
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

67 | P a g e
www.ijacsa.thesai.org

Grouping-based Scheduling with Load Balancing for

Fine-Grained Jobs in Grid Computing

Rabab Mohamed Ezzat

Department of Computer Science

Faculty of Computers and

Information

Helwan University

Cairo, Egypt

Amal Elsayed Aboutabl

Department of Computer Science

Faculty of Computers and

Information

Helwan University

Cairo, Egypt

Mostafa Sami Mostafa

Department of Computer Science

Faculty of Computers and

Information

Helwan University

Cairo, Egypt

Abstract—Grid computing is characterized by the existence of

a collection of heterogeneous geographicallydistributed resources

that are connected over high speed networks.Job scheduling and

resource management have been a great challenge to researchers

in the area of grid computing.Very often, there are applications

having alarge number of fine-grainedjobs.Sending these fine-

grained jobsindividually to be executed on grid resources that

have high processing power reduces resource utilization and is

thus uneconomical. This paper presents efficient grouping-based

scheduling models that group fine-grained jobs to form coarse-

grained jobs which are sent for execution on grid resources. Our

groupingstrategy is based on the processing capability of

resources and the processing requirements of grouped jobs.A

load balancing approach is also presented to achieve efficient

utilization of resources. Simulation experiments were conducted

using the Gridsim toolkit. Results show that thetotal simulation

time and the cost are improved by grouping.Furthermore, our

load balancing approach enhances resource utilization and

achieves load balancing among resources.

Keywords—grid computing;job scheduling; job grouping; load

balancing; resource utilization; Gridsim

I. INTRODUCTION

Grid Computing is a computing paradigm that emerged in
the late 1990’s [10]. The emergence of this paradigm was
mainly due tothe spread of powerful computers that have high
computing power at low cost in addition to the popularity of
the internet and availability of high speed networks [1]. Grid
computing allows sharing and using of geographically
distributed resources including supercomputers, data sources
and specialized devices that are owned by different
organizations [2].There are large scale compute-intensive
problems in different fields such as engineering, science and
economics that need high computing power to be solved. Grid
computing enables sharing resources that are connected
through the internet for solving these problems.

Resource management and job scheduling have been a
cause of great challenge to researchers in the field of grid
computing[7]. Grid scheduling is a complex process which
differs from scheduling in traditional distributed systems
because of the characteristics of grid computing environment:

 Resources are geographicallydistributed over different
multiple administrative domains.

 Resources are not under central control.

 Resources are heterogeneous; different in architecture
and management policies.

 Jobsin the grid are from different usershaving different
requirements.

Many applications consist of a large number of fine-
grained jobs having small scale processing requirements.
Sending these jobs individually to be executed on grid
resources that have high processing power reduces resource
utilization and is thus uneconomical. Moreover, the total
communication time for transmitting each fine-grained job to
the resource may exceed the total computation time of that job
on the resource.In grid computing, and for such type of
applications, having coarse-grained jobs is more efficient and
cost-effective than fine-grained jobs [12]. Therefore, instead
of sending such jobs individually, coarse-grained jobs can be
created by collecting a suitable number of jobs [3]. Grouping
fine-grained jobs together to form coarse-grained jobs reduces
the transmission time and increases resources utilization [4].
The total processing time needed for each fine-grained job
includes:scheduling time that is the time spent to schedule the
job, Sending time that is thetime spent to send the job to a
resource, execution time that is the time spent to execute the
jobandreceiving time that is the time spent to receive the job
from a resource after execution.

Scheduling is the process of assigning or mapping jobs to
suitable resources that execute jobs achieving the following
goals [4]:

 Minimizing the processing time.

 Minimizing processing cost.

 Achieving load balancing among resources.

A grid computing scheduler is responsible for selecting the
most suitable machine or computing resource for
processingeach job to achieve maximum system throughput.
In case of having fine-grained jobs requesting service on the
grid, these fine-grained jobs are grouped to form coarse-
grained jobswhich are then handled by the scheduler in such a
way that achieves loadbalancing [7].

Load balancing is a mapping strategy that distributes
applications load among resources so that there will be

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

68 | P a g e
www.ijacsa.thesai.org

efficient utilization of resources and hence the performance of
the system is improved [1] [6]. Load balancing algorithms of
traditional parallel and distributed systems cannot be used in
grid computing because of the special characteristics of grid
environments. In grid computing environment, resources
differ in their computational power. Efficient load balancing
algorithms are neededto maximize resources utilization and
prevent the condition where some resources may be
overloaded and other resources may be idle [2].

The paper is organizes as follows. Section II discusses
previous works in the area of grouping-based grid
scheduling.Section III presents our proposed models. Section
IV provides a detailed description of our simulation,
experiments and results. Finally, Section V provides a
conclusion of this work.

II. PREVIOUS WORK

Grid scheduling is a complexprocess that has been a
challenge for researchers due to the heterogeneity of the grid
environment. There have been a number of attempts in the
area of grid scheduling in the literature since the grid
computing paradigm emerged. In particular, we focus here
onmodels that were developed to group and schedule fine-
grained jobsin grid environments.

Constraint-based job and resource scheduling in grid
computing [15] is a model in which resources are arranged in
a hierarchical manner so that the resource with the highest
computation power can be found using tree heap sort while
jobs are grouped according to the processing capability,
bandwidth and memory size of resources. A job scheduling
model based on grouping was developed in [10]. In this
model, resources are sorted in ascending order of their
processing capability and then jobs are grouped according to
the processing capability, bandwidth and memory size of the
selected resources.

Two other grouping-based models were developed in [12]
and [13] where resources are sorted according to bottleneck
bandwidth and group jobs according to processing capability
and bandwidth of the resources. In both the two models using
the bandwidth strategy is not efficient to transfer the jobs. In
[13] grouping strategy does not utilize the resources
sufficiently. Fine-grained jobs are scheduled in [11] according
to processing capability and bandwidth of selected
resources.A dynamic job scheduling approach which is based
on grouping is proposed in [14] for deploying applications
with fine-grained tasks on global grids and is based on the
processing capability of resources. This model reduces the
processing time and communication time but does not utilize
the resources sufficiently.A time minimization dynamic job
grouping based scheduling is proposed in [5]. Resources are
sorted in descending order based ontheir processing capability
then fine-grained jobs are grouped according to processing
capability of the selected resource by taking one job from the
front of the sorted job list and one job from the end.An agent-
based dynamic resource scheduling model with FCFS job
grouping strategy is presented in [9]. Another algorithm which
is based on grouping and takes into consideration both the
memory requirements and execution time of jobs is presented
in [7].

All of the previous researches depend on grouping fine-
grained jobs to obtain coarse-grained jobs which are then sent
to selected resources to be executed. The focus in previous
researcheshas mainly been reducing processing and
communication time. However, increasing the efficiency of
resource utilization bybalancing load among resources has not
been sufficiently addressed.Two load balancing approaches
for computational grids were presented in [1] and [6] where a
job is sent to the resource that has minimum queue length.
Load balancing is achieved in the grid but at the expense of
high overall execution time caused by increased
communication time incurred by sending fine-grained jobs
individually.

III. PROPOSED MODELS

Our proposed model consists of two parts; a grouping
strategy and a scheduling model. Our grouping strategy groups
fine-grained jobs to form a smaller number of coarse-grained
jobs depending on the processing capability of the selected
resource and the jobs’ processing requirements. The UFF
(User-Finished-First) scheduling model and URS (Users-
Resources-Sharing) scheduling model are two different
proposed models that group fine grained jobs and schedule
these jobs in two different ways. RMQ (Resource with
Minimum Queue Length) scheduling model is another
proposed model that group fine grained jobs and schedule
these jobs to the resource with minimum number of waiting
jobs. This model is a load balancing approach based on the
queue length of the available resource.

A. Grouping Strategy

The job scheduler groupsfine-grained jobsbased on both
the processing requirements of each job and the processing
capability of each resource.First, the scheduler selectsa
resource from the ResourcesList and computes the product of
MIPS (million instructions per second) which is used to define
a resource’s processing capabilityand G.T (granularity
time)that is a user defined parameterwhich is used to measure
the total number of jobs that can be completed within a
specified period of time. In UFF scheduling model and URS
scheduling model the resources in the ResourcesList are sorted
in ascending order based on processing capability of each
resource. In RMQ scheduling model select the resource that
have minimum queue length (minimum number of waiting
jobs).Second, the scheduler selectsfine-grained jobs from
GridletList one after the other. Collect the MI of the selected
fine-grained jobs. Each job’s MI (million instructions) defines
the computational power needed to execute the job. The
grouping step ensures that the total required computational
power of grouped jobsdoes not exceed the processing
capability of the resource.The term gridlet is used here to refer
to a job that can run independently and sequentially on a grid
resource.

The detailed steps of the grouping strategy are listed
below.

1) Availablegridletsare sent to the job scheduler for

scheduling.

2) Grid resources register their information atthe Grid

Information Service (GIS).

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

69 | P a g e
www.ijacsa.thesai.org

3) The job scheduler requestsresources information from

GIS. GIS sends the information of available resources to the

scheduler.

4) Sort resources in ResourcesList in ascending order

based on resource processing capability (MIPS).

5) Sort gridlets of each user in a separate GridletsListin

ascending order based on gridlet length (MI).

6) Get the first user.

7) Initialize indices of GridletsList, ResourcesListand

Grouped_Gridlets, named I, X and J respectively, all

initialized to 0.

8) Selectthe resource specified by ResourcesList [X].

9) Select job specified by GridletList [I] of current user.

10) Groupedjob_length=0.

11) MI of ResourcesList[X]= MIPS of ResourcesList[X]*

Granularity time.

12) For(I=0 to GridletsList size-1)

13) {

14) If(Groupedjob_length< MI of ResourcesList[X]))

15) Groupedjob_length= Groupedjob_length +length of

GridletsList [I]

16) Else

17) {

18) Groupedjob_length= Groupedjob_length - length of

GridletsList[I]

19) Create a new job,Grouped_Gridlet [J],whose length

is equal to Groupedjob_length.

20) Increment J.

21) Break;

22) }

23) }
Starting from line 24, two different sequences of steps are

presented reflecting two different scheduling models.

B. UFF Scheduling

After forming the grouped jobs, the question is whether to
map the grouped jobs of a certain user to the available
resources or let a number of users share the resources. In the
UFF (User-Finished-First)scheduling model, the grouped jobs
of a user are assigned to the available resources in parallel
before proceeding with the next user. Accordingly, the first
user sends grouped job 0 to resource 0 then grouped job 1 to
resource 1 and so on till the last resource is reached. The next
user is selected and the same steps are repeated. In lines 24-29,
Total_Resources refers to the number of resources.

UFF (User-Finished-First) Scheduling Model

24) Submit Grouped_Gridlet [J] to ResourcesList[X].
25) X++.
26) If (X== Total-Resources)
27) { X==0
28) Get Next_User}
29) Go to step 8.

C. URS Scheduling

In this model, grouped jobs of different users are assigned
to available resources in parallel. Therefore, grouped job0 of n
different users are sent to the first n resources in the list. If the

number of users is less than the number of resources, repeat
starting from the first user with grouped job 1 and so on.
When the last resource is reached, start from the first resource.

URS (Users-Resources_Sharing) Scheduling Model

24) Submit Grouped_Gridlet [J] to ResourcesList [x].

25) Get Next_User.

26) X++.

27) If (X== Total-Resources)

28) X==0.

29) Go to step 8.

D. RMQ (Resource with Minimum Queue Length) Scheduling

Model

In this model, the scheduler selects the resource that has
minimum queue length (minimum number of waiting jobs).
Then, the scheduler uses the grouping strategy that based on
the processing capability of the resource in addition to the
processing requirements of the jobsto group fine-grained jobs
and form-grouped jobs. Then send these grouped jobs to the
resources to be executed. This model reduces the processing
time and cost and achieves load balancing among resources.
The following steps show the grouping strategy together with
the load balancing approach.

1) Available gridlets are sent to the job scheduler for

scheduling.

2) Grid resources register their information at the Grid

Information Service (GIS).

3) The job scheduler requests resources information from

GIS. GIS sends the information of available resources to the

scheduler.

4) Sort gridlets of each user in a separate GridletsList in

ascending order based on gridlet length (MI).

5) Get first user.

6) Initialize indices of GridletsList, ResourcesListand

Grouped_Gridlets, named I, X and J respectively, all

initialized to 0.

7) Select ResourceList [X] such that it is the resource with

minimum QLength.

8) Select job specified byGridletList [I] of current user.

9) Groupedjob_length=0

10) MI of ResourceList[X]= MIPS of ResourceList[X]*

Granularity time

11) For(I=0 to GridletList size-1)

12) {

13) If(Groupedjob_length< MI of ResourceList[X])

14) Groupedjob_length= Groupedjob_length +length of

GridletList [I]

15) Else

16) {

17) Groupedjob_length= Groupedjob_length - length of

GridletList[I]

18) Create new job Grouped_Gridlet [J] with length

equal to Groupedjob_length

19) Increment J.

20) Break

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

70 | P a g e
www.ijacsa.thesai.org

21) }

22) }

23) Submit Grouped_Gridlet [J] to ResourceList [X]

(resource with minimum QLength)

24) QLength[X]= QLength[X]+1

25) Get Next_User

26) Go to step 7

IV. EXPERIMENTAL WORK AND RESULTS

Grid computing environment is a dynamic environment so
it is extremely difficult to perform repeated experiments and
studies on this environment in practice.Using simulation in
such studies helps in performing a large number of
experiments with various parameters. In this work, Gridsim
was used for simulating the grid resources, jobs as well as our
grouping strategy together with the proposed scheduling and
load balancing models.

Most of the previous researches in the area of grid
scheduling and resource allocation are based on a single user.
Inthis work, multiple users are assumed. Each user has a
number of independent jobs (Gridlets) that will be scheduled
and then executed on heterogeneous resources taking into
consideration resources load balancing.

A. Gridsim Simulation Environment

Gridsim is a java based discrete event grid simulator
toolkit that allows modeling and simulation of grid computing
system entities: resources, gridlets, scheduler, grid information
service and users.Gridsimis also used to test scheduling and
load balancing models [2]. Gridsim users are able to model
and simulate the characteristics of grid resources and networks
with different configurations. It, therefore, allows researchers
to study grids and test new algorithms and strategies in a
controlled environment.In Gridsim terminology,Gridlets are
jobs that could run independently and sequentially on grid
resources.

A grid environment is built using the Gridsim5-2 toolkit.
After installing the Gridsim5-2 toolkit, the Gridsim package is
imported. The grid environment is simulated using Jcreator by
writing java code and implementingour grid entities:

 Create grid user(s):Multiple users are allowed. Each
user in Gridsim must have a unique id.

 Create grid resources: Resources in Gridsimare
defined by resource name, communication speed,
resource characteristics (operating system,
architecture, and cost), and number of machines.Each
machine may consist of a number of processing
elements each processing element is defined by
aunique id and processing capabilityinMIPS (millions
of instructions per second).

 Create gridlets:A gridlet is defined by
gridletlength;input file size andoutput file size.

B. Simulation Input and Output

A number of simulation parameters are fed into the
simulator:

 Gridlets: the number of gridlets.

 A_MI: average gridlet length in MI reflecting the
processing requirementsof the job.Based on a gridlet’s
MI, the resource that hasa suitable processing
capabilityis selected to execute this gridlet.

 Deviate%:MI deviation percentagewhich is used to
create different number of gridlets that have different
lengths.

 G_Time: Granularity time (expected job processing
time). It is a measure of thenumber of jobs that can be
completed within a certain time on a particular
resource [14].

 OH_Time: Gridlet overhead time. In real
environments, overhead time for each job depends on
the current network load and speed. In our simulation,
the overhead time of each gridletis an input value.

 Resources: Resources to be used in a simulation
experiment are selected from the resources list.

After simulation input parameters have been defined, we
conduct oursimulation experiments with andwithout grouping.
This allows us to compare between scheduling fine-grained
jobs with grouping and scheduling fine-grained jobs without
grouping. This also allows us to study the effect of grouping
the input gridlets on the overall performance. Two
performancemetrics are used in this respect: total processing
time and total processing cost. Total processing time is
computed based on:

 Gridlet overhead processing time.

 Time taken to perform grouping.

 Time taken for sending gridlets to the resources.

 Time of processing the gridlets at the resources.

 Time taken for receiving the processed gridlets.

The total processing cost is computed based on:

 The time taken for computing the gridlets at the grid
resource

 The cost specified at the grid resource.

C. Results

Tables 1, 2 and 3 show three different sets of simulation
input parameters denoted by SI1, SI2 and SI3. Three users are
assumed where each user is defined by a number of gridlets,
MI and Deviate % of these gridlets as explained before. SI1,
SI2 and SI3 assume 4, 7 and 5 resources respectively.
Resources MIPS are varied to simulate resources’
heterogeneity. Granularity and overhead time are also input.

TABLE I. SIMULATION INPUTS SI1

User Gridlets MI Deviate %

User1 100 10 10

User2 50 20 20

User3 150 30 30

Resources: R7,R5,R3,R1

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

71 | P a g e
www.ijacsa.thesai.org

Resources_MIPS: 66,60,39,20

G_Time =5, OH_Time=5

TABLE II. SIMULATION INPUTS SI2

User Gridlets A_MI Deviate %

User1 100 10 10

User2 50 20 20

User3 150 30 30

Resources: R4,R6,R7,R5,R3,R2,R1

Resources_MIPS: 120,72,66,60,39,24,20

G_Time =5, OH_Time=5

TABLE III. SIMULATION INPUTS SI3

User Gridlets MI Deviate %

User1 100 10 10

User2 150 20 20

User3 200 30 30

Resources:R4, R5,R3,R2,R1

Resources_MIPS:120,60,39,24,20

G_Time =5, OH_Time=5

Figures 1, 2 and 3 show the results of total simulation time
and cost with and without grouping in case of using simulation
input parameters in table 1 for the three proposed
modelsrespectively. Simulation time and cost are improved by
using the grouping strategy.

This is due to the fact that total communication time is
higher in case of scheduling the fine-grained jobs individually
without grouping. On the other hand,when the grouping
strategy is used, fine-grained jobs are grouped into a fewer
number of coarse-grained jobs thus reducing the overall
communication time.Similar results are obtained using
simulation input parameters SI2 in table 2 as in Figures 4, 5
and 6.

(a)

(b)

Fig. 1. Simulation time and processing cost using simulation inputs
parameters SI1 in table 1 using UFF.

(a)

(b)

Fig. 2. Simulation time and processing cost using simulation input
parameters SI1 in table 1 using URS.

0

500

1000

1500

2000

2500

3000

3500

4000

User1 User2 User3

T
o

ta
l

si
m

u
la

ti
o

n
 t

im
e
 (

S
e
c
)

Users

Without Grouping

With Grouping

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

User1 User2 User3

C
o

st

Users

Without Grouping

With Grouping

0

500

1000

1500

2000

2500

3000

3500

4000

User1 User2 User3

T
o

ta
l

si
m

u
la

ti
o

n
 t

im
e
 (

S
e
c
)

Users

Without Grouping

With Grouping

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

User1 User2 User3

C
o

st

Users

Without Grouping

With Grouping

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

72 | P a g e
www.ijacsa.thesai.org

(a)

(b)

Fig. 3. Simulation time and processing cost using simulation inputs

parameters SI1 in table 1 using RMQ.

(a)

(b)

Fig. 4. Simulation time and processing cost using simulation input

parameters SI2 in table 2 using UFF.

(a)

(b)

Fig. 5. Simulation time and processing cost using simulation input

parameters SI2 in table 2 using URS

0

500

1000

1500

2000

2500

User1 User2 User3

T
o

ta
l

si
m

u
la

ti
o

n
 t

im
e
 (

S
e
c
)

Users

Without

grouping

With grouping

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

User1 User2 User3

C
o

st

Users

Without

grouping

With grouping

0

500

1000

1500

2000

2500

3000

3500

4000

User1 User2 User3

T
o

ta
l

S
im

u
la

ti
o

n
 t

im
e
 (

S
e
c
)

Users

Without Grouping

With Grouping

0

10000

20000

30000

40000

50000

60000

70000

80000

User1 User2 User3

C
o

st

Users

Without Grouping

With Grouping

0

500

1000

1500

2000

2500

3000

3500

4000

User1 User2 User3

T
o

ta
l

si
m

u
la

ti
o

n
 t

im
e
 (

S
e
c
)

Users

Without Grouping

With Grouping

0

10000

20000

30000

40000

50000

60000

70000

80000

User1 User2 User3

C
o

st

Users

Without Grouping

With Grouping

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

73 | P a g e
www.ijacsa.thesai.org

(a)

(b)

Fig. 6. Simulation time and processing cost using simulation input

parameters SI2 in table 2 using RMQ.

The effect of varying the number of resources on the total
simulation time is shown in Figures 7 and 8 using UFF and
URS models. The simulation time in case of using
sevenresources is less than the Simulation time when using
four resources.

Fig. 7. Effect of varying the number of resources on total simulation time of

jobs for different users using UFF.

Fig. 8. Effect of varying the number of resources on total simulation time of
jobs for different users using URS.

Figure 9 shows the results of total simulation time in case
of using simulation input parameters SI3in table 3. The figure
shows the simulation time of executing different number of
gridlets of various users using 5 resources and different
granularity time.Before starting simulation, thegiven
granularity time is multiplied by the resource processing
capability (MIPS). The result is the total (MI) that the resource
can process within the given granularity time. Hence, higher
granularity time means that the total (MI) that the resource can
process will be also higher. Results shown are for experiments
using simulation input parameters SI3 in table 3 and different
values for granularity time: 5, 10, 15, and 20.The results show
that the total simulation time for granularity time of 20
seconds is less than the total simulation time for granularity
time of 15, 10 and 5 seconds.The 100 gridlets of user1 are
grouped in three groups when granularity time is 5 seconds
and are grouped in one group when granularity time is 10, 15,
and 20. When the granularity time is equal to5, the product of
granularity time and the resource’s MIPS is equal tothe total
MI that the resource can process within 5 seconds which is
less than the total MI that the resource can process in 10, 15
and 20 seconds.When granularity time is less, more resources
are needed to process the given gridlets within the same
granularity time.

Fig. 9. Effect of varying the granularity time on total simulation time of jobs

for different users usingsimulation input parameters SI3 in table 3.

0

500

1000

1500

2000

2500

User1 User2 User3

T
o

ta
l

si
m

u
la

ti
o

n
 t

im
e
 (

S
e
c
)

Users

Without

grouping

With grouping

0

10000

20000

30000

40000

50000

60000

70000

80000

User1 User2 User3

C
o

st

Users

Without

grouping

With

grouping

0

200

400

600

800

1000

1200

1400

User1 User2 User3

T
o

ta
l

si
m

u
la

ti
o

n
 t

im
e
(S

e
c
)

Users

4 Resources

7 Resources

0

200

400

600

800

1000

1200

1400

User1 User2 User3

T
o

ta
l

si
m

u
la

ti
o

n
 t

im
e
 (

S
e
c
)

Users

3 Resources

7 Resources

0

200

400

600

800

1000

1200

1400

User1 User2 User3

T
o

ta
l

si
m

u
la

ti
o

n
 t

im
e
 (

S
e
c
)

Users

G.T=5

G.T=10

G.T=15

G.T=20

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

74 | P a g e
www.ijacsa.thesai.org

Comparing the results of experiments with and without
grouping, it is found that the total simulation time is reduced
when grouping is applied reaching 9% to 33% of the total
simulation time obtained without grouping.

The actual percentage depends on the number of gridlets
and the processing requirements of each gridlet. Total cost in
case of using grouping strategy is reduced reaching 52% to
91% of the total cost obtained without using grouping
strategy.

Tables 4, 5 and 6 show the load distribution of gridlets on
resources using the three proposed models.

TABLE IV. LOAD DISTRIBUTION ON GRID RESOURCES FOR USER1

USING SIMULATION INPUT PARAMETERS SI1 AND THE UFF SCHEDULING

MODEL.

Grouped-Gridlet

ID

Gridlets Resource Name

0 0-32 R7

1 33-62 R5

2 63-81 R3

3 82-90 R1

4 91-99 R7

TABLE V. LOAD DISTRIBUTION ON GRID RESOURCES FOR USER1

USING SIMULATION INPUT PARAMETERS SI1 AND THE URS SCHEDULING

MODEL.

Grouped-Gridlet

ID

Gridlets Resource Name

0 0-29 R1

1 30-38 R7

2 39-57 R3

3 58-88 R5

4 89-99 R7

TABLE VI. LOAD DISTRIBUTION ON GRID RESOURCES FOR USER1

USING SIMULATION INPUT PARAMETERS SI1 AND THE RMQ SCHEDULING

MODEL.

Grouped-Gridlet

ID

Gridlets Resource Name

0 0-8 R1

1 9-39 R7

2 40-69 R5

3 70-89 R3

4 90-99 R1

V. CONCLUSION AND FUTURE WORK

Three models for scheduling fine-grained jobs in a grid
computing environment are presented. First, the jobs are
grouped to reduce the overall communication time incurred by
sending individual jobs to grid resources. Then, grouped jobs
are mapped to resources based on the proposed UFF, URS and
RMQ scheduling models.

Our experiments were conducted using the Gridsim
toolkit.Results indicate that total simulation time and cost are
improved by grouping fine-grained jobs. Total simulation time
with grouping is 9%-33% of that without grouping. Total cost
in case of grouping reaches 52%-91% of that without
grouping.

Furthermore, grouping enhancesutilization of resources
processing capability. The grouping strategy is based on both
the processing requirements of individual jobs and the
processing capability of resources.

A load balancing scheduling model is also presented. The
queue length of a resource is taken into consideration when a
resource is selected. Granularity time has been used to indicate
the number of gridlets that can be processed by a resource
within a specified time. Results show that the total simulation
time decreases as granularity time increases.

Future workin this area will be directed towards
developing a grouping model based onthe bandwidth of
resources in addition to their processing capability.

REFERENCES

[1] Er.Sourabh Budhiraja, “A Dynamic Load Balancing Approach in Grid
Environment”, International Journal of Engineering Research and

Technology (IJERT), Vol.1, Issue 9, November 2012.

[2] Dinesh S.Gawande, Rajesh C.Dharmik and Chanda Panse, “A Load
Balancing in Grid Environment”, International Journal of Engineering

Research and Applications (IJERA), Vol.2, Issue 2, PP.445-450, March-
April 2012.

[3] Simrat Kaur and Sarbjeet Singh, “Comparative Analysis of Job

Grouping based Scheduling Strategies in Grid Computing”, International
Journal of Computer Applications, Vol.43, No.15, April 2012.

[4] P.Suresh and P.Balasubramanie, “Grouping Based User Demand Aware
Job Scheduling Approach For Computational Grid”, International

Journal of Engineering Science and Technology, Vol.4, No.12,
December 2012.

[5] Manoj Kumar Mishra, Prithviraj Mohanty, G.B.Mund, “A Time-

minimization Dynamic Job Grouping-based Scheduling in Grid
Computing”, International Journal of Computer Applications, Vol.40,

No.16, February 2012.

[6] Manpreet Singh, Sandip Kumar Goyal and Vishal Gupta, “An Adaptive
Load Balancing Algorithm for Computational Grid”, Journal of

Engineering and Technology, Vol.1, Issue 2, July-December 2011.

[7] S.Gomathi and D.Manimegalai, “An Analysis of MIPS Group Based Job
Scheduling Algorithm with other Algorithms in Grid Computing”,

International Journal of Computer Science Issues (IJCSI), Vol.8, Issue 6,
No.3, November 2011.

[8] Simarjit Kaur and Sukhjit Singh, “Role Based Access Control For Grid

Environment Using Gridsim”, Journal of Engineering Research and
Studies (JERS), Vol. I, Issue I, PP.111-117, July-September 2010.

[9] Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, Prachet

Bhuyan and Utpal Chandra Dey, "An Agent Based Dynamic Resource
Scheduling Model with FCFS-Job Grouping Strategy in Grid

Computing", World Academy of Science, Engineering and Technology
Journal, vol. 64, PP.467-471, 2010.

[10] Vishnu Kant Soni, Raksha Sharma, and Manoj Kumar Mishra,
"Grouping-Based Job Scheduling Model In Grid Computing", World

Academy of Science, Engineering and Technology Journal, vol. 65,
PP.781-784, 2010.

[11] Yeqing Liao and Quan Liu, “Research on Fine-grained Job Scheduling

in Grid Computing”, Modern Education and Computer Science journal,
PP.9-16, 2009.

[12] T.F Ang, W.K.Ng, T.C Ling, L.Y. Por and C.S. Liew, “A Bandwidth-

Aware Job Grouping-Based Scheduling on Grid Environment”
Information Technology Journal, Vol.8, NO.3, pp. 372-377, 2009.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 11, 2013

75 | P a g e
www.ijacsa.thesai.org

[13] Ng Wai Keat, Ang Tan Fong, Ling Teck Chaw and Liew Chee Sun

“Scheduling Framework For Bandwidth-Aware Job Grouping-Based
Scheduling In Grid Computing”, Malaysian Journal of Computer

Science, Vol.19, No. 2, pp. 117-126, 2006.

[14] Nithiapidary Muthuvelu, Junyang Liu, Nay Lin Soe, Srikumar

Venugopal, Anthony Sulistio and Rajkumar Buyya, “A Dynamic Job
Grouping-Based Scheduling for Deploying Applications with Fine-

Grained Tasks on Global Grids”, in Proc of Australasian workshop on
grid computing, vol. 4, pp. 41–48, 2005.

[15] Vishnu Kant Soni, Raksha Sharma, Manoj Kumar Mishra and Sarita

Das, “Constraint-Based Job and Resource scheduling in Grid
Computing”, 3

rd
 International Conference On Computer Science and

Information Technology, IEEE, 2010.

AUTHORS PROFILE

Rabab Mohamed Ezzat is currently a Masters Student
at the Computer Science Department, Faculty of
Computers and Information, Helwan University, Cairo,
Egypt. She received her B.Sc. in Computer Science from
Helwan University, Cairo, Egypt. She worked as
Teaching Assistant in Modern Sciences and Arts
University in Egypt for three years. Her current research

interests include parallel computing, computer networks and human computer
interaction.

Amal Elsayed Aboutabl is currently an Assistant
Professor at the Computer Science Department, Faculty
of Computers and Information, Helwan University, Cairo,
Egypt. She received her B.Sc. in Computer Science from
the American University in Cairo and both of her M.Sc.
and Ph.D. in Computer Science from Cairo University.
She worked for IBM and ICL in Egypt for seven years.

She was also a Fulbright Scholar at the Department of Computer Science,
University of Virginia, USA. Her current research interests include parallel
computing, image processing and software engineering.

MostafaSami M. Mostafais currently a Professor of
computer science, Faculty of Computers and
Information, Helwan University, Cairo, Egypt. He
worked as an Ex-Dean of faculty of Computers and
Information Technology, MUST, Cairo. He worked also
as an Ex-Dean of student affairs and Ex-Head of
Computer Science Department, faculty of Computers and

Information, Helwan University, Cairo, Egypt. He is a Computer Engineer
graduated 1967, MTC, Cairo, Egypt. He received his MSC 1977 and his PhD
1980 from University of Paul Sabatier, Toulouse, France. His research
activities are in Software Engineering and Computer Networking. He is
awarded supervising more than 80 Masters of Sc. and 18 PhDs in system
modeling and design, software testing, middleware system development, real-
time systems, computer graphics and animation, virtual reality, network
security, wireless sensor networks and biomedical engineering.

