptions
exist).

REFERENCES

[1] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified VSS and fast-track

multiparty computations with applications to threshold cryptography,” in
Proceedings of the 17th annual ACM symposium on Principles of

distributed computing. New York, NY, USA: ACM, 1998, pp. 101–111.

[2] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: outsourcing computation to untrusted workers,” in:

CRYPTO’10. Springer, 2010, pp. 465–482.

[3] M. Hirt, “Multi-party computation: Efficient protocols, general
adversaries, and voting,” Ph.D. dissertation, ETH Zurich, 2001.

[4] A. C.-C. Yao, “How to Generate and Exchange Secrets (Extended

Abstract),” in FOCS. IEEE, 1986, pp. 162–167.

[5] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR

gates and applications,” in Automata, Languages and Programming, ser.
Lecture Notes in Computer Science, Springer, 2008, vol. 5126, pp. 486–

498.

[6] T. Schneider and M. Zohner, “Gmw vs. yao? efficient secure two-party
computation with low depth circuits,” in Financial Cryptography and

Data Security, ser. Lecture Notes in Computer Science, A.-R. Sadeghi,
Ed. Springer, 2013, vol. 7859, pp. 275–292.

[7] W. Melicher, S. Zahur, and D. Evans, “An intermediate language for

garbled circuits,” in IEEE Symposium on Security and Privacy, 2012.

[8] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster Secure Two-Party
Computation Using Garbled Circuits,” in 20th USENIX Security

Symposium. USENIX Association, 2011.

[9] Y. Lindell, B. Pinkas, and N. P. Smart, “Implementing two-party
computation efficiently with security against malicious adversaries,” in

Proceedings of the 6th international conference on Security and
Cryptography for Networks, ser. SCN ’08. Springer, 2008, pp. 2–20.

[10] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in

Proceedings of the 41st annual ACM symposium on Theory of
computing, ser. STOC ’09. New York, NY, USA: ACM, 2009, pp. 169–

178.

[11] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully

Homomorphic Encryption Over the Integers,” in EUROCRYPT, ser.
LNCS, vol. 6110. Springer, 2010, pp. 24–43.

[12] D. Stehlé and R. Steinfeld, “Faster Fully Homomorphic Encryption,” in

ASIACRYPT, ser. LNCS, vol. 6477. Springer, 2010, pp. 377–394.

[13] N. P. Smart and F. Vercauteren, “Fully Homomorphic Encryption with
Relatively Small Key and Ciphertext Sizes,” in PKC, ser. LNCS, vol.

6056. Springer, 2010, pp. 420–443.

[14] Z. Brakerski and V. Vaikuntanathan, “Fully Homomorphic Encryption
from Ring-LWE and Security for Key Dependent Messages,” in

CRYPTO, ser. LNCS, vol. 6841, 2011, pp. 505–524.

[15] Z. Brakerski and V. Vaikuntanathan, “Efficient Fully Homomorphic
Encryption from (Standard) LWE,” in FOCS 2011. IEEE, 2011, pp. 97–

106.

[16] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) Fully
Homomorphic Encryption without Bootstrapping,” in ITCS. ACM,

2012, pp. 309–325.

[17] C. Gentry, S. Halevi, and N. P. Smart, “Fully Homomorphic Encryption

with Polylog Overhead,” in EUROCRYPT, ser. LNCS, vol. 7237.
Springer, 2012, pp. 465–482.

[18] Z. Brakerski, “Fully Homomorphic Encryption without Modulus

Switching from Classical GapSVP,” in CRYPTO, ser. LNCS, vol. 7417.
Springer, 2012, pp. 868–886.

[19] Q. Tang, “Public key encryption supporting plaintext equality test and

user-specified authorization,” Security and Communication Networks,
vol. 5, no. 12, pp. 1351–1362, 2012.

[20] H. Lipmaa, “On the CCA1-Security of Elgamal and Damgård’s

Elgamal,” in ISC, ser. LNCS, vol. 6584. Springer, 2010, pp. 18–35.

[21] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently
searchable encryption,” in Advances in Cryptology CRYPTO, ser.

LNCS, vol. 4622. Springer, 2007, pp. 535–552.

[22] N. Pippenger and M. J. Fischer, “Relations among complexity
measures,” Journal of the ACM, vol. 26, no. 2, pp. 361–381, Apr. 1979.

