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Abstract—The p-center location problem is concerned with 

determining the location of p centers in a plane/space to serve n 

demand points having fixed locations. The continuous absolute p-

center location problem attempts to locate facilities anywhere in a 

space/plane with Euclidean distance. The continuous Euclidean 

p-center location problem seeks to locate p facilities so that the 

maximum Euclidean distance to a set of n demand points is 

minimized. A particle swarm optimization (PSO) algorithm 

previously advised for the solution of the absolute p-center 

problem on a network has been extended to solve the absolute p-

center problem on space/plan with Euclidean distance. In this 

paper we develop a PSO algorithm for the continuous absolute p-

center location problem to minimize the maximum Euclidean 

distance from each customer to his/her nearest facility, called 

“PSO-ED”. This problem is proven to be NP-hard. We tested the 

proposed algorithm “PSO-ED” on a set of 2D and 3D problems 

and compared the results with a branch and bound algorithm. 

The numerical experiments show that PSO-ED algorithm can 

solve optimally location problems with Euclidean distance 
including up to 1,904,711 points. 

Keywords—absolute p-center; location problem; particle swarm 

optimization 

I. INTRODUCTION 

The p-center location problem (also called minimax 
facility location problem) is a major class of location 
problems. Continuous location problem with Euclidean 
distance is a main variant of the p-center location which is 
concerned with determining the location of p centers in a 
plane/space to serve n demand points having fixed locations. 
The Euclidean p-center location problem seeks to locate a 
facility so that the maximum Euclidean distance to a set of n 
demand points is minimized [1]. The problem is equivalent to 
finding the center of the smallest circle enclosing all points 
[1].  

Our main objective is to locate new p centers/facilities in 
the space/plane in such a way that the maximum distance 
between demand points and their nearest facility becomes 
minimum. It is assumed that all the facilities are identical and 
provide the same service to the customers, and there is no limit 
for the number of customers who can get service from the 
centers [2]. This kind of location problem is suggested by 
Hakimi [3, 4], and some of its applications are used to locate 
fire stations, hospital emergency services, data file location, 

police stations, and so on. Megiddo and Supowit [5] have 
shown that the continuous Euclidean p-center location 
problem in the plane is NP-hard, and, such problems are 
difficult to solve. 

James Kennedy and Russell Eberhart [6] in 1995, 
developed a new metaheuristic algorithm, so-called Particle 
Swarm Optimization (PSO) algorithm, which is inspired from 
the flocking of birds, and simulated evolution. Although PSO 
is comparatively a new metaheuristic algorithm, in various 
applications; it has been proven to be a robust and efficient 
tool [7, 8]. PSO has been used mostly to solve continuous 
optimization problems. The purpose of this paper is to 
describe a simple put efficient PSO algorithm to solve large-
scale Euclidean distance absolute location problem and to test 
the efficiency of our algorithm. Reported results show that 
PSO can solve optimally large-scale Euclidean distance p-
center location problems.  

The rest of this paper is organized as follows. Section 2 is 
devoted to the description of continuous Euclidean p-center 
location problems, while the description of PSO algorithm is 
given in Section 3. The proposed PSO-ED algorithm for p-
center problem and the implementation of PSO-ED for solving 
location problem are explained in Section 4.  Section 5 
contains experimental results. Section 6 concludes the paper 
and section 7 contains future work. 

II. THE CONTINUOUS EUCLIDEAN P-CENTER LOCATION 

PROBLEM 

The minimax location problem seeks to locate a facility so 
that the maximum distance to a set of demand points is 
minimized. Therefore, the p-center problem involves locating 
p identical facilities to minimize the maximum distance 
between demand nodes and their closest facilities, i.e. to 
minimize the worst case possible time spent on the way in 
providing service. Using Euclidean distances in the 
plane/space, this problem is equivalent to finding the center of 
the smallest circle enclosing all points, hence the term “center” 
regarding this problem [1]. According to [9], usually, the 
utilization of minimax criterion arises when location of 
emergency facilities is considered. The facilities will be 
located in such a way that the response time to the farthest 
customer will be minimal. Most of the applications arise in 
emergency service locations such as determining optimal 
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locations of ambulances, fire stations and police stations 
where the human life is at stake.  

In many cases, the distances between demand and service 
points are Euclidean [10]. The Euclidean distance location 
problem seeks to locate p new facilities at some points (xj, yj), 
j = 1, .., p in R2, within an existing n demand points (ai, bi), i = 
1,..., n. According to [11],  the location of p-center facilities in 
two-dimensional R2 Euclidean space can be formulated as: 

   
     

   
 

   
 

        
 
        

 
 
 

  
                    

where (ai, bi), i=1,…,n, are the coordinates of the demand 
points; (xj, yj), j=1,…,p are the coordinates of the service 
facilities (which are to be determined); and  minj selects for 
each demand point its closest facility and the minxj,yj maxi 
operations are to be performed.  

The continuous absolute p-center location problem with 
Euclidean distance is an NP-hard problems, even the simplest 
p-center problems or the approximation to the problem was 
found to be NP-Hard [12]. The optimal solution can be found 
in time O(pn), which is impractical, even for small p and small 
n [12]. 

Mainly, there exist two types of the continuous Euclidean 
p-center location problem, distinguished through the possible 
location of the service points. The first type, includes facilities 
which can be located anywhere in the space including the 
demand points; known as the absolute center location 
problems. Whereas the second type is the vertex p-center 
location problems in which facilities can be located only on 
the demand points. Usually the solution of vertex location 
problem can be used as an upper bound for the solution for the 
absolute location problem [13].  In this paper we consider only 
solving the continuous Euclidean absolute p-center location 
problem in which each center/facility can be located anywhere 
in the plane/space including the demand points.  

For example, as presented in [9], suppose we need to find 
3 centers for the 10 demand points represented as [♦] in blue in 
Figure 1. Therefore, the continuous Euclidean p-center 
location problem searches for the optimal location of 3 (p) 
points (centers) within the problem space in such a way that 
the maximum distance from these 3 centers to n demand 
points is minimum than any other 3 points in the space. As 
Figure 1 shows the location of these 3 centers [○] in red are p1, 
p2 and p3 with maximum distance equal to 24.0208. 
Accordingly, the solution vector consists of the coordinates of 
the 3 center points. 

According to [12], many approximation algorithms have 
been suggested for solving p-center problems. However, 
recently, we developed a new PSO algorithm for solving the 
absolute p-center problem on networks, that algorithm has the 
task to randomly generate swarms on the arcs of network, 
then, the algorithm has the task to search optimal solution 
from different combination of swarms [13]. This paper 
extended that algorithm to solve the absolute p-center location 
problem on space/plan with Euclidean distance.   

 

Fig. 1. A set of 10 demand points (in Blue) and service points (in Red) and the 

maximum distance; from Ref [9]. 

A. Literature Review 

The p-center problem is one of the fundamental problems 
in the location science. Due to its hardness and importance, it 
has always been a challenge for the researchers who 
approached it from different perspectives. When searching for 
a single center point (p=1); the solution of the problem will be 
the center of the smallest circle enclosing n given points in the 
plane [10]. The single center location problem with Euclidean 
distance was first suggested by James Sylvester in 1814 [1]. 
Chrystal suggested an algorithm that starts with a large circle 
that encloses all the points and reduces the radius of the circle 
iteratively until the smallest circle is obtained [1]. 

According to [11], the continuous Euclidean p-center 
location problem was first mentioned in 1958 by Miehle [14] 
and formulated by Cooper [15] in 1963. Chen suggested a 
differentiable approximation method to solve the problem 
[11]. Handler and Mirchandani used relaxation approaches to 
solve this problem [16]. Daskin [17] presented an optimal 
algorithm which solves the absolute p-center problem by 
performing a binary search over possible solution values [17]; 
the algorithm solved maximal covering sub-problems rather 
than the set-covering sub-problems solved by Minieka [18].  

Recently, Ilhan et al. [19] developed an exact method for 
solving the vertex location p-center problem in which centers 
must be chosen only from demand points. The algorithm 
solved problems with sizes up to 657 points in space. Chen 
and Chen [10] presented a new relaxation based algorithms for 
the solution of vertex and absolute continuous p-center 
problems. The algorithm solved problems with sizes up to 
1,817 points in space. Kaveh and Nasr [2] suggested a 
metaheuristic algorithm called harmony search algorithm. The 
latter algorithm solved the vertex location problems with sizes 
up to 4,461 points in space. Calik and Tansel [20] proposed a 
new integer programming formulation for the p-center 
problem, in which the optimal p-center solution is obtained by 
solving a series of simple structured integer programs. The 
algorithm successfully solved problems with sizes up to 3,038 
points in space.  
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Fayed and Atiya [12] suggested a mixed breadth-depth 
first strategy to speed up the traversing of the branch and 
bound tree in order to solve the continuous Euclidean absolute 
p-center location problem. The algorithm was capable of 
optimally solving problems with size up to 1,904,711 points in 
space.  

According to [10], most of the methods developed for 
solving the continuous Euclidean problem are geometrical in 
nature, which involves complex, time consuming search 
methods for finding the smallest enclosing circle. This 
includes the repeated solution of relaxed, smaller sub-
problems. However, few researches solved the large-scale 
continuous Euclidean absolute p-center location problems 
such as [12]. As mentioned before the continuous Euclidean 
absolute p-center problem has been proved to be NP-hard [5] 
and to approach the p-center location problem, we propose a 
simple algorithm based on PSO (PSO-ED) for solving this 
problem.  

III. PARTICLE SWARM OPTIMIZATION (PSO)  

PSO is a population-based, co-operative search 
metaheuristic approach introduced in 1995 by Kennedy and 
Eberhart [6]. PSO inspired from the sociological behavior 
associated with bird flocking. It is a natural observation that 
birds can fly in large groups with no collision for extended 
long distances, making use of their effort to maintain an 
optimum distance between themselves and their neighbors 
[21]. PSO was originally used to solve non-linear continuous 
optimization problems, but more recently it has been used in 
many practical, real-life application problems [21]. PSO 
proved to be a successful approach to solve complex 
continuous problems and is proved to be efficient and robust 
for solution of combinatorial optimization problems [22]. 

PSO finds solution for problems that can be represented as 
a set of points in an n-dimensional solution space. PSO is a 
population-based search algorithm that finds optimal solutions 
using a set of flying particles with velocities that are 
dynamically adjusted according to their historical 
performance, as well as their neighbors in the search space. 
The population consist form particles which are described as 
the swarm positions in the k-dimensional solution space. Each 
particle is set into motion through the solution space with a 
velocity vector representing the particle’s speed in each 
dimension. Each particle has a memory to store its historically 
best solution (i.e., its best position ever attained in the search 
space so far, which is also called its experience) [21]. 

Each particle through flying in the search space generates a 
solution using directed velocity vector and each particle 
modifies its velocity to find a better solution (position) by 
applying its own flying experience (i.e. memory having best 
position found in the earlier flights) and experience of 
neighboring particles (i.e. best-found solution of the 
population). Particles update their positions and velocities as 
shown below [23]: 

 A population of particles is randomly initialized with 
point positions Xi and velocities Veli and a function f is 
evaluated, using the particle’s positional coordinates as 
input values. Positions and velocities are adjusted and 

the function evaluated with the new coordinates at each 
time step.  

 When a particle discovers a pattern that is better than 
any it has found previously, it stores the coordinates in 
a vector Pbesti. 

 The difference between Pbesti (the best point found by 
i so far) and the individual’s current position is added 
to the current velocity. Also, the difference between the 
neighborhood’s best position Gbesti and the 
individual’s current position is also added to its 
velocity, adjusting it for the next time step. These 
adjustments to the particle’s movement through the 
space cause it to search around the two best positions.  

Following [24], variables Xi and Veli are regarded as 
vectors that show various positions and velocities of particle 
and in order to find the optimum position of the best position 
of particle i and its neighbors’ best position are recorded as: 
Pbesti and Gbesti, respectively. To improve the velocity and 
position of each particle, the modified velocity and position in 
the next iteration is calculated as follows: 

    
          

             
    

                  
      

  
      

      
                                      

where, 

     
    velocity of particle i at iteration k. 

    inertia weight factor which is reduced 
dynamically to decrease the search area in a gradual 
fashion. The variable wk is updated as [22]: 

                
        

    

          

where, wmax and wmin denote the maximum and 
minimum of wk respectively; kmax is a given number 
of maximum iterations.  

        acceleration coefficients of the self-
recognition component and coefficient of the social 
component, respectively. The choice of value is c1 =c2 

= 2; and generally referred to as learning factors [7]. 

       random numbers between 0 and 1. 

   
  position of particle i at iteration k. 

       
  best position of particle i at until iteration k. 

       
  best position of the group at until iteration k. 

 
Fig. 2. Updating the position of PSO 
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IV. PSO-ED FOR P-CENTER LOCATION PROBLEM 

This paper develops a PSO-ED algorithm for the 
continuous Euclidean absolute p-center location problem 
which has been proved to be NP-hard. Due to its complexity, 
hardness and importance it has always been a challenge for 
researchers who approached it from different perspectives. In 
[13], we suggested a PSO algorithm for the absolute location 
problem on networks, in this paper a modified algorithm 
“PSO-ED” is presented. The main modification is that, we 
generate the swarm on space/plane limits instead of generating 
it on arcs of networks as in [13].  

PSO-ED algorithm has the task to randomly generate a 
swarm of birds with size (Swarm_Size * Number_Centers) for 
each dimension in R within the space/plane which contain the 
demand points. For each particle in the swarm; we compare 
the minimax value from each particle – which contains the 
coordination of centers p – to all demand points. Therefore 
each center will serve a set of demand points i.e. the 
space/plane will be divided into p sections. The procedure is 
then repeated with the remaining particles in order to find the 
combination with the best minimum values. The 
corresponding minimax combination is the optimal location. 
The PSO-ED search runs in iterations until some predefined 
stopping criteria is satisfied (Number of iterations). The PSO-
ED proposed algorithm to solve the continuous Euclidean p-
center location problem in R2 can be described as follows: 

Step 1. Let p represents the number of centers, s represents 
the population size (swarm size, number of particles), and 
Vel represents the swarm velocity. 
Step 2. Generate randomly the initial particles positions (xj, 
yj) in R2 in the range of upper and lower limits for each 
dimension for each center with size (s * p). Set the swarm 
velocities Vel to zero. 
Step 3. The objective function and fitness value of each 
particle according to Equation (1) and the Pbest is 
calculated. The best among the Pbest is denoted as Gbest. 
Step 4. The velocity and position of each particle is 
modified/updated according to Equations (2) and (3), 
respectively. 
Step 5. The objective function of each particle is compared 
with its Pbest. If the current value is better than Pbest then 
Pbest value is set equal to the current value and Pbest 
position is set equal to the current position. 
Step 6. If the current fitness value is better than the Gbest, 
then update Gbest to current best position and fitness 
value. 
Step 7. Steps 4 to 6 are repeated until the maximum 
number of iterations is met. 

V. EXPERIMENTAL RESULTS 

For our computational experiments, we applied our 
algorithm on the 2D and 3D data sets which have been used in 
[12]. The 2D is from the common TSPLIB library which 
represents cities/locations in different countries (available at 
[25, 26]). According to [12], solutions of these problems are 
very useful in facility location problems where the objective is 
to minimize the maximum time to reach any location. In 
TSPLIB instances, the coordinates of points are provided. The 
number of points range from 7,146 to 1,904,711 points. The 

3D geometric model data sets can be found at 
http://www.ocnus.com/models/, and the number of points 
ranges from 352 to 437,645.   

Fayed and Atiya [12] applied the exact algorithm of branch 
and bound to large scale location problems on the above 
mentioned 2D and 3D datasets, with p ranging from 3 to 8 
centers. They reported comprehensive results of applying the 
algorithm while trying to achieve accuracies (ϵ) of 10-2, 10-3, 
and 10-4; the results of which are provided in Table 1. The 
presented results in Table 1 show, for each problem, the 
maximum distance between a demand point and its closest 
center. In our paper, we used the results of ϵ =10-2 obtained by 
[12] as an upper bound for our PSO-ED results; presented also 
in Table 1.  

Therefore, Table 1 provides a comparison between using 
the exact algorithm of branch and bound and the developed 
PSO-ED algorithm. Comparing the results of the PSO-ED 
algorithm with those of the branch and bound algorithm at      
ϵ =10-2, it is evident that the PSO-ED algorithm provides more 
accurate results for both the 2D and 3D datasets.  

On the other hand, when comparing with the branch and 
bound with  ϵ =10-4, the bolded values indicate that the PSO-
ED slightly outperforms the branch and bound algorithm in 
many cases for the 2D location problems, and is slightly more 
accurate for some of the 3D location problems. In either case, 
even for the instances where the branch and bound 
outperforms the PSO-ED algorithm, the differences are so 
small. Accordingly, experimentally we have managed to 
demonstrate the efficiency of PSO-ED algorithm despite of its 
simplicity and ease-to-use.  

TABLE I.  MAXIMUM DISTANCE COMPARISON BETWEEN THE PSO-ED 

AND BRANCH AND BOUND ALGORITHMS FOR DIFFERENT P CENTERS 

Problem, 

Dimension 

Demand  

Points 

(n) 

Cen-

ters 

(p) 

Branch and Bound 

(max distance) 
PSO-ED 

(max 

distance) 10
−2

 10
−4

 

Egypt, 

2D 
7,146 

5 2,363.67 2,352.03 2,351.90 

6 2,073.79 2,057.22 2,056.90 

7 1,848.18 1,839.08 1,839.00 

8 1,722.14 1,713.66 1,713.60 

USA, 

2D 
13,509 

5 100,486.74 99,991.80 99,987.00 

6 91,950.86 91,310.62 91,411.00 

7 79,917.17 79,566.79 79,565.00 

8 75,836.19 75,533.03 75,585.00 

Germany, 

2D 
15,112  

5 2,071.56 2,061.15 2,061.10 

6 1,798.07 1,792.68 1,792.60 

7 1,647.17 1,645.65 1,645.60 

8 1,551.99 1,546.27 1,547.00 

Italy, 

2D 
16,862 

5 2,746.53 2,732.82 2,734.20 

6 2,248.18 2,239.11 2,239.00 

7 1,984.57 1,970.92 1,970.80 

8 1,880.49 1,860.87 1,878.30 
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Problem, 

Dimension 

Demand  

Points 

(n) 

Cen-

ters 

(p) 

Branch and Bound 

(max distance) 
PSO-ED 

(max 

distance) 10
−2

 10
−4

 

World, 

2D 

1,904,71

1 

5 72.22 71.41 71.40 

6 62.55 62.12 62.43 

Cat, 

3D 
352 

3 0.068 0.067 0.0669 

4 0.058 0.057 0.0575 

5 0.052 0.051 0.0515 

Seashell, 

3D 
18,033 

3 0.697 0.694 0.6942 

4 0.607 0.605 0.6053 

5 0.549 0.547 0.5485 

Bunny, 

3D 
35,947 

3 0.066 0.065 0.0653 

4 0.056 0.056 0.0557 

5 0.051 0.051 0.0509 

Dragon, 

3D 
437,645 

3 0.066 0.065 0.0654 

4 0.061 0.060 0.0601 

As an example, the location of p emergency centers for 
some countries is illustrated in Figure 3. For the different 
countries, the cities are demonstrated through the blue points, 
while the service/emergency centers are the red points. The 
locations of the p centers are optimally selected through the 
PSO-ED algorithm such that their respective areas encompass 
all the regions within the optimal maximum distance 
calculated.  

As evident from Figure 3, the service regions of some 
centers could overlap. For example, the first country presented 
in Figure 3 is Italy, where the best locations of 5 emergency 
centers are provided with a maximum coverage distance of 
2,734.20. 

 
Italy (p=5) 

 
Germany (p=6) 

 
USA (p=7) 

 
Egypt (p=8) 

 

World (p=6) 

Fig. 3. Location of p-center for some countries  
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VI. CONCLUSION 

The continuous absolute p-center location problem with 
Euclidean distance is a complex, and NP-hard problem. 
Particle swarm optimization (PSO) is a simple and effective 
algorithm to optimally solve complex continuous problems. 

In this paper, a new PSO algorithm for the absolute p-
center location problem has been developed (PSO-ED). The 
developed algorithm is simple, easy to apply, and as 
experimentally shown is an efficient algorithm. PSO-ED has 
the task to randomly generate a swarm for each dimension in 
R within the space and for each particle; compares the 
minimax value from each particle. The procedure is then 
repeated in order to find the combination with the best 
minimum values. 

Results on several well-known test problems are compared 
with an exact method from the literature. The PSO-ED 
algorithm used to solve a common 2D and 3D datasets up to 
1,904,711 points. We compared our results with a branch and 
bound algorithm, and the results showed that the PSO-ED 
algorithm is capable of solving continuous absolute p-center 
location problems optimally. 

VII. FUTURE WORK 

In this paper, we put forth a new algorithm for the absolute 
p-center location problem that is simple and efficient. The 
PSO-ED is devised to solve the problem. Although its 
effectiveness, a hybrid version is recommended in which PSO 
may be combined with anther metaheuristic technique in order 
to achieve more accurate results for all instances. We may also 
expand the usage of the algorithm to solve α-neighbor p-center 
problem in which each demand point is assigned to α service 
facilities, so that each demand point could withstand the 
failure of α-1 service facilities. 
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